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Abstract

Deformable object matching, which is also called elas-
tic matching or deformation matching, is an important and
challenging problem in computer vision. Although numer-
ous deformation models have been proposed in different
matching tasks, not many of them investigate the intrinsic
physics underlying deformation. Due to the lack of phys-
ical analysis, these models cannot describe the structure
changes of deformable objects very well. Motivated by this,
we analyze the deformation physically and propose a novel
deformation decomposition model to represent various de-
formations. Based on the physical model, we formulate the
matching problem as a two-dimensional label Markov Ran-
dom Field. The MRF energy function is derived from the de-
formation decomposition model. Furthermore, we propose
a two-stage method to optimize the MRF energy function.
To provide a quantitative benchmark, we build a deforma-
tion matching database with an evaluation criterion. Exper-
imental results show that our method outperforms previous
approaches especially on complex deformations.

1. Introduction
Deformable object matching is a fundamental and chal-

lenging problem in computer vision. It has a wide range of

applications such as medical image analysis [12], handwrit-

ing recognition [16] and object classification [9]. Given two

images as illustrated in Fig. 1, usually one is called refer-
ence image and the other one is called target image. The
objective of the problem is to obtain the correspondence of

features or structures between the two images.

The non-rigid deformations of objects are complex and

cannot be handled by calculating the transformation ma-

trix, or simply applying geometric constraints. To solve the

problem, the basic idea is to distort the reference image to

match the target image. Thus, there are two important as-

pects in deformation models: 1) how to measure the appear-
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Figure 1. The proposed deformation matching model. The right

image shows the 2D label MRF framework. The left image

shows the physical analysis of deformation. The match (u,v,w)⇒
(u′,v′,w′), (u2,v2)⇒ (u′

2,v
′
2) correspond to bending and compres-

sion deformation, respectively. There is no internal deformation

when (u1,v1) is distorted to (u′
1,v

′
1).

ance similarity; 2) how to describe object deformation and
preserve the inherent structure of the distorted object. Usu-

ally, the former one depends on the characteristic of images

in different applications, and the latter is the study emphasis

in deformation models.

Numerous deformation models have been proposed for

decades. Most models [8, 9, 16, 28] formulate the problem

as an energy optimization problem, which simultaneously

minimizes the appearance similarity term while satisfying

some manually defined smooth constraints to keep the con-

tinuity. However, such constraints cannot handle large and

complex deformations very well and hence the models will

fail to keep the structure of the distorted object. On the

other hand, objects (e.g., human pose and face) with differ-
ent physical properties react in very different ways of de-

formation. The models cannot describe different structure

changes of objects, since they do not take the physical prop-

erties into account. The pictorial structures models [10,11],

which can be treated as physics based models, apply springs

to represent the object deformation. However, they only get

the match of several parts and cannot address accurate cor-
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respondence of local features. Meanwhile, the springs in

the models cannot describe the bending deformation of ob-

jects. Jain et al. [18] propose a rubber plate model to rep-
resent deformations by distorting the template. However,

its ability to describe deformations is limited, since the rub-

ber plate cannot be deformed largely (e.g., the deformations
shown in Fig. 1). Beside, only the correspondence of objec-

t’s edges or contours can be obtained in [18]. Therefore, we

believe that the physical analysis of deformation mechanis-

m and an effective framework are important for deformable

object matching. Unfortunately, in spite of the existence of

physical models in previous literature, most of them exist

in graphics [13] and medical image analysis [24], and there

are few physical models for deformable object matching.

Motivated by this, we analyze the object deformation

mechanism and propose a novel deformation decomposi-

tion model (DDM) to describe various deformations. Al-

though the non-rigid deformations of objects are complex,

we consider that various deformations can be decomposed

into three basic types of deformation: tension, compression
and bending, as illustrated in Fig. 2. In this way, com-
plex deformation can be easily addressed by deformation

decomposition. The proposed DDM is composed of two lat-

tices, which describe axial deformation (tension and com-

pression) and bending deformation, respectively. Our mod-

el is similar to the work of Chenchiah et al. [5], in which
the deformation energy is also decomposed into two kinds

of energies. However, there is no clear physical meanings

of their two kinds of energies.

