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Semisupervised Multilabel Learning With Joint
Dimensionality Reduction

Tingzhao Yu and Wensheng Zhang

Abstract—Mutlilabel classification arises in various domains
including computer vision and machine learning. Given a sin-
gle instance, multilabel classification aims to learn a set of labels
simultaneously. However, existing methods fail to address two
key problems: 1) exploiting correlations among instances and
2) reducing computational complexity. In this letter, we pro-
pose a new semisupervised multilabel classification algorithm
with joint dimensionality reduction. First, an elaborate matrix is
designed for evaluating instance similarity; thus, it can take both
labeled and unlabeled instances into consideration. Second, a lin-
ear dimensionality reduction matrix is added into the framework
of multilabel classification. Besides, the dimensionality reduction
matrix and the objective function can be optimized simultane-
ously. Finally, we design an efficient algorithm to solve the dual
problem of the proposed model. Experiment results demonstrate
that the proposed method is effective and promising.

Index Terms—Alternating method, dimensionality reduction,
dual problem, multilabel classification, semisupervised learning.

I. INTRODUCTION

M ULTILABEL classification is a generalization of mul-
ticlass classification. It allows to assign a set of labels

to a single instance for accurate description. Multilabel classifi-
cation has many potential applications in text classification [1],
[2], scene classification [3], video segmentation [4], and music
emotion classification [5], [6].

Existing multilabel classification methods can be divided into
two categories [7], [8]: 1) methods based on problem transfor-
mation and 2) methods based on algorithm adaptation. Methods
based on problem transformation transform the multilabel clas-
sification problems into existing well-established problems.
These methods include: transforming into one or more indepen-
dent single-label classification problem [3], [9], transforming
into a chain of single-label classification problem [10], trans-
forming into a label ranking problem [11], and transforming
into an ensemble of multiclass classification problem [12], [13],
[14]. Methods based on algorithm adaptation adapt or extend
the existing state-of-the-art methods to solve multilabel prob-
lems explicitly. These methods include: adapting boosting [1],
adapting decision tree [15], adapting support vector machine
(SVM) [16], adapting maximum a posterior (MAP) principle
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[17], adapting maximum entropy principle [18], adapting back
propagation (BP) neural networks [19], and adapting kNN [20].

Recently, researches on multilabel classification based on
semisupervised learning arise. For example, semi-supervised
multi-label sylvester equation (SMSE) [21] constructs two
graphs on instance level and category level, respectively. The
graph on instance level is defined based on both labeled and
unlabeled instances, while the graph on category level is built
on all categories. TRANSductive (TRANS) [22] learns a sub-
space representation of the labeled and unlabeled inputs, while
simultaneously training a supervised large-margin multilabel
classifier. Semi-supervised low-rank mapping (SLRM) [23]
takes advantages of the nuclear norm regularization to capture
the label correlations, while at the same time exploits manifold
regularizer to capture the intrinsic structure among data.

However, these methods have difficulty in dealing with high-
dimensional data. In this letter, we propose a new semisuper-
vised multilabel classification algorithm with joint dimension-
ality reduction. Our work is mainly inspired by dimensionality
reduction multi-label learning (DRMLL) [24]. DRMLL has
studied a joint learning framework of dimensionality reduction
and multilabel classification, but they take no use of rela-
tionships among instances. The contributions of this letter are
summarized as follows.

1) Introduce an elaborate similarity matrix which can mea-
sure the similarity among all instances.

2) Introduce a linear dimensionality reduction matrix for
joint learning; thus, it can deal with high-dimensional
data.

3) Design an efficient algorithm to solve the dual prob-
lem, in which the objective function and dimensionality
reduction matrix can be optimized simultaneously.

