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Abstract—Discrete energy optimization is a NP hard problem.
Recent years, the graph cuts based algorithms especially the α-
expansion and αβ-swap, become more and more popular. Both
the α-expansion and αβ-swap have been widely used in many
applications, and they perform extremely well for the Potts
energies. However, since all pixels only have a choice of two
labels in one move, both the expansion and swap algorithm get
approximate solution by a series of iterations and they do not
perform well for more general energies, such as the truncated
convex energies [1]. In this paper, we analyze the problems of both
the expansion and swap algorithms. The expansion algorithm
usually encourages more pixels to get the label fα, since all
pixels are only allowed to change their current labels to fα.
In contrast, the swap move sometimes cannot swap the labels
of pixels reasonably. Based on the analysis, we propose the
Interleaved Expansion-Swap Algorithm (IESA) by combining the
expansion and swap moves effectively. To prove the effectiveness
of the algorithm, we test it on both image restoration and
stereo correspondence. The experimental evaluations show that
our algorithm gets better optimization compared with both α-
expansion and αβ-swap.

I. INTRODUCTION

Many problems in computer vision can be formulated as
a labeling problem, such as stereo correspondence [2] [3],
segmentation [4], image restoration [5] and object matching
[6] [7]. Given a set of pixels P , the goal of a labeling f is to
assign every pixel p ∈ P a label fp ∈ L, where L is the set of
labels representing some certain quantities. For examples, the
label represents the intensity of pixels in image restoration,
and the disparity in stereo correspondence.

The labeling task can be typically formulated as an opti-
mization problem of the energy in the following form:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈E
Vp,q(fp, fq) (1)

Here, G = (P, E) is a given undirected graph, where E is
the set of edges connecting the neighboring pixels in P . The
first term Dp is the data term and measures the cost when the
pixel p is assigned a label fp under the observed data. The
second term Vp,q is the smooth term and guarantees the labels
vary smoothly in the neighboring pixels. The objective of the
optimization problem is to find the labeling f minimizing the
energy E(f). Although the labeling problem is important in
many applications, unfortunately the optimization of energy
(1) is a NP hard problem.

In recent years, the graph cuts based algorithms [5] [8]
[9] for the energy optimization become more and more pop-
ular.The primary idea of the graph cuts based algorithms
is to construct a special graph GC , where is a one-to-one
correspondence between the configuration of cuts C(GC) and
the configuration of a labeling f . The cost of the cut C(GC)
is equal to the energy E(f). Thus, the minimization of E(f)
can be obtained by getting the min-cut of the graph GC , which
can be solved in polynomial time by the max-flow algorithms.

Boykov et.al. [5] developed two widely used optimization
methods: the α-expansion and αβ-swap algorithms. The ex-
pansion and swap algorithms optimize the energy (1) by a
series of iterations. In every iteration, the algorithms allow
pixels to have a choice either to keep the current label or
to obtain a new label, and the process can be regarded as a
move from the labeling f to f ′. Every iteration will lead to a
lower energy and the algorithm reaches convergence when no
lower energy can be found. Unlike the standard move tech-
niques such as Iterated Conditional Modes [10] and Simulated
Annealing [11], which only allow one pixel to change its
label at a time, the expansion and swap algorithms allow a
large number of pixels to change their labels simultaneously.
Thus, the expansion and swap algorithms perform significantly
better than the standard moves. The Tree-Reweighted message
passing (TRW-S) [12] and Belief Propagation (BP) [13] often
perform as well as or even better than the expansion and swap
algorithms [14] [15]. However, TRW-S and LBP need much
more time to converge [14] [15].

Experimental evaluations [14] [15] show that both the α-
expansion and αβ-swap algorithms get competitive perfor-
mance in many cases such as the energies with Potts priors.
However, there are still some problems in both algorithms,
since all the pixels have only a choice of two labels in each
move. The α-expansion algorithm chooses a label fα in every
move and all the pixels are allowed to change their labels
to fα. Each move is an expansion process of the label fα,
which means that the set of pixels Pα will expand to P ′α,
where Pα = {p ∈ P|fp = fα}. However, many pixels whose
real labels are near fα may also be assigned the label fα in
the expansion. Thus, the expansion algorithm cannot obtain
accurate optimization and it usually assigns a rough labels in
the neighboring pixels.

