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Abstract

It has been well-recognized that the accent has a great impact
on the ASR of Chinese Mandarin, therefore, how to improve
the performance on the accented speech has become a critical
issue in this field. The attribute feature has been proven effec-
tive on modelling accented speech, resulting in a significant-
ly improved performance in accent recognition. In this paper,
we propose an attribute-based i-vector to improve the perfor-
mance of speech recognition system on large vocabulary accent-
ed Mandarine speech task. The system with proposed attribute
features works well especially with sufficient training data. To
further promote the performance on conditions such as resource
limited condition or training data mismatched condition, we al-
so develop Multi-Task Learning-Deep Neural Networks (MTL-
DNNss) with attribute classification as the secondary task to im-
prove the discriminative ability on Mandarin speech. Exper-
iments on the 450-hour Intel accented Mandarin speech cor-
pus demonstrate that the system with attribute-based i-vectors
achieves a significant performance improvement on sufficient
training data compared with the baseline DNN-HMM system.
The MTL-DNNs complement the shortage of attribute-based i-
vectors on data limited and mismatched conditions and obtain
obvious CER reductions.

Index Terms: accented speech recognition, large vocabulary
continuous speech recognition, attribute

1. Introduction

As one of the most important factors of speaker variability [1],
accent plays an important role in automatic speech recognition
(ASR) tasks. Chinese is a language with a number of accents,
which is spoken extremely differently by speakers living in d-
ifferent dialectal regions of China [2]. As a result, compared
to standard Mandarin recognition, performance degrades when
dealing with accented speech. Due to the fact that speakers with
strong accents can replace an unfamiliar phoneme in the lan-
guage [3], which is absent in the standard pronunciation, the ac-
cented speech recognition is not properly handled by traditional
acoustic model. Some speaker adaptation approaches may have
effect on weakening the impact of strong accents. However, ex-
periments show that it is preferable to have models only for a
small number of large speaker populations than for many small
groups [4], which indicates that the adaptation on accent-level
is more useful than that on speaker-level when the speech is
strongly accented.

Research has been carried out on dialectal or foreign ac-
cented speech recognition [5]. General speaker adaptation tech-
niques, such as fMLLR [6] and MAP [7], are applied to fit the
characteristics of foreign accents [8]. Besides the feature trans-
formation, some multilingual approaches, such as multilingual
HMM [9] and recognizer combination method and multilingual

acoustical models [10, 11], are also applied for accented speech
recognition [12].

The speech spoken by speakers with different accents dif-
fer in the phonetic pronunciation. Meanwhile, the knowledge-
based modelling, such as attribute feature [13], which is known
to be linguistically and phonetically relevant [14], has an ex-
cellent representation ability on speaker pronunciation. Experi-
ments in [15] demonstrate that the attribute feature has a strong
capacity on modelling accented speech. However, traditional
acoustic features for speech recognition, such as mel frequen-
cy cepstrum coefficient (MFCC) and mel filter bank (FBANK),
along with the frame-level attribute feature [16], are all short-
term features. The frame-level attributes that extracted from
traditional acoustic features contains no more information than
the traditional features. The utterance-level attribute features,
which are the statistics of frame-level attributes, are more com-
petent in providing accent information for DNNs. The i-vector
approach [17] has been proven to be successful in speaker [18],
language [19] and accent [20] recognition and speaker adapta-
tion for LVCSR [21]. By extracting statistic information, the
i-vector feature contains information of speakers, accents, envi-
ronments, channels, etc.

Besides the attribute features, multi-task learning provides
a model-based discrimination for knowledge integration. In
the conventional deep neural network - hidden Markov mod-
el (DNN-HMM) hybrid systems, neural networks are typical-
ly trained for one task of senones classification. Recent work-
s try to take advantage of the multi-task learning approach to
boost the generalization performance of senones classification
by jointly learning related tasks, such as grapheme classification
[22] and phoneme/state context learning [23]. These studies
show that when the classifier uses the same architecture of net-
work to perform more than one related task, it learns the shared
structure of tasks.

