Colour image demosaicking via joint intra and inter channel information

Tingzhao Yu^{\boxtimes}, Wenrui Hu, Wei Xue and Wensheng Zhang

A novel algorithm exploiting joint intra channel colour correlation and inter channel colour difference is presented for interpolating colour filter array data. Experiments on standard database and comparisons with other state-of-the-art methods demonstrate that the joint intra and inter information is effective and comparable.

Introduction: Most of the charge-coupled devices, which use colour filter arrays (CFA), are limited to recording one channel value (red or blue or green) at each position. The process of estimating the missing two values from CFA data is called demosaicking, and the most popular CFA data is Bayer [1] data (Fig. 1).

Fig. 1 Bayer Pattern
Massive demosaicking algorithms have arisen in recent years [2-12]. However, most of the existing methods are based upon inter channel colour difference interpolation, which can introduce artefacts. This Letter focus on joint intra and inter channel information instead of single colour difference. First, we explore the total variation (TV, intra channel colour correlation) of the Bayer data. Then we treat the process of demosaicking as an inpainting problem. At last, we exploit inter channel colour differences and add them to intra channel colour correlation.

Proposed algorithm: Our method first interpolates green channel via intra and inter channel information. The basic model for green channel demosaicking is

$$
\begin{array}{ll}
\min & \alpha \text { IntraError }(x)+\beta \text { InterError }(x) \tag{1}\\
\text { s.t. } & \left\|(x-g)_{\Omega}\right\|_{2} \leq \delta, \quad \delta>0 .
\end{array}
$$

where IntraError is the error of intra channel interpolation using TV, while InterError represents the error using colour difference. α and β are the weight of the two error terms. x is the desired green channel, g is the mosaic green channel, and both of them are stored in a vector. Ω is a mask corresponding to green channel. δ is the controller of error.

In exploiting intra channel colour correlation, we treat the problem of demosaicking as an inpainting problem where each pixel has two missing values [13]. TV involving optimisation is effective in solving inpainting problem. Suppose our mosaic image of green channel is G and the reconstructed green channel image is $X . x$ and g are their vector forms, respectively. Ω and δ are defined as above. Then our basic TV demosaicking model of min $\alpha \operatorname{IntraError}(x)$ can be described as

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} \sum_{j=1}^{n}\left\|(\nabla x)_{i, j}\right\|_{2} \tag{2}\\
\text { s.t } & \left\|(x-g)_{\Omega}\right\|_{2} \leq \delta
\end{array}
$$

According to Boyd and Vandenberghe [14], and Dahl et al. [15], we can define a matrix $\boldsymbol{D}=\left(D_{(11)}, \ldots, D_{(m n)}\right)^{\mathrm{T}}$ of dimensions $2 m n \times m n$ with each element $D_{(i j)}=\left(e_{i+1+(j-1) m}-e_{i+(j-1) m}, \quad e_{i+j m}-e_{i+(j-1) m}\right)^{\mathrm{T}}$, where e_{k} denotes the k th canonical unit vector of length $m n$. The dual problem of (2) is given by

$$
\begin{aligned}
& \max -\delta\left\|\left(D^{\mathrm{T}} u\right)_{\Omega}\right\|_{2}+g_{\Omega}^{\mathrm{T}}\left(D^{\mathrm{T}} u\right)_{\Omega} \\
& \quad-\gamma\left\|\left(D^{\mathrm{T}} u\right)_{\Omega_{\mathrm{C}}}\right\|_{2}+d_{\Omega}^{\mathrm{T}}\left(D^{\mathrm{T}} u\right)_{\Omega} \\
& \quad \text { s.t. }\left\|u_{(i j)}\right\|_{2} \leq 1, \quad i=1, \ldots, m, j=1, \ldots, n
\end{aligned}
$$