Note that semi-supervised dimension reduction-multi-label
classification (SSDR-MC) [25] has already addressed semisu-
pervised learning, dimensionality reduction, and multilabel
learning simultaneously. It consists of two terms: 1) data recon-
struction error ‖xi −

∑
j Wi,jxi‖2 and 2) label reconstruction

error ‖fi −
∑

j Wi,jfi‖2, where xi is the instance, fi is the
predicted label corresponding to instance xi, and Wi,j is the
weight matrix for the dimensional reduction. In this letter, x
represents instance, W represents the weight matrix, wl is
the lth column of W, Q represents the dimension reduction
matrix, and y represents the ground truth label. Variables with
hat correspond to data with labels. We differ from SSDR-MC
in four aspects.

1) SSDR-MC aims to minimize the data reconstruc-
tion error, while we deal with prediction error ‖ŷl −
X̂Qwl‖2.
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2) SSDR-MC explores the semisupervised information
via data reconstruction error, while we introduce an
additional part

∑n
i,j=1 ei,j‖QTxi −QTxj‖22 to measure

the similarity among all instances, and ei,j is the weight.
3) SSDR-MC learns a matrix W for multilabel classifica-

tion and dimensionality reduction, while we learn two
matrices: 1) W for classification and 2) Q for dimension-
ality reduction, respectively.

4) SSDR-MC considers least square loss, while we consider
hinge loss {1− ŷilf(x̂i)}+.

II. PROPOSED MODEL

Our main idea is to design a semisupervised multilabel clas-
sification model with joint linear dimensionality reduction. We
aim to design a transform matrix which can reduce the dimen-
sion of the original instance and at the same time preserve the
inherent property. We define the linear dimensionality reduc-
tion matrix as Q ∈ R

k×d, where k is the original dimension
and d is the transformed dimension. Given an instance x ∈ R

k,
we consider t linear classifiers fl : x → fl(x) = wT

l Q
Tx, l =

1, . . . , t for t labels, where wT
l ∈ R

d is the weight vector cor-
responding to the lth label. Our framework of semisupervised
multilabel classification with joint dimensionality reduction is
defined as

min
f,Q

t∑
l=1

(
nl∑
i=1

L(ŷil, fl(x̂i),Q) + λΩ(fl)

)
+ γΨ(Q,X) (1)

where L is the loss function and it is related to the ground
truth label ŷil, the predicted label fl(x̂i), and the dimension-
ality reduction matrix Q. Ω controls the complexity of fl and
Ψ is a measure of similarity between instances related to the
transform matrix Q. X is the data set with both labeled and
unlabeled instances, and nl is the number of labeled instances.
λ and γ are two balanced terms.

A. Choice of Loss Function

There are mainly three loss functions frequently used in real
applications: 1) least square loss; 2) logistic loss; and 3) hinge
loss. We consider hinge loss. Hinge loss is defined as

L(ŷil, f(x̂i)) = {1− ŷilf(x̂i)}+ (2)

where {·}+ = max{0, ·}. The loss function of our model is
t∑

l=1

(
nl∑
i=1

L(ŷil, f(x̂i),Q

)
=

t∑
l=1

nl∑
i=1

{1− ŷilw
T
l Q

T x̂i}+.

(3)

B. Controller of Complexity

The complexity of function fl can be measured by the lin-
ear weight vector w l. For example, if we want the weight
vector to be sparse, the 1-norm ‖wl‖1 =

∑d
i=1 |wil| is often

used. If we want the weight vector to be smooth, the 2-norm
‖wl‖2 = (

∑d
i=1 w

2
il)

1
2 is usually the ideal choice. Other nor-

mally used regularizer is p-norm ‖wl‖p = (
∑d

i=1 w
p
il)

1
p . For

simplicity, we choose squared 2-norm, thus

Ω(f) =
t∑

l=1

d∑
i=1

w2
il =

t∑
l=1

‖wl‖22 = ‖W‖2F . (4)

Fig. 1. (a) Traditional multilabel learning method, which exploits the corre-
lation among all labels while ignores the unlabeled instances. Instances with
labels are connected to their corresponding labels by solid lines, and the cor-
relations among labels are represented by double-headed arrows. (b) New
semisupervised multilabel learning method. It takes the advantage of all
instances (both labeled and unlabeled). Similar instances are clustered into
small sets and the small sets are connected by double-headed arrows.