Based on the DDM, we formulate the deformable object

matching problem as an energy optimization task of two-
dimensional label Markov Random Field as illustrated in
Fig. 1. Furthermore, we propose a generalized framework

of the 2D label MRF and extend it to n-dimensional label
MRF. Finally, we propose a two-stage method to optimize

the MRF energy which is derived from the DDM.

To provide a quantitative benchmark, we construct a

database focusing on the problem of deformable object

matching with an effective evaluation criterion. We test our

approach on both the constructed database and deformable

image pairs from [22]. Furthermore, we apply the DDM

on handwriting recognition, which is one of the most im-

portant applications of deformation models. Experimental

results show that our method outperforms previous models.

There are three main contributions in this paper:

1. We analyze the deformation mechanism and propose a

deformation decomposition model. Experiments show

that the proposed model can describe various and com-

plex deformations effectively.

2. We propose a 2D label MRF framework for de-

formable object matching based on the DDM. The

framework addresses the correspondence of objects in-

volving complex deformations and is flexible for dif-
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Figure 2. The three basic types of deformation in elastic object:

tension, compression and bending.

ferent applications. Moreover, the framework can be

easily extended to handle high dimensional cases in-

volved in many vision tasks with a more generalized

n-dimensional label MRF.

3. We construct a database for deformable object match-

ing and propose an evaluation criterion. The con-

structed database is direct and effective to compare the

matching performance of different deformation mod-

els.

The rest of this paper is organized as follows. In Sec. 2,

we analyze the deformation mechanism and introduce the

proposed DDM. Based on the DDM, we propose the 2D
label MRF framework for deformable object matching in

Sec. 3. In Sec. 4, we apply a two-stage method to optimize

the MRF energy function. Experiments and applications are

shown in Sec. 5. We make conclusions in Sec. 6.

2. The analysis and modeling of deformation
In mechanics, deformation is the transformation of an

object from a reference configuration to the current config-

uration [29]. Usually, it occurs when some parts or the w-

hole body of objects are stretched, compressed or warped.

There will be internal forces between the connected parts

in the deformable object. According to mechanics of ma-

terials [2, 3], there are three principal internal forces : ten-

sion stress (stress is the force per unit area inside the objec-

t), compression stress and bending moment, and the corre-

sponding basic types of deformation are tension, compres-

sion and bending (see Fig. 2). Since deformations can be

decomposed into the three basic deformations, complex de-

formations can be easily addressed by deformation decom-

position.

Motivated by this, we propose the deformation de-

composition model (DDM). The DDM is composed of a

tension-compression spring lattice (T-lattice) and a bending

spring lattice (B-lattice) as shown in Fig. 3. The two lattices

describe the axial and bending deformation respectively.

Definition 2.1 The tension-compression spring lattice
(T-lattice) is defined as (ZM×N,Lt) where

1. Z is the set of non-negative integers, ZM×N is the two

dimensional integer sequence {1, · · · M}×{1, · · · N}
and the nodes in the lattice are points in ZM×N .
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2. Lt is the set of the initial length l0 of the tension-
compression spring.

In the T-lattice, nodes u, v ∈ ZM×N are connected by a

spring, if luv ∈ Lt where luv denotes the distance between
u and v. For brevity, we use (u,v) to denote the spring
connecting u and v. In the T-lattice, only the springs whose
initial length luv = 1 are applied , that is Lt={1}.
When deformation occurs, there will be deformation en-

ergy stored in the object due to the work done by stress-

es. The tension-compression potential (T-potential) can be

calculated according to the work done by springs in the T-

lattice. With Hooke’s law Ft = ktΔl, the potential stored
in the spring (u,v) is

Tuv =

∫ Δl

0

Ftdδ =
1

2
kt(l

′
uv − luv)

2 (1)

where kt denotes the tension and compression modulus rep-
resenting the object’s physical property in axial direction,

luv is the initial length of the spring (u,v), l′uv is the cur-
rent length after deformation and Δl represents the length
changes of the spring. If Δl > 0, Ft is the tension stress

and otherwise Ft is the compression stress.