The αβ swap chooses two labels fα and fβ in each move,
and all the pixels whose current labels are fα or fβ can
either keep the current label or swap their label from fα to
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fβ or from fβ to fα. This means that each move swaps the
pixels in Pα and Pβ . However, the swap move may be greatly
affected by the labels of neighboring pixels. If the neighboring
pixels have not been labeled reasonably, the current pixel also
cannot obtain a reasonable label. On the other hand, the swap
algorithm needs O(|L|2) iterations since it should visit all pairs
of labels, while the expansion algorithm only needs O(|L|)
iteration. Thus, the swap algorithm usually takes more time to
converge.

To improve the optimization performance, graph cuts based
multi-label move algorithms have been developed by Veksler
[1] [16] and Kumar et.al [17]. Compared with the α-expansion
and αβ-swap, the multi-label move algorithms allow each
pixel to have a choice of more than two labels in each move.
However, the graphs are hard to be constructed in multi-label
moves, and on the other hand, these algorithm only can be
applied when the energies satisfy convex or truncated convex
priors.

In this paper, we find that the graph cuts based optimization
can be improved by effectively combining the expansion and
swap moves in iterations, and thus we proposed the Interleaved
Expansion-Swap Algorithm (IESA). The main idea is that the
IESA firstly gets an approximate solution by the expansion
move, and then it swaps the nearby labels to get more accurate
optimization. In the IESA, if the expansion move expands
more pixels to Pα, the swap move can correct the unreasonable
labels of pixels by swapping the current labels and their real
labels. In return, since the pixels have obtained approximate
labels in the expansion moves, the influence of neighboring
pixels can be effectively reduced in the swap moves. With
the interleave, the IESA can deal with the problems of the α-
expansion and αβ-swap algorithms promisingly. On the other
hand, the IESA converges much faster than the αβ-swap, since
it only needs to visit the nearby labels instead of all the pairs
of labels. To prove the effectiveness of the algorithm, we test
it on both image restoration and stereo correspondence. The
experimental results show that the IESA obtains lower energy
than both the α-expansion and αβ-swap algorithms, while it
usually converges as fast as the α-expansion algorithm.

Note that the IESA can be easily extended to the fusion of
multi-label move algorithms [1], which are developed based
on the expansion and swap algorithms. However, we only
consider the algorithms of α-expansion and αβ-swap in this
paper for two reasons: (i) it makes the analysis of our approach
easier, and (ii) the α-expansion and αβ method are still the
most popular graph cuts based optimizations, although the
multi-label move methods usually perform better.

II. ENERGY OPTIMIZATION

Essentially, both the α-expansion and αβ-swap transform
the problem of multi-label optimization into a binary label
optimization in every move. Thus, we introduce the binary
label optimization and multi-label optimization before describ-
ing our algorithm.

Binary label optimization

When the label space L = {0, 1}, the optimization of the
energy E(f) becomes the most simple case: binary label opti-
mization. The binary problem is also important, for example in

image segmentation [18], where the labels mark the pixels as
”object” or ”background”. The binary label optimization can
be solved exactly by the graph cuts based algorithms (both the
expansion and swap algorithms), if it satisfies the submodular
condition:

V (0, 1) + V (1, 0) ≥ V (0, 0) + V (1, 1) (2)

If the submodular condition (2) is not satisfied, the Quadratic
Pseudo-Boolean Optimization (QPBO) [19] [20] can be ap-
plied.

Multi-label optimization For more general applications,
the label set are usually more than binary [6] [21] [4]. In
the multi-label optimization, the label set L = {0, 1, · · · , N}.
Usually, the exact optimization is not available unless the
smooth term V satisfies the convex condition [9]. However,
the energy functions which have been widely used in many
applications, such as the truncated convex functions [5] [16],
do not meet the convex condition. Therefore, approximate
algorithms which can be applied in wide classes of energies,
are well known, such as Belief Propagation (BP), TRW-S, α-
expansion and αβ-swap etc..

The α-expansion can be used whenever V is metric on the
space of labels L, where ’metric’ means:

V (α, α) + V (α, β) ≤ V (α, γ) + V (γ, β)

for all α, β, γ ∈ L (3)

In contrast, the αβ-swap can be used whenever V satisfies:

V (α, α) + V (β, β) ≤ V (α, β) + V (β, α),

for all α, β ∈ L (4)

Therefore, the condition of the α-expansion is more strict
than the αβ-swap. In this paper, we consider the energies
satisfies condition (3), which are a wide class of energies
including Potts priors and truncated convex priors.

III. THE OPTIMIZATION ALGORITHM

In this section, we first briefly introduce the α-expansion
and αβ-swap algorithms. Then we analyze the problems of
both the expansion and swap algorithms. Based the analysis,
we introduce the proposed Interleaved Expansion-Swap Algo-
rithm.