C. Measurement of Similarity

Given two instances xi, xj and the corresponding linear
dimensionality reduction matrix Q, if these two points are
close in their original feature space, then the corresponding
transformed data QTxi, QTxj are required to be close to each
other. Suppose all of the instances construct a graph. Each
vertex is corresponding to one instance and the edge between
vertexes is described by the similarity between instances.
Typically, if two instances are connected, the edge weight is

defined as ei,j = exp(
−‖xi−xj‖2

σ ). Then, the measurement of
similarity among instances in transformed space is defined by

Ψ(Q) =
n∑

i,j=1

ei,j‖QTxi −QTxj‖22 (5)

where n is the number of all instances. Furthermore, if we
define an edge matrix E, and a diagonal matrix D, where

E =

{
ei,j , if i, j is connected

0, otherwise
,

D =

{∑n
i=1 ei,j , if i = j

0, otherwise

then (5) is summarized as

Ψ(Q) = tr((XQ)TS(XQ)) (6)

where S = D−E is the Laplacian matrix. A more detailed
explanation can be found in Fig. 1.

D. New Model

Substituting the loss term (3), the complexity term (4), and
the semisupervised term (5) in our framework (1), we get the
final model, which is given by

min
f,Q

t∑
l=1

(
nl∑
i=1

L(ŷil, f(x̂i),Q

)
+ λΩ(f) + γΨ(Q)

= min
f,Q

t∑
l=1

nl∑
i=1

{1− ŷilw
T
l Q

T x̂i}+ + λ
t∑

l=1

‖wl‖22

+ γ

n∑
i,j=1

ei,j‖QTxi −QTxj‖22. (7)
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TABLE I
PREDICTIVE PERFORMANCE AND COMPARISON ON NINE REAL DATA SETS OF FIVE ALGORITHMS (WITH HALF TRAINING INSTANCES LABELED)

III. PROPOSED ALGORITHM

In this section, we describe our algorithm for solving model
(7). Model (7) is unconstrained. By transforming it into a
constrained problem, we get

min
{wl,ξ

l
i}

Q

t∑
l=1

(
1

2
‖wl‖2 + C

nl∑
i=1

ξli

)
+γ

n∑
i,j=1

ei,j‖QTxi −QTxj‖22

s.t. yil(w
T
l Q

Txi + bl) ≥ 1− ξli, ξ
l
i ≥ 0 ∀i, l, QTQ = I

(8)

where we introduce the slack variable ξli and intercept bl for
a clear corresponding with SVM [26]. Model (8) is the primal
problem, but usually the primal problem is hard to handle. We
consider the dual problem, which is given by

min
Q

max
αl

t∑
l=1

(
nl∑
i=1

αl
i −

1

2

(
(αl)TZlX̂QQT X̂TZlαl

))

+ γtr
(
(XQ)TS(XQ)

)

s.t.

nl∑
i=1

yliα
l
i = 0, 0 ≤ αl

i ≤ C ∀l QTQ = I (9)

where Zl is a diagonal matrix defined by Zl = yil, if i = j,
Zl = 0 otherwise.

We assign an alternating algorithm to solve the proposed
hinge loss involved dual problem. At each iteration, Q or αl

is fixed. When Q is fixed, (9) can be simplified to

max
αl

t∑
l=1

(
nl∑
i=1

αl
i −

1

2

(
(αl)TZlX̂QQT X̂TZlαl

))

s.t.

nl∑
i=1

yliα
l
i = 0, 0 ≤ αl

i ≤ C ∀l (10)

which can be regarded as t separated standard SVM prob-
lems. The kernel function is transformed from 〈xi,xi〉 into
〈QTxi,Q

Txi〉. The t standard SVMs can be solved simulta-
neously. When αl is fixed, Q can be solved via [27]
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max
Q:QTQ=I

tr
(
QTLQ

)
(11)

where L = X̂T ŜX̂−XTSX, Ŝ =
t∑

l=1

(
Zlαl(αl)TZl

)
, and

X̂ = [x̂1, x̂2, . . . , x̂nl]
T ∈ R

nl×k is the labeled instances. Note
that Ŝ is a measurement of similarity among labeled instances,
while S is a measurement of similarity among all instances.