Thus, the T-potential on the T-lattice can be expressed as

Et =
∑

luv∈Lt
Tuv =

∑
luv∈Lt

1

2
kt(l

′
uv − luv)

2
(2)

In spite of its capability to describe axial deformation

effectively, the T-lattice cannot represent bending deforma-

tion. Therefore, it is necessary to apply a lattice to describe

the bending deformation.

Definition 2.2 The bending spring lattice (B-lattice) is
defined as (ZM×N,ϑb), where ϑb is the set of initial angle of

bending springs.

In the B-lattice, the bending springs can be bent and

will store energy due to the bending deformation. Nodes

u,v,w ∈ ZM×N are connected by a bending spring if

θuvw ∈ ϑb, where θuvw denotes the angle between (u,v)
and (v,w). In the B-lattice, only the bending springs whose
initial angle θuvw= π are applied, that is ϑb={π}.
The bending potential (B-potential) can be calculated by

the work done by bending springs. The work done by the

bending spring (u,v,w) is

Buvw =

∫ Δθ

0

Mbdθ =
1

2
kb(θ

′
uvw − θuvw)

2 (3)

where kb is the bending modulus which represents the bend-
ing properties, θuvw is the initial angle of (u,v,w), θ

′
uvw is

the current angle after deformation and Mb is the bending

moment of the bending spring.

Thus, the bending potential on the whole lattice can be

expressed as

Eb =
∑

θuvw∈ϑb
Buvw =

∑
θuvw∈ϑb

1

2
kb(θ

′
uvw − θuvw)

2
(4)
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Figure 3. (c) shows the configuration of DDM after deformation.

The DDM is composed of a T-lattice (a) and a B-lattice (b). (d)

shows the 2D label MRF model for deformable object matching,
which is based on the DDM.

Therefore, the final DDM is a lattice (ZM×N ,Lt, ϑb),
which is the composition of the T-lattice and the B-lattice

(see Fig.3). When deformation occurs, the displacements

of nodes in the model can be addressed by minimizing the

deformation energy according to the minimum potential en-

ergy principle [4]. The deformation energy is composed

of tension-compression potential and bending potential. In

contrast to traditional methods calculating equations of e-

quilibrium, the energy methods do not need to solve a set

of auxiliary quantities (e.g., stresses) of no interest to obtain
the required answer [2].

The above model is the basis of our framework. In Sec.

3, we will introduce the framework of 2D label MRF for
deformable object matching. The labels in MRF model rep-

resent displacements of corresponding nodes in the DDM.

Meanwhile, the MRF energy function is derived from the

deformation energy. In this way, we transform the mini-

mization of the deformation energy into the optimization of

MRF energy function.

3. The framework of deformable object match-
ing

The goal of deformable object matching is to obtain the

mapping from the reference image Ir to the target image It.
In the proposed framework, we divide the image into a set

of small rectangle elements. Let Tr and Tt denote the sets
of elements in Ir and It respectively. Each element in Tr
corresponds to a node in the DDM. Therefore, if we get the

displacement of each node in the DDM, we can obtain the

mappingM :Tr→Tt with the relationship

(x′, y′) = (x, y) + (X,Y ) (5)

where (x, y) is the coordinate of an element in Tr, (x′,y′)
is the coordinate of the matched element in Tt and (X,Y )
denotes the displacement of element (x, y).