A. The expansion and swap algorithms

Since the optimization of energy (1) is N-P hard, both
α-expansion and αβ-swap achieve the approximate solutions.
Both algorithms start from an initial labeling f , and converge
to a local minimum of the energy by a series of ”moves”. A
move from labeling f to f ′ allows the pixels either to keep
their current label fp or obtain a new label f ′p. Each move is
achieved by constructing a special graphs GM = (VM , EM ),
where the nodes v ∈ VM correspond to the pixels in P , and
the capacities of different edges in VM correspond to the data
term Dp and the smooth term Vp,q , respectively. Therefore, the
labeling f which minimizes the energy E(f) can be obtained
by getting the min-cut C of the graph GM .

The α-expansion. Let Pl = {p∈P|fp = l} denote the set
of pixels whose current labels are assigned l ∈ L. Given a
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label fα, a move from f to f ′ is called α-expansion, if Pα is
expanded to P ′α where Pα ⊆ P ′α and P ′l ⊆ Pl for all the label
l �= fα. This means that every pixel can change their current
label fp to fα. Every expansion move from f to f ′ can be
optimized exactly by the min-cut of the graph GM :

f
′
p =

{
fp, if ef ∈ EC
fα, if eα ∈ EC (5)

where EC is the set of edges in the min-cut C, ef is the edge
representing the cost when p is assigned label fp, while eα
represents the cost of label fα.

The αβ-swap. Given a pair of labels fα, fβ , a move from
a labeling f to f ′ is called αβ-swap, if the move only swap
the pixels in Pα and Pβ so that Pα

⋃Pβ = P ′α
⋃P ′β . This

means that the pixels in Pα can change their labels to fβ ,
while pixels in Pβ can change their labels to fα. Every swap
move can be solved by the min-cut of the graph GM :

f
′
p =

{
fα, if eα ∈ EC
fβ , if eβ ∈ EC (6)

This means that the pixel p will be labeled fα if edge eα is
in cut C, otherwise it will be labeled fβ .

B. The analysis

Since there are only two choices in one move of both
expansion and swap algorithms, each move becomes a problem
of binary label optimization which minimizes the energy:

E(x) =
∑
p∈P

Dp(xp) +
∑

(p,q)∈E
Vp,q(xp, xq)

xp ∈ {0, 1}
(7)

where the binary variables x = {x1, x2, · · · , xn} is a indicator
corresponding to the chosen labels in each move by defining
in expansion:

xp = 0 ⇔ f
′
p = fp

xp = 1 ⇔ f
′
p = fα

(8)

and in swap :
xp = 0 ⇔ f

′
p = fα

xp = 1 ⇔ f
′
p = fβ

(9)

Let Np denote the set of neighboring pixels of p. Let P l

denotes the set of pixels whose real labels are l (we assume
that the exact optimization is available and the real label of a
pixel is the label obtained by the exact optimization).

By minimizing the binary energy (7), the expansion move
attempts to find all the pixels whose real labels are fα, this
means that the move tries to expand the pixel set Pα to Pα.
However, since each move is a binary optimization, every
pixel only has two choices. For a pixel p, as long as it meets
Dp(fα)+

∑
q∈Np

Vp,q(fα, fq) < Dp(fp)+
∑

q∈Np

Vp,q(fp, fq), the

move from fp to fα will minimize the energy (7). Therefore,
even the pixels p /∈ Pα will also be assigned label fα if
the move minimizes the energy (7). Especially, the labels are
usually encouraged to vary smoothly in neighboring pixels
in most applications. However, since the α-expansion only
considers fα in one move, usually the pixels whose real labels
are nearby fα will be assigned fα as shown in Fig. 1. Thus,

� � � � � � �

� � � � � � � �

� � � � � � � �
� �-Swap 

�-Expansion 

(a) 

(b) 

(c) 

�

Fig. 1. The Interleaved Expansion-Swap Algorithm. (a)the initial labeling f ,
(b) the labeling f1 obtained by expansion move, (b) more accurate labeling
f1 obtained by the swap move

the optimization of α-expansion is not very accurate, and the
solution can be more accurate if we can adjust the obtained
labels after the expansion moves.

