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Abstract

It has been demonstrated that the speech recognition perfor-
mance can be improved by adding extra articulatory informa-
tion, and subsequently, how to use such information effectively
becomes a challenging problem. In this paper, we propose an
attribute-based knowledge integration architecture which is re-
alized by modeling and learning both acoustic and articulatory
cues simultaneously in a uniform framework. The framework
promotes the performance by providing attribute-based knowl-
edge in both feature and model domains. In model domain,
the attribute classification is used as the secondary task to im-
prove the performance of an MTL-DNN used for speech recog-
nition by lifting the discriminative ability on pronunciation. In
feature domain, an attribute-based feature is extracted from an
MTL-DNN trained with attribute classification as its primary
task and phonetic/tri-phone state classification as the secondary
task. Experiments on TIMIT and WSJ corpuses show that the
proposed framework achieves significant performance improve-
ments compared with the baseline DNN-HMM systems.

Index Terms: multi-task learning, automatic attribute tran-
scription, deep neural networks

1. Introduction

In recent years, the knowledge integration architectures for au-
tomatic speech recognition (ASR) have attracted a lot of re-
search attentions [1-5]. These studies aim at knowledge-rich
ASR systems and have developed several novel ASR paradigm-
s typically by employing a bottom-up knowledge integration
framework to assemble speech cues at various levels [6]. These
cues include speech production cues [3], acoustic-phonetic cues
[7], and mainly focused attribute cues [8]. The work in [3] pro-
vides a comprehensive overview of the usage of speech produc-
tion knowledge in ASR systems. Some recent works [9-11]
explore a bottom-up knowledge integration framework for AS-
R by employing a two-step approach: firstly detect events or
attributes of speech, and then integrating the detected cues into
ASR system using evidence mergers [12] or lattice rescore tech-
niques [9]. The knowledge based features, which are known to
be linguistically and phonetically relevant, promote the discrim-
ination performance on accent recognition [13] and language
identification [14]. Although the effectiveness of using rich
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knowledge for ASR has been demonstrated under the bottom-up
detect-and-merge architecture, how to integrate these cues and
knowledge in conventional ASR architecture is still an open is-
sue.

Besides the related detect-and-merge approaches, multi-
task learning seems to provide a different framework for knowl-
edge integration. In the conventional deep neural network - hid-
den Markov model (DNN-HMM) hybrid systems, neural net-
works are typically trained for one task of senones classifica-
tion. Recent works try to take advantage of multi-task learning
approach to improve the generalization performance of senones
classification by jointly learning related tasks, such as grapheme
classification [15], phoneme/state context learning [16], and so
on. These studies show that when the classifier uses the same
architecture of network to perform more than one related task,
it learns the shared structure of tasks. In addition, multi-task
learning architecture promotes the primary classification accu-
racy by simultaneously training a related secondary classifica-
tion task.

In this paper, we describe an attribute-based knowledge
integration paradigm which simultaneously models and learn-
s both acoustic and articulatory cues in a uniform framework.
Multi-task learning deep neural networks (MTL-DNNs) with
shared input and hidden layers and individual output layer for
each task are jointly trained on a uniform loss criterion. To in-
tegrate the attribute knowledge to speech recognition task, we
consider the attribute classification as the secondary task to re-
fine the primary senones classification. Considering that the
output of hidden layers in MTL-DNN is a more powerful rep-
resentation of input features compared with conventional DNN,
the output of last hidden layer of MTL-DNN trained with at-
tribute classification as the primary task and phoneme recog-
nition as the secondary task is further concatenated with the
original acoustic feature to train the MTL-DNN for phoneme
recognition.

The rest of the paper is organized as follows. In Section 2,
we review the attributes of speech and describe how to take use
of them in our work. Multi-task learning, along with the im-
plementation of attribute classification as the secondary task, is
introduced in Section 3. The proposed attribute-feature extrac-
tor is illustrated in Section 4. In Section 5, we evaluate the per-
formances of baseline DNNs and our framework on phoneme
recognition and large vocabulary continuous speech recognition
(LVCSR) tasks. Finally, the conclusion and outlook on future
work are given in Section 6.



Table 1: Phonological features (attributes) and their associated
phones used in this study.