To optimize the displacements of each node, the de-

formable object matching problem can be formulated as a

2D label MRF (see Fig. 3), whose labels are two dimen-
sional and represent the displacement of nodes.
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3.1. Two-dimensional label MRF

Definition 3.1 Given a MRF graph G = (V, C) on the
reference image Ir, it consists of

1. A finite set V ∈ ZM×N of nodes, which represent cor-

responding elements in Tr. Each node v ∈ V can be
denoted by a two dimensional coordinate (xv, yv) and
there is one-to-one correspondence between the nodes

in V and the nodes in the DDM.
2. A set C of cliques, each of which is a subset of V . For
example, (u, v) ∈ C if node u is connected with v.

3. A label set L = X × Y , which is a two dimensional
discrete space. X and Y , which are one dimensional,
represent the horizontal and vertical displacements of

nodes in the DDM respectively:

X = {−xm, · · · , x0, · · · , xm}
Y = {−yn, · · · , y0, · · · , yn} (6)

where ±xm, ±yn are the maximal displacements in x
and y directions.

The most important difference between the above model

and the multi-label MRF is that the label of each node is

a two dimensional variable (X,Y ) ∈ L. The probabili-

ty distribution on a configuration of the model is the joint

probability distributions of variables X and Y . Thus, the
model cannot be simply regarded as a multi-label MRF. We

call the defined MRF model two-dimensional label MRF.
Therefore, the mappingM : Tr → Tt can be obtained by
optimizing the labels of the 2D label MRF model.
In fact, similar 2D label space has been applied in

[20, 28, 32]. However, none of them propose a generalized

framework of the 2D label MRF and even several papers

treat it as a multi-label MRF. In the 2D label MRF, the la-
bels X and Y can represent different statistical or physical

meanings depending on different problems. For an instance

of simultaneously optimizing stereo and segmentation [20],

the model can be regarded as a case of the 2D label MRF,
in which X and Y represent the depth and the object class

respectively. In contrast, the multi-label MRF cannot solve

the two problems simultaneously, since its label can only

represent one kind of meaning.

Furthermore, we extend the concept to a more general-

ized framework of n-dimensional label MRF whose label
set L is a n-dimensional discrete space:

L = X1 ×X2 × · · · × Xn (7)

In the n-dimensional label MRF, a configuration

(X1,· · ·,Xn) assigns a n-dimensional variable to each n-
ode, and each dimensional label Xn has different repre-

sentations. The multi-label MRF is a special case of n-
dimensional label MRF when the label dimension n=1.

3.2. Energy function

The energy of the 2D label MRF contains three terms.
The first term is data term and the other two terms are

tension-compression potential and bending potential. The

data term measures the appearance similarity. Meanwhile,

the deformation energy, which is the sum of T-potential and

B-potential, preserves the inherent structures of deformable

objects in the matching process.

Data term. Each node in the graph G represents the cor-
responding image region with an associated feature vector.

The appearance feature can be pixel, histogram of oriented

gradients [7], or scale-invariant feature transform [23] etc.
in different tasks. The similarity between the element in Tr
and the corresponding element in Tt is the distance between
the two associated features. The data term can be expressed

as
Ed(L) =

∑
v∈V

D(Lv) (8)

where L = (X,Y) = {Lv} is a configuration of the 2D la-
bel MRF and assigns to each node v a label Lv = (Xv, Yv).
Tension and compression potential. Let Ct denote the

set of cliques representing the tension and compression de-

formation. If luv ∈ Lt, (u, v) ∈ Ct, where Lt = {1} in
the DDM. Using Eq. 2 and Eq. 5, the tension-compression

potential term can be expressed as

Et(L) =
∑

(u,v)∈Ct
T (Lu,Lv) =

∑
(u,v)∈Ct

1

2
kt(l

′
uv − luv)

2

(9)

where luv = 1, and l′uv is a function of both the coordinates
and labels of nodes u, v

l′uv =
√
(xu+Xu−xv−Xv)2+(yu+Yu−yv−Yv)2

(10)