Unlike the α-expansion expanding the label set Pα in
each move, the main idea of the swap move is attempting
to swap the pixels in Pα and Pβ . This move acts like an
error correction process: if the pixels p ∈ Pβ was wrongly
labeled fα, it will be swaped back to the label fβ , and vice
verse. By the swap move, the labels of pixels in both sets
become more accurate. For example for a pixel p ∈ Pα whose
real label is fβ , if it satisfies Dp(fα) +

∑
q∈Np

Vp,q(fα, fq) >

Dp(fβ)+
∑

q∈Np

Vp,q(fβ , fq), p will swap its current label fα to

fβ as expected. However, the cost of V depends on the labels
of both pixel p and its neighboring pixels N (p). If the labels
of some pixels in N (p) has a large difference from their real
labels, pixel p cannot be guaranteed to obtain the real label
fβ by the swap move. Thus, if we can obtain the approximate
labels of neighboring pixels, better solutions can be achieved
by the swap move.

Another disadvantage of the swap algorithm is that it
needs O(|L|2) iterations, since it should visit every pair of
labels in L. When the label set L is large, it converges much
more slowly than the α-expansion, which only needs O(|L|)
iterations.

C. The Interleaved Expansion-Swap Algorithm

The goal of our algorithm is to get better optimization by
effectively addressing the problems of both α-expansion and
αβ-swap algorithms. At the same time, we hope the algorithm
converges as fast as the α-expansion when the label set L
becomes very large.

As mentioned above, the α-expansion can achieve an
approximate solution. Thus, the IESA first visits all the labels
in L in order to assign an approximate label to every pixel in
P .

After the expansion move in one iteration, the IESA adjusts
the labels of pixels by swapping the pairs of labels. For a pixel
p ∈ Pα, if it is wrongly assigned the label fβ in the expansion
move, it can be reassigned its real label by the swap move
between label fα and fβ . Thus, the IESA can obtain more
accurate optimization after the swap moves. Since every pixel
have obtained an approximate label in expansion move, we
assume that the current labels of all the pixels are very near

2426



Energy = 14245697 
Time = 66.1 secs 

Energy = 14405986 
Time=443.8 secs 

Energy = 14229356 
Time= 49.9 secs 

E = 37306219 
T=119.0 secs 

E = 37713441 
T=702.3 secs 

E = 37278317 
T= 180.4secs 

(a) (b) (c) (d) 

penguin 

house 

Fig. 2. Image restoration results (a) the input images: penguin and house, (b)-(d) the results obtained by the α-expansion, the αβ-swap and the Interleaved
Expansion-Swap Algorithm (IESA), respectively.

to their real labels. Instead of swapping all the pairs of labels
in L, the IESA only visit the labels which are close to each
other. Given a label threshold Tl and two labels fα and fβ , the
IESA swaps the two labels only if |fα − fβ < Tl|, otherwise
the pair of labels will be ignored. The Interleaved Expansion-
Swap Algorithm is illustrated in Algorithm 1.

Algorithm 1 The Interleaved Expansion-Swap Algorithm

Initialization:
An arbitrary labeling f . The label threshold Tl.

Iteration:
1: Compute the energy before moves: Eb(f)
2: for each label fα ∈ L do
3: Find f̂ = argminE(f

′
) within one α-expansion of f

4: f =: f̂
5: end for
6: for each pair of labels fα, fβ ∈ L do
7: if |fα − fβ | ≤ Tl then
8: Find f̂ = argminE(f

′
) within one αβ-swap of f

9: f =: f̂
10: end if
11: end for
12: Compute the energy after moves: Ea(f)
13: if Ea(f) < Eb(f) then
14: Eb(f) = Ea(f)
15: Go to 2
16: end if
Output:
17: Return the labeling f .

In the IESA, since the expansion move assigns an approxi-
mate label to every pixel, the negative influence of neighboring
pixels can be reduced in the swap moves. Therefore, the IESA
can get better optimization than the αβ-swap theoretically. On
the other hand, the IESA needs O(Tl · |L|) iterations in the

swap moves, where Tl is a constant. The IESA takes less swap
moves compared with the αβ-swap. Note that the IESA can
be easily extended to multi-label move algorithms [1] [17],
where every pixel have a choice of more than two labels in
one move. Given a subset Ls ⊆ L, if it satisfies the convex
priors on Ls, all the labels can be considered simultaneously
in the interleaved algorithm.

IV. EXPERIMENTS

To test the effectiveness of the proposed algorithm, we
evaluate the IESA on the problems of image restoration and
stereo correspondence, both of which are very popular for
testing the performance of different optimum algorithms. In
the experiments, we compare the proposed algorithm with
both the expansion and swap algorithms. We describe the
experiments in detail as follows.

