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Abstract

Popularity of surveillance and mobile cameras provides
great opportunities to video-based face recognition (VFR)
in less-controlled conditions. This paper proposes a joint
space learning method to simultaneously identify the most
representative samples and discriminative features from fa-
cial videos for reliable face recognition. Specifically, we
use a mixture modal by learning multiple feature spaces to
capture the data variations where the representative sam-
ples in each subspace are learned. Actually, this proce-
dure is a chick to egg problem and an alternate algorithm
is developed to monotonically optimize the joint task. In
addition, randomized techniques are applied to kernel ap-
proximations for capturing the nonlinear structure in data,
so that both accuracy and efficiency of our method can be
improved. The proposed method performs better than the
state-of-the-art video based face recognition methods on
Honda, Mobo and YouTube Celebrities databases.

1. Introduction

In the past decade, video-based face recognition (VFR)
has attracted much attention, where each sample is a video
instead of single image. Intuitively, with more images, more
information can be used to identify. However, VFR is still
challenging because face videos are usually captured in un-
controlled environments with low qualities, such as pose, il-
lumination, expression and resolution. Generally, there are
two major problems: how to alleviate large noise within a
video and how to learn a robust feature space where the
similarity between two videos can be accurately measured.

To address the two problems, some recent methods try
to exploit information in the sample space[19, 3]. These
methods often first select a subset of representative samples
and then sequentially feed into recognition system which
are only designed for small variations of pose and illumina-
tion. An improved version of these methods [4] is to first

Figure 1. An illustration of the training (left) and testing (right)
procedure of our joint space learning method.

align an image set and then compare the aligned local mod-
els rather than the global models. In contrast to the sample
space, some recent methods focus on learning on the fea-
ture space [12, 13]. They assume that the observed data are
generated from a system that is driven by hidden variables
in a low dimensional latent space. Hence, they aim to learn
discriminative features in a latent space to suppress noise.
Since a linear subspace cannot handle the complex intra-
class variations very well, some improved methods [13, 17]
learn nonlinear model or multiple models. But these meth-
ods have high computational complexity.

Although much progress has been made on sample space
learning and feature space learning, to the best of our
knowledge, few of the previous works have studied these
two problems simultaneously. Intuitively, on one hand, rep-
resentative samples can can effectively represent intra-class
variations and thus facilitate more discriminative features;
on the other hand, discriminative features can guide the di-
rection to select more meaningful samples in a video.

To this end, we propose a joint space learning algo-
rithm as shown in Fig 1. An EM-liked alternate optimiza-
tion algorithm to monotonically decrease the loss function.
In each iteration, multiple discriminative feature subspaces
are learned by maximizing inter-class distance and mini-
mizing the intra-class distance and pair-wised representa-
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tive samples are extracted in each subspace by minimizing
the mutual-expression errors of samples. In addition, large
intra-class variations often make facial images be a non-
linear distribution [13, 17], kernel technique is often used
to map the data vectors into an higher dimensional Hilbert
space. To save computational costs, we apply random-
ized technique for kernel approximation [7] and develop a
randomized nonlinear extension of SFL, called RSFL. Ex-
tensive experiments demonstrate that our proposed method
performs better than state-of-the-art video based face recog-
nition methods.

2. Joint Sample and Feature Space Learning
2.1. Sample Space Learning

In [5], Elhamifar et al. introduced a self-expressiveness
method to find representative samples, which assumed that
each sample in a set could be described as a linear com-
bination of a few representative samples. However, this
method can only find a subset to represent itself. It is not
applicable to find samples to represent each other. Inspired
by [5], we propose a mutual-expressiveness model to find
representative samples for each pair of videos. The basic
premise behind is that the distance between images under
the same condition is smaller than that under different con-
dition. Suppose X ∈ Rd×m and Y ∈ Rd×n are two videos.
Then we minimize the following problem,

min
A,B
||XA−Y B||2F (1)

with respect to the corresponding coefficient matrix A =
[a1 . . .ak]∈Rm×k and B = [b1 . . .bk]∈Rn×k, and k indicates
the number of representative samples. In other words, we
find the representative samples by minimizing the expres-
siveness error of each data point as a linear combination of
all data in other set.

Similarly, we enforce the affine constrain 1T A = 1T B to
preserve the invariant property. That means if Xai = Y bi,
then [x1−T · · ·xm−T ]ai = [y1−T · · ·yn−T ]bi is steady for
any global translation T ∈ Rd . For simplicity, we define
1T A = 1T B = 1T .