Bending potential. The bending potential (Eq. 3) of a
spring (u,v,w) depends on the relationship of three nodes
u, v, w. Let Cb denote the set of cliques representing bend-
ing deformation. (u,v,w) ∈ Cb, if nodes u,v,w are con-

nected by a bending spring, that is θuvw = π and luv = 1,
lvw = 1. Using Eq. 4 and Eq. 5, the bending potential term
can be expressed as

Eb(L)=
∑

θuvw∈ϑb
B(Lu,Lv,Lw)=

∑
θuvw∈ϑb

1

2
kb(θ

′
uvw−θuvw)

2

(11)

where θuvw= π and θ′uvw can be computed by cosine theo-
rem

θ′uvw= arccos(
l′2uv + l′2vw − l′2uw

2l′uvl′vw
) (12)

l′uv , l
′
vw and l

′
uw can be calculated using the distance formu-

la Eq. 10.

Now, we get the final structure of the 2D label MRF

model G = (V, C), where C = Ct ∪ Cb. The final energy
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function, which consists of the data term (Eq. 8) and the

deformation energy (Eq. 9 and Eq. 11), can be expressed

as:

E(L)=

Data term︷ ︸︸ ︷
Ed(L) +

Deformation energy︷ ︸︸ ︷
Et(L)︸ ︷︷ ︸

T−potential

+ Eb(L)︸ ︷︷ ︸
B−potential

(13)

4. Optimization
Optimizing the energy E(L) is a challenging problem.

Ishikawa [14] proposes a graph cuts based algorithm to get

the exact optimization of theMRF energy, which should sat-

isfy convex priors. Unlike the multi-label MRF, each node

in 2D label MRF takes a two dimensional label, henceE(L)
cannot satisfy the convex priors condition and it is unable to

be optimized by the method [14]. Y.Boykov et al. [32] pro-
pose α-expansion algorithm which has been widely used.

Although only an approximate solution can be obtained, it

can be applied in n-dimensional label MRF. In this paper,
we apply a two-stage method to optimizeE(L). We first use
α-expansion algorithm [19,32] to obtain an approximate so-
lution, and then adjust the location of elements according to

the force balance to get a more precise matching result.

The α-expansion algorithm starts from an initial state

and optimizes the objective by a series of iterative moves

based on graph cuts. Each move randomly selects a 2D la-
bel (Xα, Yα) ∈ L, and allows any node v to either keep
its current label (Xv, Yv) or change to label (Xα, Yα) by
getting the min-cut of the corresponding graph. In the iter-

ation, each move leads to a lower energy and the algorithm

reaches convergence when no lower energy can be found.

However, the α-expansion algorithm cannot get precise

solution and may lead to sharp deformations in some lo-

cal positions. When the elastic object gets stable state after

deformation, every element inside should be in equilibrium

state. If the elements do not satisfy the equilibrium con-

dition, they will move under the effect of resultant forces

and the deformation energy will decrease during the move.

Thus, we propose the location move based on force balance

to adjust the location of each element to get smooth defor-

mations.

As shown in Fig. 4, the location move starts from the

initial state obtained by α-expansion. Each move randomly
selects an element v to optimize its location. Let �Fuv be the

force acting on spring (u,v). The resultant force �Fv acting

on v is the sum of components:

�Fv =
∑

u,(u,v)∈Ct

�Fuv =
∑

u,(u,v)∈Ct
kt �Δluv (14)

where the vector �Δluv denotes the deformation of (u,v).