In this article, we propose an attribute-based feature, which
is extracted with the i-vector methodology and represents a
strong discrimination on accented Mandarin speech, to improve
the performance of conventional DNN acoustic models on ac-
cented Mandarin speech recognition task. The system with
proposed attribute features works well especially on sufficient
training data. To further improve the system on resource-limited
and data-mismatched conditions, MTL-DNNs with shared in-
put and hidden layers and individual output layer for each task
are jointly trained on a uniform loss criterion. We evaluate
and analyze the performance of attribute knowledge integration
with different dimensional attribute features, different amounts
of training data and data-mismatched conditions. Experimen-
tal results demonstrate that the proposed framework achieves a
significant performance improvement compared with baseline
DNN systems.



Table 1: Phonological features (attributes) and their associated
phones used in this study.

Attribute Phonemes
Voiced mnlryw
Voiced nasal mn
Lateral 1
initial Stop bpdtgh
Fricative zczhchjq
Retroflex zhchshr
Alveolar zZcs
Affricate fsshxhr

Simple vowel ijaaeoiuver

Head-dominant ai ei ao ou

Final Centre-dominant iao iou uai uei

Tail-dominant iaua uo ve

Front nasal an ian van uan in en uen ven vn

Back nasal ang iang uang eng ong ing iong

Silence Silence sil

2. The attribute of Mandarin

The speeches spoken by speakers with different accents differ in
the phonetic pronunciation. For Mandarin speech, one example
is that the Shanghainese tend to replace the standard retroflex
fricatives and affricates /zh/ch/sh/ with their alveolar equiva-
lents /z/c/s/, in which case the attributes retroflex and alveolar
have obvious discriminations between standard Mandarin and
Shanghai-accented Mandarin. Another example is that some
people from south China, such as Wuhanese and Chengdunese,
tend to replace voiced nasal /n/ with lateral /l/ and back nasals
with their corresponding front nasals. In consideration of these
characteristics of Chinese accented pronunciation, we select 15
phonological features (attributes) as shown in Table 1. The usu-
al set of 61 Mandarin phone classes (including silence, which
is presented as sil in this paper) are then mapped to 15 pairs of
2-dim features, which is 30-dim in total. The value of each pair
of phonological features indicates the presence/absence of this
attribute in the pronunciation of this phone, with (1, 0) meaning
the presence and (0, 1) meaning the absence.

3. Attribute-based i-vector

The DNNSs for acoustic modelling in ASR are designed to reveal
the text content and be invariant to other information including
gender, accent, channel, etc. However, over-fitting problem oc-
curs in practice. The attribute-based i-vector with a strong dis-
crimination on accents is applied to DNNs as accent adaptation
in a sense. By this approach, DNNs tend to normalise the signal
with respect of the accent information and as a result to be more
relevant to the target text.

3.1. The extraction of attribute

A three-layer DNN with 1024 sigmoid units for each layer
is utilized as the attribute extractor. The input to the DNN
can be any speech features, and we use conventional 120-dim
FBANK+A+AA along with their left and right contexts in this
paper. The number of output units is 30, with presence and
absence for each attribute, as described in section 2. To further
improve the performance of the attribute extractor, we have tried
the MTL-DNN with context-dependent state classification as

the secondary task is realized to promote the discrimination on
attributes. However, the MTL-DNN attribute extractor shows
comparable performance with the STL-DNN extractor. So all
the extractors in this article are traditional STL-DNNs.

Given an input vector x, each pair of attribute exactor
outputs denotes the presence probability p(s?|x) and absence
probability p(s{|x) of the target class . The two outputs are
transformed by a softmax function, which normalizes the two
values into the range of (0, 1) and to have a summation of 1.
Then the 15 pairs of outputs are concatenated to form a 30-
dim vector to be the input of i-vector modelling. Different from
experiments in [15], which prove the effectiveness of i-vector
modelling with long-term attributes in foreign accent recogni-
tion, in this paper, short-term attributes in frame-level are used
for i-vector modelling, since short-term features contain more
detailed information which is more helpful for speech recogni-
tion.