IV. EXPERIMENT RESULTS

In this section, two groups of experiments on nine real
data sets image,1 scene,2 yeast, slashdot,3 enron,2 language,3

bibtex,2 CAL500,2 and Corel5k2, and one simulated data set are
designed to evaluate the performance of the proposed method.
We construct a toy example with 600 instances of 294 dimen-
sions and five labels. For comparison purpose, we use SVM
[26], DRMLL [24], ML-kNN [20], and LIFT [28], and the five
criterions [1], [8], [28] are Hamming loss, One-error, Coverage,
Ranking loss, and Average precision. Besides, we choose the
running CPU time as a criterion of time complexity.

A. Experiment Setup

In the first experiment, we demonstrate the performance of
five algorithms on data sets referred before with half of the
instances without their ground truth labels. We randomly split
the training instances into two parts. One part preserves their
labels while the other part not. In the second experiment, we
demonstrate the tendency of the performance of five algorithms
as the percentage of instances missing their labels increasing. In
both section, the unlabeled instances are totally ignored during
supervised learning, while in our semisupervised mode, both of
the labeled and unlabeled instances together construct a matrix
X, which will be used to get Q. The reduced dimension of Q
is fixed by d = 100, and the balanced parameter γ is set to be
1.0, which means we pay equal attention to the performance
term and the semisupervised term. All of the kernel functions
involved in this letter is set to be “radial basis function (RBF)”
kernel, and the parameters related to SVM is set to be default.

B. Results and Analysis

The experimental results are reported in Table I and Fig. 2.
It is obviously from Table I to see that the proposed method

obtains the best overall performance among all the methods
on image, scene, yeast, CAL500, and Corel5k data sets. We
should note that the proposed method is indeed a general-
ization of SVM plus a similarity term and a dimensionality
reduction term, and it is interesting to see that SVM con-
ducts a overwhelming advantage than the proposed method
on the left four data sets. The reason is that these four data
sets, which SVM conducts the best performance, are all of
high dimensionality. In our experiment, we fixed the reduced
dimensionality to 100, which will lose some of the most
discriminative information. While our method is also a gener-
alization of DRMLL plus a semisupervised term, our method

1[Online]. Available: http://cse.seu.edu.cn/people/zhangml
2[Online]. Available: http://mulan.sourceforge.net/datasets-mlc.html
3[Online]. Available: http://meka.sourceforge.net/#datasets

Fig. 2. Performance of five algorithms on yeast data set as the percent-
age of instances missing their label instances increasing. (a) Hamming loss.
(b) Ranking loss. (c) One-error. (d) Coverage. (e) Average precision. (f) CPU
time.

is superior than DRMLL when reducing to the same dimen-
sion of d = 100, due to the effect of unlabeled instances. The
proposed method is suitable to handle data sets with more
labels (e.g., CAL500 and Corel5k), which means exploiting the
similarity among instances do help to cluster instances into
small subsets as illustrated in Fig. 1. Even though the pro-
posed method is iterative, it will converge in an average of four
iterations.

Fig. 2 gives the results on yeast data set as the percentage of
instances without their ground truth labels increasing. All of the
five algorithms decrease as the percentage of instances missing
labels increasing. The proposed method (as be shown in pink
color) has a much lower decreasing rate (with moderate time
complexity) especially when the percentage are large, which
evidently demonstrate that the proposed method is superior than
the other methods within a semisupervised mode.

V. CONCLUSION

In this letter, we propose a new model for semisuper-
vised multilabel learning with joint dimensionality reduction.
Within this model, we introduce hinge loss into our framework
and propose an efficient method based on the dual problem.
Experiments on both simulated and real data sets illustrate
the effectiveness of our new model and algorithm. In the
future work, an adaptive dimensionality reduction matrix Q
and a faster algorithm in solving the dimensionality reduction
matrix Q will be considered. Besides, nonlinear dimensionality
reduction techniques will be exploited.
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