A. Image Restoration

In image restoration, the given input images are corrupted
with noise and the objective is to reconstruct the original
images by removing the noise. We test the proposed algorithm
on two images: penguin and house images from the Corel
database. In this experiment, P is the set of all the pixels
in the image, and the label set L denotes the gray levels.
We set L = {0, 1, · · · , 255} and Tl = 100. The data term
Dp(fp) = (Ip − fp)

2, where Ip is the intensity of pixel p.
We set the smooth term as a truncated quadratic function:
Vp,q = 100 · min{(fp − fq)

2, 25}. The truncated convex
potentials encourage the neighboring pixels to obtain similar
labels, while the truncation avoids that (fp − fq)

2 becomes
prohibitively large.

Fig. 2 shows the results of image restoration on the penguin
and house images. Fig.2(a) shows the corrupted images, and
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Energy = 1080152 Energy = 1094224 Energy = 1074782 

Energy = 22241207 Energy = 2241498 Energy = 2229793 
(a) (b) (c) (d) 

tsukuba 

venus 

Fig. 3. The stereo correspondence results. (a) the left images: tsukuba and venus, (b)-(d) the results obtained by the α-expansion, the αβ-swap and the IESA

TABLE I. THE ENERGIES OBTAINED BY DIFFERENT ALGORITHMS ON STEREO IMAGES.

Algorithm tsukuba venus teddy cones

α-expansion 1080152 2241207 6886135 5478828

αβ-swap 1094224 2241498 6886383 5481041

IESA 1074782 2229793 6885778 5474686

Fig.2(b)-(d) respectively show the optimization results by α-
expansion, αβ-swap and our algorithm. The energy and the
time of each algorithm are also shown in Fig.2. From the
results, we can see that our algorithm get lower energies on
both images compared with the α-expansion and αβ-swap
algorithms. On the penguin image, the expansion algorithm
takes about 66.1 seconds, the swap algorithm takes 443.8
seconds and the IESA takes 49.9 seconds. On the house
image, the α-expansion takes 119.0 seconds, the IESA takes
180.4 seconds, and the αβ-swap takes 702.3 seconds. The α-
expansion and the fusion algorithms converges in about the
same time. Therefore, the Interleaved Expansion-Swap Algo-
rithm obtains a better optimization than both the expansion
and swap algorithms, while it converges much faster than the
αβ-swap, when the label set is very large (|L| = 256 in image
restoration).

B. Stereo correspondence

In stereo correspondence, the goal is to get the correspon-
dence of pixels in the left and right images. We build the graph
G on the left image, and P denotes the set of all the pixels in
the left images. The label of each pixel represents the disparity
and label set L denotes all the possible disparities. We test
our algorithm on the stereo images on the Middlebury stereo
database [22]. In the experiments, we set L = {0, 1, · · · , 16}
and Tl = 10. The data term is Dp(fp) = |Ileft(p)−Iright(p−
fp)|, where Ileft(p), Iright(q) denote the intensity of pixels in
left and right images, respectively. We use the truncated convex
potentials Vp,q = 10 ·min{(fp − fq)

2, 16}.
In the experiments, we take four scenes named Tsukuba,

V enus, Teddy, Cones in the Middlebury database. Fig. 3
shows the results obtained the α-expansion, αβ and the IESA.
Tab. I shows the energies obtained by the three algorithms.
In the Tsukuba image, the energy obtained by the IESA
is 1074782, while the α-expansion gets the energy 1080152
and the αβ-swap gets the energy 1094224. In all the scenes,
our algorithm obtains lower energies. On the other hand, the
three algorithms converge in similar time, since the label set
is very small in the stereo correspondence (|L| = 16). For
example, the α-expansion takes 11.3 seconds on Tsukuba,
while the IESA takes 13.3 seconds and the αβ-swap takes 25.7
seconds. However, the αβ-swap takes lest time on V enus,
30.4 seconds, while the α-expansion takes 31.5 seconds
and the IESA takes 44.1 seconds. Therefore, the Interleaved
Expansion-Swap Algorithm gets a better optimization than
both the expansion and swap algorithms, while it takes similar
time with the expansion and swap algorithms when the label
set is small.

V. CONCLUSION

In this paper, we have analyzed the problems of the
popular α-expansion and αβ-swap algorithms, and based on
the analysis we have proposed an Interleaved Expansion-
Swap Algorithm by effectively combining the expansion and
swap moves in iterations. We tested our algorithm on both
image restoration and stereo correspondence. The experimental
evaluations showed that the IESA gets better optimization
compared with both the expansion and swap algorithms. At the
same time, the IESA usually converges as fast as the expansion
move, and much faster than the swap move when the label set

2428



L is large.
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