for some suitable vector \boldsymbol{d} and parameter $\gamma . \Omega_{\mathrm{C}}$ is the complementary of Ω. And $u \in \mathbb{R}^{2 m n}$ is the dual variable [15] of x. In solving (3), we use a first-order method. First, we define $f_{d}(u)=(1 / 2)\|u\|_{2}^{2}$, and its max value $\Delta d=\max _{u} f_{d}(u)=(1 / 2) m n$. Then for a given tolerance ε, define $\mu=(\varepsilon /$ $2 \Delta d), \mathcal{T}_{\mu}(x)=\max _{\mu}\left\{u^{\mathrm{T}} D x-\mu f_{d}(u)\right\}$, its Lipschitz continuous derivatives $\mathcal{L}_{\mu}=\left(\|D\|_{2}^{2} / \mu\right)$ and gradient $\nabla \mathcal{T}_{\mu}(x)$. Our result is given by

$$
\begin{equation*}
x^{k+1}=\frac{2}{k+3} z^{k}+\frac{k+1}{k+3} y^{k} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
y^{k} & =d_{\Omega}+\frac{\left(\mathcal{L}_{\mu}\left(x^{k}-d\right)-\nabla \mathcal{T}_{\mu}\left(x^{k}\right)\right)_{\Omega}}{\max \left\{\mathcal{L}_{\mu},\left\|\left(\mathcal{L}_{\mu}\left(x^{k}-d\right)-\nabla \mathcal{T}_{\mu}\left(x^{k}\right)\right)_{\Omega}\right\|_{2} / \gamma\right\}} \\
z^{k} & =d_{\Omega}+\frac{-w_{\Omega}^{k}}{\max \left\{\mathcal{L}_{\mu},\left\|w_{\Omega}^{k}\right\|_{2} / \gamma\right\}} \\
w^{k} & =\sum_{i=0}^{k} \frac{1}{2}(i+1) \nabla \mathcal{T}_{\mu}\left(x^{i}\right)
\end{aligned}
$$

and k is the number of iteration. Finally x is the information that we exploit as intra colour correlation for green channel. Convert this vector into a matrix, then we get $G_{\text {Intra }}$.

Fig. 2 Flow chart of green channel interpolation
We minimise our inter channel error via colour difference based on [11]. We start with an initial green channel colour difference interpolation. Taking red position for example, the colour difference is defined

$$
\begin{align*}
\hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j)= & \frac{\omega_{\mathrm{V}} f \hat{\Delta}_{\mathrm{g}, \mathrm{r}}^{\mathrm{V}}(i-1: i+1, j)}{\omega_{\mathrm{C}}} \\
& +\frac{\omega_{\mathrm{H}} \hat{\Delta}_{\mathrm{g}, \mathrm{r}}^{\mathrm{H}}(i-1: i+1, j) f^{\mathrm{T}}}{\omega_{\mathrm{C}}} \tag{5}
\end{align*}
$$

where $\omega_{\mathrm{C}}=\omega_{\mathrm{V}}+\omega_{\mathrm{H}}$ and $f=[(1 / 4)(2 / 4)(1 / 4)] . \hat{\Delta}_{\mathrm{g}, \mathrm{r}}^{\mathrm{V}}$ and $\hat{\Delta}_{\mathrm{g}, \mathrm{r}}^{\mathrm{H}}$ are the colour difference between green and red in vertical and horizontal direction, respectively. The weight ω_{V} and ω_{H} are related to a local window. Then the initial colour difference can be updated via

$$
\begin{align*}
\hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j)= & \hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j)(1-\omega) \\
& +\frac{\left[\omega_{N} \hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i-2, j)+\omega_{S} \hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i+2, j)\right] \omega}{\omega_{T}} \\
& +\frac{\left[\omega_{E} \hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j-2)+\omega_{W} \hat{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j+2)\right] \omega}{\omega_{T}} \tag{6}
\end{align*}
$$

where $\omega_{T}=\omega_{N}+\omega_{S}+\omega_{E}+\omega_{W}$ and $\omega_{N}, \omega_{S}, \omega_{E}, \omega_{W}$ are the weight corresponding to the four directions for a given piexl. The final G value of colour difference is then calculate via

$$
\begin{equation*}
\tilde{G}(i, j)=R(i, j)+\tilde{\Delta}_{\mathrm{g}, \mathrm{r}}(i, j) \tag{7}
\end{equation*}
$$