If the value of resultant force | �Fv| is smaller than a cho-
sen threshold Tf , the element is in balance. Otherwise, the

v v 

Fv 

u 
Fuv 

Figure 4. The location move algorithm. The left image is the initial

state optimized by α-expansion. The right shows that node v move
to the equilibrium position under the effect of resultant force.

element will move along the direction of �Fv . During the

move, the element will reach a more stable state with the

decrease of deformation energy. Thus, we can find the best

location of element v along the direction of the resultant
force by minimizing the data term and deformation energy:

L′v = argmin
L′
v

{D(L′v) + T (L′v) +B(L′v)} (15)

where L′v=(X ′
v,Y

′
v) is the new location after moving along

�Fv . T (L
′
v)=

∑
u,(u,v)∈Ct

Tuv and B(L′v) =
∑

u,w
(u,v,w)∈Cb

Buvw.

The algorithm of the location move is shown in Alg. 1.

Algorithm 1 The algorithm of the location move
Initialization:

The initial label L=(X,Y) optimized by α-expansion.
Threshold Tf .

Iteration:
1: for each node v ∈ V do
2: for each node u, (u,v) ∈ Ct do
3: Get the force �Fuv=kt �Δluv
4: end for
5: Get the resultant force �Fv =

∑
u,(u,v)∈Ct

�Fuv

6: if | �Fv| > Tf then
7: L′v=argmin

L′
v

{D(L′v)+T (L′v)+B(L′v)}

8: end if
9: end for
Output:
10: Return label L′v=(X ′

v, Y
′
v) for each node.

5. Experiments and applications
Although many databases have been constructed for im-

age matching, most of them focus on the problems of shape

matching, such as MPEG-7 [21], silhouette database [27]

and key point matching such as images from [25]. One of

the main challenges in these databases is affine deforma-

tions which is not the emphasis of this paper. To the best

of our knowledge, there is no database focusing on the de-

formable object matching problem with a quantized criteri-

on, and providing the dense correspondence of all the pixels

in real image pairs. As a result, many previous papers only
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show several illustrative matching results without evalua-

tion, and some papers just give the performance on hand-

writing or object recognition datasets. However, these ex-

periments are not direct and effective to compare the match-

ing performance of different models.

Therefore, to provide a quantitative benchmark for de-

formable object matching, we construct a database devoted

for this purpose along with an evaluation criterion. To test

the effectiveness of the proposed framework, we evaluate

our approach on both the constructed deformation match-

ing database and images from [22]. Meanwhile, we apply

our method to handwriting recognition and compare it with

other deformation models on United States Postal Service

database (USPS) [1].

5.1. Deformation matching database

The constructed database contains 25 groups of de-

formable images. There is one image chosen to be the ref-

erence image and the remaining are target images in each

group. The images in the database simulate various defor-

mations of different elastic objects. They contain the defor-

mation of human poses, human bodies doing sports, animal-

s and some suitable examples selected from MPGE-7 [21].

Fig. 5 shows some images in the database. All the exam-

ples are binary images in our database, since it is difficult to

provide the correspondence of all the pixels in color image.

It will be much more convenient to provide a criterion to

evaluate the matching performance on the binary images.

For a pair of binary images I(q), q ∈ {r, t}, there are
two kinds of pixels in each image: object pixel set P(q)

o and

background pixel set P(q)
b . For each image I(q), there is

an index matrixM
(q)
j , which represents whether the pixel j

has a right matching pixel or not.

M
(q)
j =

{
1, ifI

(q)
j = I

(¬q)
M(q)(j)

0, otherwise
(16)

where M(q)(·) is the mapping from image I(q) to I(¬q).
That is, the entry M

(q)
j is 1 if the intensity of pixel I

(q)
j is

equal to the intensity of the corresponding pixel, where q
refers to either the reference or target image.

Let N
(q)
o be the number of pixels in P(q)

o and N
(q)
m =∑

j∈P(q)
o

M
(q)
j be the number of correct matching pixel of

P(q)
o . The correct matching ratio P can be measured by

the average of ratios in both Pr
o and Pt

o.