3.2. I-vector modelling

The classical extraction of i-vector is based on the total vari-
ability model (TVM) presented by N. Dehak in [17]. An ar-
bitrary duration utterance is represented by a several hundred-
dimensional vector in this model. Each utterance is first rep-
resented by its zero- and first-order Baum-Welch (BW) statis-
tics extracted from the universal background model (UBM),
which is a Gaussian mixture model (GMM) trained with a large
amount of speech to represent the distribution of features. Then
the super-vector m which is composed by stacking the first-
order BW statistics of the utterance, is projected onto the total
variability space according to the generative equation:

m=mo+ Tw (D

where my is the mean vector which is generally taken to be the
UBM supervector, 7" is a rectangular matrix of low rank and the
i-vector w is a random vector with standard normally distribut-
ed prior. In this modelling, m is normally distributed with mean
vector mg and covariance matrix 77" . The estimations of to-
tal variability matrix 7' and latent variable w are realized by
Expectation-maximization (EM) algorithm. For each utterance,
the i-vector is the maximum a posteriori (MAP) point estimate
of the latent variable w.

3.3. Improving DNNs with i-vectors

The utterance-level i-vectors are then appended to the original
frame-level acoustic features, as described in [21]. Given a con-
text window with c frames of d dimensional acoustic features
and v dimensional i-vector, the augmented feature of cd + v
dimension is provided as the input to DNNs. All frames from
a given utterance are augmented with the same v dimension-
al utterance i-vector. Frames from training data are randomly
selected while batch-based training to prevent the model from
over-fitting the continues appearance of the same i-vector.

4. Multi-task learning

Multi-task learning [24] is a machine learning technique that
improves single-task learning by training the model with several
related tasks using a shared representation. The effectiveness of
multi-task learning depends on the relations between each task
and the shared learned structure across the tasks [24]. These
secondary tasks are used for the training stage and are dropped
while testing the unseen data.
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Figure 1: An MTL-DNN system for the joint training of
context-dependent state (CD state) and attribute label.

4.1. Understanding multi-task learning

One aspect of the effectiveness of secondary task learning,
which is similar to dropout strategy and sparse penalty in a
sense, can be explained as a regularization to avoid over-fitting.
As a result, the multi-task learning is effective especially when
the training data is limited or mismatched with the test data, in
which case the over-fitting problem is more likely to occur. By
adding extra knowledge-based targets, secondary tasks weaken
the excessive dependence between the model and the primary
task.

Multi-task learning can also improve the performance of
model by taking advantage of extra information, including ac-
cent, speaker, lingual and so on. Taking the MTL-DNN for ex-
ample, the secondary task learning increases the discrimination
of the hidden layer outputs on these extra areas, which leads to a
more discriminative hidden layer for primary task classification.

4.2. Applying attribute classification as the secondary task

In order to improve the performance of the speech recognition
task, we apply attribute classification as the secondary task to
integrate articulatory knowledge to conventional STL-DNN. As
shown in Figure 1, the MTL-DNN uses shared input layer and
hidden layers but individual output layers for each task. Both
of the labels are used to update the weights, including shared
weights and individual weights, in the training stage. And in
the test stage, only the output layer of context-dependent state
classification task is used to calculate the posteriors for the H-
MM decoder.

The MTL-DNN is trained to minimize the objective func-
tion as follows:

E=(1-«a)E,+ aF;, 2)

where E, and E; denote loss functions of primary and sec-
ondary tasks separately, and « is the weight that controls the
proportion of gradients which are calculated from the secondary
task. We use the factor (1 — «) to scale F, so that the summa-
tion of the two factors is 1, in which case there’s no need for
scaling the learning rate.

5. Experiments

5.1. Corpus and setup

The experiments are carried out on the 450-hour (gender bal-
anced) Intel accented Mandarin speech corpus. Six typical ac-
cents, consisting of Beijing (BJ), Chengdu (CD), Guangzhou

Table 2: Summary of intel corpus used in this article.