Attribute Phonemes
Vowel iy ih eh ey ae aa aw ay ah ao oy ow
uh uw er
manner Fricative jhchsshzzhfthvdhhh
Nasal mn ng
Stop bdgptk
Approximant wylr
Coronal dlinstz
High ch ih iy jhy sh uh uw y ow g k ng
Dental dh th
lace Glottal hh
P Labial bfmpvw
Low aa ae aw ay oy
Mid ah eh ey ow
Retroflex err
Velar gkng
Anterior bddhflmnpstthvzw
Back ay aa ah ao aw ow oy uh uw g k
Continuant aa ae ahao aw ay dheherreylfih
iyoyowsshthuhuwvwyz
others Round awowuw aouh vyoyrw
‘ aa ae ao aw ay ey iy ow oy uw ch s
Tens
ense shfthptkhh
Voised aa ae ahaw ayaobddheherey gih
) iyjhlmnngowoyruhuwvxwyz
Silence sil

2. The attributes of speech

The attributes of speech can be comprehended by a collection
of information from fundamental speech sounds [8]. The infor-
mation of sounds contains speaker characteristics and speaking
environment, including linguistic interpretations, a speaker pro-
file encompassing gender, accent, emotional state etc. [8]. The
21 phonological features (attributes), which we used as label-
s of the secondary task for DNN training and labels of feature
extractor to extract attribute-based features, are listed in Table
1 [12]. The usual set of 39 phone classes are then mapped to 21
pairs of 2-dim features, which is 42-dim in total. The value of
each pair of the phonological features indicates the presence/ab-
sence of this attribute in the pronunciation of this phone, with
(1,0) meaning the presence and (0, 1) meaning the absence.

3. Multi-task learning

Multi-task learning (MTL) [17] is a machine learning technique
that improves single-task learning (STL) by training the model
with several related tasks using a shared representation. The ef-
fectiveness of MTL depends on the relations between each task
and the shared learned structure across the tasks [17]. These
secondary tasks are used for the training stage and are dropped
while testing the unseen data.

3.1. Understanding multi-task learning

One aspect of the effectiveness of secondary task learning,
which is similar to dropout strategy and sparse penalty in a
sense, can be explained as a regularization to avoid over-fitting.
As a result, the MTL is effective especially when the train-
ing data is limited, in which case the over-fitting problem is
more likely to occur. By adding extra knowledge-based targets,
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Figure 1: An MTL-DNN system for the joint training of pho-
netic state and attribute label.

secondary tasks weaken the excessive dependence between the
model and the primary task.

The secondary task learning can also improve the model
performance by applying extra information, including accent,
speaker, lingual and so on. Taking MTL-DNN for example,
the secondary task learning increases the discrimination of the
hidden layer outputs on these extra areas, which leads to a more
discriminative hidden layer for primary task classification.

3.2. Using attribute classification as the secondary task

In order to improve the performance of phonetic/triphone state
classification task, we apply attributes as the secondary task to
integrate articulatory knowledge to conventional STL-DNN. As
shown in Figure 1, the MTL-DNN uses shared input layer (The
proposed framework uses combined feature, which will be de-
scribed in section 4, as its input layer) and hidden layers but
individual output layers for each task. Both of the labels are
used to update the weights, including shared weights and indi-
vidual weights, for the training stage. And at the test stage, only
the output layer of phonetic/triphone state classification task is
used to calculate the posteriors for the HMM decoder. Given
an input vector x, the posterior probability of the ith phonetic
state sz(-p ) from primary task output layer is computed using the
softmax function as follows:

(P))

ex N .
P(s§P>|x):—N(pf’(yl S Vi= 1, NP )
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where ygp ) is the ith output of phonetic/triphone state classifi-

cation task, and N is the number of phonetic/triphone state,
which is 183/3453 in this paper. The posteriors of attribute la-
bels are calculated in pairs. For the ith attribute label, which
mapped to the ith pair of outputs, the corresponding posterior is
computed using softmax function as follows:

exp(y'?)
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where yz(f;) and y'?) are positive and negative outputs of the ith

pair of attribute classification task, separately.