P =
1

2
(
Nr

m

Nr
o

+
N t

m

N t
o

) (17)

We compare our method with related deformation mod-

els including image distortion model (IDM) [15], two di-
mensional hidden Markov model (HMM) [8, 30], two di-
mensional hidden Markov distortion model (HMDM) [16]

Figure 5. Some deformable examples in the constructed database,

which is focusing on deformable object matching.

which is the combination of IDM and HMM, the approach

of Shekhovtsov et al. [28] and Duchenne et al. [9]. Among
the models, the first three are popular deformation models

and have been successfully applied in handwriting recog-

nition and face recognition. The last two models are most

related MRF models. We do not compare with key point

matching methods such as [6, 33] since they cannot get the

dense correspondence of images.

To keep fair, we set the same parameters for all the meth-

ods. In the experiment, only the values of pixels are applied

to measure the appearance similarity. Every pair of images

is divided to n× 80 or 80× n elements, where the ratio of
n/80 is equal to the aspect ratio of the reference image. The
maximum displacement is set as 20, and this means that we
fix L={−20,· · ·,20}×{−20,· · ·,20} in our algorithm.
Tab. 1 shows the correct matching ratio of every group

in the database. The proposed deformation model gets the

best performance with 90.7% average correct matching ra-

tio. Meanwhile, our model outperforms other methods on

22 groups in the database. The model [9] does not obtain a
good matching performance as [28], because it models the

matching problem in x and y direction independently. On
the other hand, the optimization method of [9], which min-

imizes the energy alternately in x and y direction, easily
lead to local minimum. IDM is the simplest deformation

model and it gets satisfactory results in images with small

deformations, such as comma and glass in the database. H-

MDM outperforms IDM and HMM on most groups. Fig. 6

shows the matching results of some examples by different

deformation models. We can see that the distorted refer-

ence images of our model is most similar to the target im-

ages. Although there are various and complex deformations

in the images, our method preserves the structure of distort-

ed objects very well.

5.2. Deformable color image pairs

We test our model on color image pairs of the deformable

database [22]. Since there are various and complex defor-

mations in the objects depicted in the images, the database

is very suitable for deformable object matching. Fig. 7

shows the matching results of three challenging and typical
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Methods legbent pushup situp1 situp2 curvature pullup basketball bone comma delphis device elephant football

IDM 89.5 73.5 88.4 86.3 67.4 81.0 60.9 78.0 99.5 53.6 88.4 79.1 54.4
HMM 81.3 87.7 94.5 95.8 85.3 92.9 62.7 90.8 94.6 69.2 91.3 83.5 63.2
HMDM 83.8 88.5 95.0 96.4 86.8 89.3 66.3 91.4 95.5 70.9 93.4 85.7 65.2

Shekhovtsov [28] 88.5 94.8 93.3 92.9 87.4 93.8 73.9 94.4 97.5 83.3 97.2 91.2 77.5
Duchenne [9] 77.1 82.8 92.0 92.6 75.0 89.8 56.9 82.5 97.9 65.6 91.7 82.8 57.4

Ours 94.6 96.2 97.2 98.1 93.0 94.7 77.7 95.3 99.0 83.2 98.1 91.3 81.8
Methods glass goose horse pose1 pose2 pose3 jump jumpjack longjump run step walk Mean
IDM 95.1 68.3 65.9 67.6 62.8 67.7 47.4 67.8 54.6 61.7 62.0 81.2 71.9
HMM 84.5 77.0 74.2 84.6 76.3 82.9 73.8 75.5 78.1 63.8 87.6 76.1 81.1
HMDM 86.2 81.1 77.0 87.1 79.2 82.4 76.5 82.2 79.5 67.3 86.5 77.5 82.8

Shekhovtsov [28] 99.1 88.5 83.5 86.3 75.4 88.6 79.1 80.9 81.6 78.0 92.0 82.8 87.3
Duchenne [9] 97.5 72.9 72.6 74.1 68.2 74.9 49.5 68.9 62.9 64.4 70.6 57.4 75.2

Ours 98.2 92.9 86.7 88.8 84.7 91.6 82.3 87.8 88.1 84.3 95.3 87.8 90.7

Table 1. The average correct matching ratio (%) of every group in the deformation matching database.