BJ CD GZ HB SH WH
TRN_.SPK 213 105 231 101 207 105
DEV_SPK 4 4 4 4 4 4
TST_SPK 20 20 20 20 20 20
TRN_.UTT 83490 41446 89737 39897 80506 31636
DEV_.UTT 1527 1550 1414 1573 1396 1572
TST.UTT 1000 1000 1000 1000 1000 1000

Table 3: CERs (%) of DNNs with different dimensions of
attribute-based and MFCC-based i-vector input.

dimension 0 50 100 150 200 300
MFCC 1457 1427 13.84 13.85 13.76 14.05
Attribute  14.57 1135 11.08 11.89 11.02 11.02

(GZ), Haerbin (HB), Shanghai (SH) and Wuhan (WH), are con-
sidered. The details of speakers (SPKs) and utterances (UTTs)
of training (TRN), development (DEV) and test (TST) sets are
shown in Table 2.

Conventional 40-dim FBANK feature, along with their first
and second order derivatives, are used as feature of each frame.
The features of 15 consecutive frames are combined as input
features of the baseline DNN and feature extractor described in
section 3. Each dimension of the input features (including at-
tribute features) is normalized to have zero mean and unit vari-
ance over the whole training set. Mini-batches of size 256 are
used for all batch-based training procedure. The training labels
of DNNs are generated by a well-trained GMM-HMM systems
with 8152 tied context dependent HMM states. A 3-gram lan-
guage model (LM) is used during the recognition.

All the networks, which are set with 6 hidden layers and
2048 sigmoid nodes for each layer, are initialized with greedy
layer-wised pre-training [25]. The cross-entropy discriminative
training is done by back-propagation algorithm to fine-tune the
parameters with exponentially decaying learning rates, which
are set to 0.008 at start. We choose 0.2 as the secondary task
weight (a in Eq. (2)) after having tested a list of values. As
the momentum is very tricky which may affect the final results
significantly [26], and we just intend to make a fair comparison
between different approaches in the experiment, the momentum
is not used as a part of our experiments.

For i-vector extraction, a full-covariance UBM with 1024
Gaussian components and TVMs of corresponding dimensions
are trained with all the speeches in the training set. Systems op-
erate on two kinds of features, the MFCC and the attribute, both
appended with their first and second order derivatives computed
over a 25ms window every 10ms.

5.2. Analysis of attribute feature

Firstly, we experiment on different dimensions of i-vector fea-
tures. DNNs with attribute-based and MFCC-based i-vector
inputs are carried out. As shown in Table 3, DNNs with
attribute-based i-vectors (attribute features) outperform DNNs
with MFCC-based i-vectors in all dimensions. Both the two ap-
proaches achieve their best performance with 200-dimension.
Then, the dimension of attribute-based i-vector applied in the
following experiments is set to 200.



Table 4: Comparison of different systems using STL-DNN and
MTL-DNN with original FBANK feature and attribute+ FBANK
feature. The data is selected randomly. The performance are
given in CERs (%) for all test conditions.

Amount of data 50h 100h 200h 400h
STL-DNN 1840 16.68 15.69 14.57
STL-DNN+Attribute  17.80  15.18 13.22 11.02
MTL-DNN 16.65 16.01 1523 1445

MTL-DNN+Attribute  16.68 14.11 12.85 10.52

5.3. The influence of training data amount

The experiments are repeated with DNNs trained on differen-
t hours of speech to evaluate the relationship between system
performance and training data size. The results are shown in
Table 4. We observe that all systems achieve CER reduction-
s with the increase of training data. However, more relative
reductions are obtained by the MTL-DNNs when the training
data size is limited and, oppositely, more relative reductions are
attained by DNNs with attribute features (STL-DNN+Attribute)
with more training data. The reason is that the multi-task learn-
ing improves the DNN training by providing extra informa-
tion which helps the parameters estimation and prevents from
over-fitting, which occurs especially with limited training da-
ta. DNNs with additional attribute features learn more complex
structures than that with original acoustic features, which leads
to a requirement for more training data to estimate the param-
eters. The hybrid structure (MTL-DNN+Attribute) of the two
approaches integrates both of their advantages and overcomes
the shortcomings, and results in a further improvement (27.8%
relative reduction on CER over DNN baseline) compared with
the baseline DNN system and each individual approach with the
400-hour training data.