For green pixels at blue position, the procedure goes the same,

$$
\begin{equation*}
\tilde{G}(i, j)=B(i, j)+\tilde{\Delta}_{\mathrm{g}, \mathrm{~b}}(i, j) \tag{8}
\end{equation*}
$$

We denote the result G of colour difference as $G_{\text {Inter. }}$. Note that $G_{\text {Inter }}$ is the result of min $\operatorname{\beta InterError}(x)$, then our final G is defined by

$$
\begin{equation*}
G=\alpha G_{\mathrm{Intra}}+\beta G_{\mathrm{Inter}} \tag{9}
\end{equation*}
$$

This final G consists of information both within and between colour channels, and thus could provide information that each of them cannot. The process of green channel interpolation can be expressed as Fig. 2.

After getting the final G interpolation, red and blue channels are exploited via only inter channel colour difference. For red values at blue position,

$$
\begin{equation*}
\tilde{R}_{i, j}=\tilde{G}_{i, j}-\tilde{\Delta}_{\mathrm{g}, \mathrm{r}}(i-3: i+3, j-3: j+3) \otimes p_{\mathrm{rb}} \tag{10}
\end{equation*}
$$

where \otimes denotes element-wise matrix multiplication and subsequent summation, and

$$
\boldsymbol{p}_{\mathrm{rb}}=\left(\begin{array}{ccccccc}
0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 10 & 0 & 10 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 10 & 0 & 10 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & 0
\end{array}\right) \times \frac{1}{32}
$$

For red values at green position,

$$
\begin{align*}
\tilde{R}_{i, j}= & G_{i, j} \\
& -\frac{\omega_{\mathrm{V}}[\tilde{G}(i-1, j)-R(i-1, j)+\tilde{G}(i+1, j)-R(i+1, j)]}{2\left(\omega_{\mathrm{V}}+\omega_{\mathrm{H}}\right)} \\
& +\frac{\omega_{\mathrm{H}}[\tilde{G}(i, j-1)-\tilde{R}(i, j-1)+\tilde{G}(i, j+1)-\tilde{R}(i, j+1)]}{2\left(\omega_{\mathrm{V}}+\omega_{\mathrm{H}}\right)} \tag{11}
\end{align*}
$$

Blue values at red or green position are interpolated the same as red channel interpolation.

Table 1: Comparison of different CFA methods on average

Image	PSNR			CPSNR
	Red	Green	Blue	
Adaptive	34.55	38.21	35.26	36.13
LMMSE	36.97	40.63	36.76	37.69
AHD	35.23	38.47	35.01	35.87
LPA-ICI	37.40	40.82	37.08	38.05
GBTF	37.22	40.05	37.03	37.94
RI	37.06	40.56	36.75	37.66
MSG	37.56	41.15	37.35	38.31
MLRI	37.86	40.99	37.31	38.32
Proposed	38.45	42.31	37.91	38.96

Fig. 3 Comparison with eight state-of-the-art algorithms on Kodak 19 Image a Adaptive
b Lmmse
c AHP
d LPA-ICI
e GBIF
f RI
g MSG
h MLRI
i Proposed
Experiment results: We evaluate our algorithm on Kodak and IMAX image set. We compare our joint method with eight state-of-the-art algorithms, adaptive [5], directional linear minimum mean square-
error estimation (DLMMSE) [6], adaptive homogeneity directed (AHD) [7], local polynomial approximation-intersection of confidence intervals (LPA-ICI) [8], gradient-based threshold free (GBTF) [9], residual interpolation (RI) [10], multi-scale gradient (MSG) [11] and minimised Laplacian residual interpolation (MLRI) [12]. We present both objective and subjective quality evaluation. The objective criterion (shown in Table 1) is colour peak signal to noise ratio (CPSNR). The value shown in Table 1 is the average value of Kodak and IMAX. A visible comparison (subjective) of nine algorithms on Kodak 19 image is shown in Fig. 3. Adaptive [5] and AHD [7] have severe artefacts, and DLMMSE [6], LPA-ICI [8], GBTF [9], RI [10], MSG [11] and MLRI [12] are more likely to introduce slightly zipper effect. Our method is promising for it has less artefact and zipper effect.