Reference IDM HMM HMDM Shekhovtsov Duchenne Ours Target 

95.9 

80.4 

88.1 

85.2 82.1  86.3  86.0  73.6 94.0 

76.9 80.2 81.0 72.7 95.4 

96.6 87.6 89.6 94.7 91.1 80.1 

83.5 89.4 89.7 94.5 77.2 

81.0 81.5 89.1 78.1 94.1 

Figure 6. The matching results of some examples from the con-

structed database. The first column shows reference images and

the last column shows target images with different deformations.

The middle 6 columns show the distorted reference images by d-

ifferent models. The numbers under the images show the correct

matching ratio(%).

image pairs. The first object in Fig. 7 is a surface with re-

al non-rigid deformation and under different perspectives.

The second and third image pairs are obtained with syn-

thetic non-rigid deformations. In the experiments, we only

use the RGB feature to measure the appearance similarity.

We compare our model with the most related models [28]

and [9]. As shown in Fig. 7, our model gets the most sat-

isfactory matching results. In the second image pairs, both

our model and the method [28] obtain promising matching

results. In the first and third image pairs, the distorted refer-

ence images of our model are most similar to the target im-

ages. Thus, our model is effective to address the deformable

object matching problem in complex deformations.

5.3. Handwriting recognition application

Handwriting recognition is one of the most important ap-

plications of deformation models. To test the effectiveness

of our framework in applications, we apply the proposed

model on handwriting recognition and compare with related

(a) 

(b) 

(c) 

(d) 

(e) 

Reference 

Shekhovtsov 

Duchenne 

Ours 

Target 

Figure 7. The matching results of deformable color image pairs.

The reference images (a) are distorted to match the target im-

ages (e). (b), (c) and (d) show the distorted reference images by

Shekhovtsov et al. [28], Duchenne et al. [9] and our model.

Method Error (%)

Euclidean distance, 1-NN 5.6

SVM [26] 4.0

HMM [16] 2.7

IDM [16] 2.4

Hungarian matching [17] 2.2

2D label MRF (Ours) 1.9
HMDM [16] 1.9

Table 2. The performance of handwriting recognition on USPS

database

deformation models on the well-known USPS database [1].

There are variable testing samples in the database, so it is

very suitable to evaluate the proposed model. It contains

7291 training images and 2007 testing images. All the im-
ages are 16×16 pixels, and every pixel is one element in the
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experiment. We fix the label set L={−5,· · ·,5}×{−5,· · ·,5},
and apply pixel value and gradient feature to measure the

similarity. We use 1-NN classifier to classify images. The

results are shown in Tab. 2, and our model gets the best

performance on USPS compared with related deformation

models. The result shows that the proposed model can be

effectively used in applications.

6. Conclusions and future work

In this paper, we have proposed a novel deformation de-

composition model to represent various deformations and

formulated the DDM as a 2D label MRF for deformable

object matching. To get accurate matching performance,

we have presented a two-stage optimization method con-

taining graph cuts based α-expansion move and force bal-
ance based location move. Besides, we have proposed a

generalized framework of 2D label MRF and extended the
concept to n-dimensional label MRF. In the experiments,
we have built a deformation matching database to provide

a quantitative benchmark for deformable object matching.

We have tested the proposed model on both the construct-

ed database and color image pairs. Furthermore, we have

applied our model on handwriting recognition. Experimen-

tal results show that our framework outperforms previous

approaches.

Our framework for image matching can be readily ex-

tended to object classification. In the future, we will apply

our model to object classification with the kernel method

[31]. One of the problems in our model is that it cannot de-

scribe the 3D deformation, such as torsional deformation.
We will extend our model to 3D label MRF and apply it on
the 3D object matching problem.
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