We use cross-entropy as the training criteria. The cross-
entropy of phonetic/triphone state classification task is calculat-
ed as follows:

N(P)
EP =313 dP log(P(s\”) |x)], ©)
x i=1

where dﬁ.” ) denotes the target values of the ith phonetic/triphone
state label, which is 1 when x belongs to the ith state and is 0
otherwise. The cross-entropy of the ¢th pair of attribute label is:

B® =3 {d P(s{”[x) + (1 — d{”)[1 - P(s\" |%)]},

C))
where d,E“) denotes whether the 7th attribute presents in the pro-
nunciation of the input frame, with (1, 0) denoting the presence
and (0, 1) denoting the absence. Then the cross-entropy of at-
tribute classification task is calculated as the summation of all
pairs of attribute labels:

N(a)
EW =" B, ®)
=1

where N(®) is the number of attributes, which is 21 in this
article. Finally, the MTL-DNN is trained by minimizing the
weighted summation of E® and B@;

E=Q1-a)E® +aB“, (6)

where « is the weight that controls the proportion of gradient
which is calculated from the secondary task. We use the fac-
tor (1 — a) to scale E® so that the summation of the two
factors is 1, in which case there’s no need for a scaler of the
learning rate. When « is greater than 0.5, the attribute classi-
fication, whose proportion is larger than the phonetic/triphone
state classification task, can be seen as the primary task and the
phonetic/triphone state classification as the secondary task.

4. Attribute-based features

To further improve the performance of the MTL-DNN, we ex-
tract attribute-based features, which can be seen as a knowledge
integration feature, to be a part of input features. Considering
the powerful representation ability [18] of DNNs, we use the
DNN trained with attribute labels to be our feature extractor.
Figure 2 illustrates how features are derived. Firstly, we train
an MTL-DNN with attribute classification as its primary task.
The phonetic/tri-phone state classification task is now used as
the secondary task to promote the discriminative capability of
the model. This is achieved by setting o in Eq. (6) to a value
that is greater than 0.5 (We use o« = 0.8 in this paper). Feature
extraction is achieved via forward-propagation from input layer
to the linear outputs of last hidden layer with a back-end Linear
Discriminate Analysis (LDA) projection to reduce the feature
dimension. Finally we append the the attribute-based feature
with the original mel filter-bank (FBANK) feature to obtain the
combined feature.

In order to analyze the discrimination of attribute-based fea-
tures in feature domain, we display the first two principal com-
ponents of original FBANK features and proposed attribute-
based features, as shown in Figure 3. We select 5 phones and
show features that belong to their phonetic states (We use 3 s-
tates to model each phone/triphone) from TIMIT [19] corpus.

Combined feature

Phonetic/triphone }K

Attribute label

state label

FBANK
feature

Figure 2: The attribute-based feature extractor.
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Figure 3: Scatter plot of first two dimensions of PCA projection
for features. The plot of left uses original FBANK features and
the right one uses proposed attribute-based features.

It can be clearly seen that, compared with the original FBANK
features, the attribute-based features have a much stronger dis-
criminative ability on the five states, which leads to a better
recognition result as a matter of course.

5. Experiments
5.1. Corpus and configuration

‘We conduct phoneme recognition on the TIMIT [19] corpus and
LVCSR on Wall Street Journal [20] (WSJ) speech corpus to sys-
tematically evaluate the performance of the proposed approach
and other comparison methods. The training set of TIMIT con-
sists of 3696 utterances spoken by 462 speakers from 8 kind of
different dialects. For validation purpose, a dataset of 400 ut-
terances spoken by 50 speakers is chosen to be the development
set. We also use the test set with 192 utterances spoken by 24
speakers to examine each of the approaches. The 5000-word
speaker independent WSJO task [20] is also used to evaluate
the performances of proposed approach on LVCSR. The train-
ing set used in this article is an 14-hour subset train-si84 (7138
utterances from 83 speakers), rather than the full 81-hour set.
We use the dataset dev93 (503 utterances from 10 speakers) as
the development set. Evaluation is carried out on the eval92
evaluation data with 330 utterances from 8 speakers. Conven-
tional 40-dimension log mel filter-banks (FBANK), along with
their first and second order derivatives, are used as features of
each frame. For TIMIT, the features of 11 consecutive frames
are combined as input features of the baseline DNN and fea-
ture extractor described in section 4, and for WSJ the number
of consecutive frames is 15. Each dimension of the input fea-
tures is normalized to have zero mean and unit variance over
the whole training set. Mini-batches of size 256 are used for
all batch-based training procedure. For TIMIT a bi-phone lan-
guage model trained on training utterances is used. For WSJ
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we use the big dictionary setup in kaldi [21] that adds common
pronunciation variants to the default dictionary.

5.2. Greedy layer-wise supervised training

We initialize DNNs with greedy layer-wise supervised train-
ing [22]. The DNNs are first initialized randomly with one
hidden layer and trained with single-task learning for only one
epoch, then we remove the output layer (including the softmax
layer) and add a new hidden layer and a new output layer that
initialized randomly, and train again. The procedure is repeat-
ed several times until the number of hidden layers reaches the
target.