Conclusion: A novel algorithm incorporating intra channel colour correlation with inter channel colour difference for demosaicking is proposed. The method exploits the intra channel colour correlation via treating the demosaicking problem as an inpainting problem, and it is solved via a TV-norm involving optimisation. Then this correlation is introduced into the framework of demosaicking using colour difference. Experiment results indicate that this joint method is promising in latter use.
© The Institution of Engineering and Technology 2016
Submitted: 4 October 2015 E-first: 14 March 2016
doi: 10.1049/el.2015.3473
One or more of the Figures in this Letter are available in colour online.
Tingzhao Yu , Wenrui Hu and Wensheng Zhang (Institute of Automation, Chinese Academy of Science, Beijing 100190, People's Republic of China)
® E-mail: yutingzhao2013@ia.ac.cn
Wei Xue (School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China)

References

1 Bayer, B.E.: ‘Color imaging array', U.S. Patent, 3,971,065, 1976
2 Jaiswal, S.P., Au, O.C., Jakhetiya, V., Yuan, Y., and Yang, H.: 'Exploitation of inter-color correlation for color image demosaicking'. 2014 IEEE Int. Conf. on Image Processing (ICIP), IEEE, Paris, France, October 2014, pp. 1812-1816
3 Gunturk, B.K., Altunbasak, Y., and Mersereau, R.M.: 'Color plane interpolation using alternating projections', IEEE Trans. Image Process., 2002, 11, (9), pp. 997-1013
4 Pekkucuksen, I., and Altunbasak, Y.: 'Edge strength filter based color filter array interpolation', IEEE Trans. Image Process., 2012, 21, (1), pp. 393-397
5 Adams, J.E., and Hamilton, J.F.: ‘Adaptive color plane interpolation in single color electronic camera', U.S. Patent, 5506 619, 1996
6 Zhang, L., and Wu, X.: 'Color demosaicking via directional linear minimum mean square-error estimation', IEEE Trans. Image Process., 2005, 14, (12), pp. 2167-2178
7 Hirakawa, K., and Parks, T.: 'Adaptive homogeneity-directed demosaicing algorithm', IEEE Trans. Image Process., 2005, 14, (3), pp. 360-369
8 Paliy, D., Katkovnik, V., Bilcu, R., Alenius, S., and Egiazarian, K.: 'Spatially adaptive color filter array interpolation for noiseless and noisy data', Int. J. Imaging Syst. Technol., 2007, 17, (3), pp. 105-122
9 Pekkucuksen, I., and Altunbasak, Y.: ‘Gradient based threshold free color filter array interpolation'. 2010 17th IEEE Int. Conf. on Image Processing (ICIP), IEEE, Hong Kong, China, September 2010, pp. 137-140
10 Kiku, D., Monno, Y., Tanaka, M., and Okutomi, M.: 'Residual interpolation for color image demosaicking'. 2013 20th IEEE Int. Conf. on Image Processing (ICIP), IEEE, Melbourne, Australia, September 2013, pp. 2304-2308
11 Pekkucuksen, I., and Altunbasak, Y.: 'Multiscale gradients-based color filter array interpolation', IEEE Trans. Image Process., 2013, 22, (1), pp. 157-165
12 Kiku, D., Monno, Y., Tanaka, M., and Okutomi, M.: 'Minimized-Laplacian residual interpolation for color image demosaicking', IS\&T/SPIE Electron. Imaging, 2014, pp. 90230L-90230L
13 Mairal, J., Elad, M., and Sapiro, G.: 'Sparse representation for color image restoration', IEEE Trans. Image Process., 2008, 17, (1), pp. 53-69
14 Boyd, S., and Vandenberghe, L.: ‘Convex optimization' (Cambridge University Press, Cambridge, UK, 2004)
15 Dahl, J., Hansen, P., Jensen, S., and Jensen, T.: 'Algorithms and software for total variation image reconstruction via first-order methods', Numer. Algorithms, 2010, 53, (1), pp. 67-92