5.4. The mismatched condition

To systematically evaluate the performance of the proposed ap-
proach and other comparison methods on data mismatched con-
dition, we remove Shanghai-accented and Guangzhou-accented
speeches out of the training and development sets, after which
the amount of training data reduces from 400 to about 210
hours. The attribute extractor is trained with the 210-hour da-
ta, however, the UBM for modelling i-vector is trained with the
400-hour training data, this is because the UBM training is done
with the unlabeled data, which is easy to get in practice. The re-
sults in Table 5 demonstrate that the STL-DNN with attribute
feature and the MTL-DNN with original FBANK feature out-
perform the baseline DNN on both in-domain and out-domain
test sets. It indicates that the additional attribute feature leads
to a generalization by providing the pronunciation information
to the DNN. By supplying extra knowledge and avoiding over-
fitting, the MTL-DNN achieves more obvious improvement on
out-domain test sets. The hybrid architecture with both of their
advantages achieves a further improvement on in-domain set
compared with the MTL-DNN and outperforms the baseline
STL-DNN on all test sets.

6. Discussions

By providing the additional utterance-level attribute feature as
input, DNNs achieve valuable improvement (24.4% relative
CER reduction with 400-hour training data) compared with
baseline DNNs. However, with limited training data, the ad-

Table 5: Comparison of different systems using STL-DNN and
MTL-DNN with original FBANK feature and attribute+ FBANK
feature on mismatched condition. The performance are given
in CERs (%) for 2 mismatch test sets (including SH and GZ),
average of matched sets and average of all.

Accent SH GZ others all
STL-DNN 18.67 25.06 1323 16.28
STL-DNN+Attribute  15.71 2241 10.76  13.61
MTL-DNN 17.38  23.69 1275 1542

MTL-DNN+Attribute 15.31 21.76 10.13 13.04

ditional attribute features lead to a limited improvement due to
the over-fitting problem, which indicates that more training da-
ta is required for DNNs with attribute features. With the in-
crease of training data, the effect of attribute feature enhances
and becomes significant. In mismatched condition, DNN with
attribute feature achieves obvious improvements on out-domain
test sets compared with the baseline DNN.

Multi-task learning boosts the system performance by pro-
viding additional knowledge and avoiding over-fitting. Oppo-
site to DNNs with additional attribute features, MTL-DNNs
produce the desired improvement especially when training data
is limited. A 9.51% relative CER reduction with 50-hour train-
ing data is achieved, compared with the DNN baseline. Exper-
imental results also show the robustness of MTL-DNNs in the
mismatched condition. Significant improvements are achieved
on both Guangdong (5.5% relative) and Shanghai (6.9% rela-
tive) test sets by the MTL-DNN.

The combination of the modifications in both feature and
model domains keeps up both of their superiorities and recovers
the weaknesses. With limited training data, which is insufficien-
t to estimate the parameters of DNNs with additional attribute
features, the MTL-DNN boosts the capability by supplying ex-
tra information, which makes parameters trained more suffi-
ciently. With training data increasing, although MTL-DNNs
loss some relative CER reduction, the supplement of attribute
features achieves a further improvement on the MTL-DNN.

7. Conclusions

To handle with accented Mandarin speech, we propose an
attribute-based i-vector feature, which represents a strong dis-
crimination on accented Mandarine speech, to improve the per-
formance of conventional DNN acoustic modelling on accented
Mandarin speech recognition tasks. The system with proposed
features works well with sufficient training data but resource
limited and data mismatched conditions. To solve this prob-
lem, the multi-task learning with attribute classification as the
secondary task is provided. Experimental results show that the
DNNs with attribute-based i-vectors obtain significant reduc-
tions with sufficient training while DNNs with multi-task learn-
ing attain more CER reductions with limited or mismatched
training data. The proposed approaches on feature and model
domains complement each other’s shortcomings, therefore the
combination of them is reasonable to achieve a further improve-
ment over individual approach.

Additionally, the proposed architecture is applied on utter-
ances without any speaker or accent information provided, thus
no extra adaptation or model storage is required, which have
a potential to realize for online speech recognition. As future
works, we plan to investigate our architecture to other languages
and online speech recognition task.
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