5.3. The fine-tune stage

DNN:s, including proposed feature extractors and DNNs for
phonetic/triphone state classification, are trained with 2048 sig-
moid nodes in each layer. For TIMIT, the number of DNN lay-
er is 4 and that for WSJ is 6. The cross-entropy discrimina-
tive training is done by back-propagation algorithm to fine-tune
the parameters. For TIMIT, each of the 61 phonetic labels is
mapped to 3 HMM states, making the dimension of output lay-
er to be 183. For WSJ, the tri-phone states are clustered into
3453 classes by a decision tree. Softmax function is used as the
activation of output units. The learning rate is initialized with
0.008 and scaled by a factor of 0.5 if the increase of frame accu-
racy on validation set is less than 0.5%. The maximum number
of training iteration is set to 15. We choose 0.2 as the secondary
task weight (o in Eq. (6)) after having tested a list of values. As
the momentum is very tricky which may affect the final results
significantly [23], and we just intend to make a fair comparison
between different approaches in the experiment, the momentum
is not used as a part of our experiments.

5.4. Results on TIMIT corpus

The experimental results of phone error rates (PERs) on TIMIT
corpus are shown in Figure 4. We can observe that the MTL-
DNNs outperform the STL-DNNS in all conditions of input fea-
tures. Recognition performance on PERs is improved obviously
by augmenting all dimensional attribute-based features to STL-
DNN:ss than that trained with original FBANK features. Howev-
er, some results of MTL-DNN (i.e., results with 20-dimension
and 180-dimension extra-added features) become worse after
applying attribute-based features. For the MTL-DNN trained
with 20-dimension attribute-based feature, it is caused by that
the information contained in extra feature is so little that is cov-
ered by the secondary task training. For the one trained with
180-dimension attribute-based feature, the dimension of addi-
tional feature is so large that the attribute-based feature dilutes
the original feature, resulting in an over-fitting. The lowest PER
of 21.77%, which is a 4.1% relative reduction to the result
22.66% of the baseline DNN, is achieved by the MTL-DNN
trained with combined feature which contains FBANK feature
and 120-dim attribute-based feature.

5.5. Results on WS]J corpus

The experimental results on WSJ corpus in terms of word er-
ror rates (WERs) are demonstrated in Table 2. Experiments
show that both the MTL-DNN with original FBANK feature
and the DNN with combined feature achieve significant WER
reductions compared with DNN baseline, and the combination
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Figure 4: Comparison of different systems using single-task and
multi-task learning with FBANK feature and combined feature
(CBF). The performance is given in PER (%) for all test condi-
tions.

Table 2: WERs (%) of WSJ experimental results. The dimension
of extra-added features is 120.

dev test

STL-DNN 12.30  3.66
STL-DNN + CBF 11.78 346
MTL-DNN 11.53 322

MTL-DNN + CBF  11.47 3.12

attains a further improvement compared with each individual
approach. The best result in WERs achieved by the proposed
framework has a 14.75% relative reduction to the baseline DNN
on test set and a 6.75% relative reduction on development set.

Although both the attribute-based feature and attribute-
based secondary task produce knowledge from attribute labels,
the integration framework achieves a better result than each in-
dividual approach. The reason is that the attribute-based feature
provides discriminative information in feature domain, while
the MTL-DNN applies the discriminative rule in model domain.
Therefore, as shown in Figure 4, the knowledge integration ar-
chitecture performs discriminative tuning in both domains and
achieves a further improvement in performance.

6. Conclusions

In this paper, we propose an attribute-based knowledge inte-
gration architecture which is realized by simultaneously mod-
eling and learning both acoustic and articulatory cues in a u-
niform framework. In feature domain, an attribute-based fea-
ture is extracted by an MTL-DNN trained with attribute clas-
sification as the primary task and senones recognition as the
secondary task. In model domain, the attribute classification is
used as the secondary task to improve the performance by lifting
the discrimination ability of an MTL-DNN used for phoneme
recognition. We evaluate our framework on TIMIT context-
independent phoneme recognition task and WSJ LVCSR task.
Experiments on both tasks show that DNNs with modifications
on both model and feature domains achieve significant improve-
ments compared with the baseline DNN-HMM system, and the
combination of them achieve a further improvement to each of
them. As future directions, we plan to investigate our architec-
ture on other tasks to explore the generalization, such as man-
darin recognition and accented speech recognition.
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