As a result, we solve

min
A,B
||XA−Y B||2F

s.t. 1T A = 1; 1T B = 1T
(2)

The solution can be got by alternatively calculating A
and B, i.e., fix A to solve B and vice versa. However, this al-
ternate process is typically inapplicable in real-world due to
high computational complexity. In this paper, we propose a
regularized linear regression approach by forcing k = 1 (i.e.,
A∈Rm and B∈Rn ). Then XA and Y B can be reformulated
as

XA = [x̂1x̂2 · · · x̂m−1]A+ xm (3)

Y B = [ŷ1ŷ2 · · · ŷn−1]B+ yn (4)

where x̂i = xi− xm and ŷi = yi− yn The optimal solution
can be obtained by

min
γ
||z− X̂Y γ||22 +λ ||γ||22 (5)

where
X̂Y [−x̂1 − x̂2 · · · − x̂m−1 ŷ1 ŷ2 · · · ŷn−1] and z =

xm−yn. The parameter λ sets the trade-off between the two
team. The solution γ ∈ Rm+n−2 can be estimated by least
squares. The desirable representative samples Rx ∈ Rd and
Ry ∈ Rd of X and Y are

Rx = [−x̂1 − x̂2 · · · − x̂m−1](γ1 γ2 · · ·γm−1)
T + xm (6)

Ry = [ŷ1 ŷ2 · · · ŷn−1](γm γm+1 · · ·γm+n−2)
T + yn (7)

Note that, the value in A (or B) can provide information
about the ranking, i.e. relative importance, of the sample in
X (Y ) for describing another dataset Y (X).

2.2. Feature Space Learning

By sample space learning, the feature space learning can
be manipulated using these representative samples instead
of original data. Formally, write V = [V1,V2 · · ·VN ] as the
original video dataset, where Vi = [vi1,vi2, · · · ,vini ] ∈ Rd×ni

is i-th video. Let x̂i, j = (xi,x j) denotes the representative
pair learned from V̂i, j = (Vi,Vj). P and Q denote the inter-
class and intra-class sets containing Np and Nq pairs re-
spectively. Then the training set {(x̂i, j, li, j)} can be built
where li, j = 0 if x̂i, j ∈ P and li, j = 1 if x̂i, j ∈ Q. Let
W = [w1,w2, · · ·wm] ∈ Rd×m be the feature projection ma-
trix. The distance between xi and x j in x̂i, j is

d(xi,x j) = (xi− x j)
TWW T (xi− x j) (8)

where the projection W can be learned by maximizing the
inter-class distance and minimizing the intra-class distance.

Considering the variations in the face appearance in real-
world, we use a mixture modal to capture the data variations
by learning multiple feature projections using a shared rep-
resentation, where different component plays the comple-
mentary role to promote each other.

Specifically, in our model, K project matrixes indexed as
W1,W2 · · ·WK are learned based on the conditional probabil-
ity p(Wk). The joint distribution is

p =
N

∏
i, j=1

K

∑
k=1

p(li, j|x̂k
i, j,Wk)p(Wk) (9)



where

p(li, j|x̂k
i, j,Wk)= (

1

1+ exp(d̂k(x̂k
i, j))

)li, j(
exp(d̂k(x̂k

i, j))

1+ exp(d̂k(x̂k
i, j))

)1−li, j

(10)
d̂k(xk

i, j) = ||xi− x j||22 (11)

We use an EM algorithm to learn Wk.
E-step
We first project the video dataset V into the low-

dimension space Wk, (i.e., V t =VW t
k ). Then the pair-wised

representative sample set {(x̂i, j, li, j)} can be built by Eqs.(5-
7).

rt
i, j,k = p(Wk|li, x̂t

i, j)

=
p(W t

k )∏ p(li, j|x̂t
i, j,W

t
k )

∑
K
k=1 p(W t

k )∏ p(li, j|x̂t
i, j,W

t
k )

(12)

M-step

ξ
t+1
k =

rt
k

Np +Nq
(13)

W t+1
k = argmax

W t+1
k

tr((W t+1
k )T (

S
′
q

M
− S

′
P

N
)(W t+1

k )) (14)

where

St
p =

N

∑
i, j=1 x̂t

i, j∈P

rt
i, j,k(x

t
i− xt

j)(x
t
i− xt

j)
T

St
q =

N

∑
i, j=1 x̂t

i, j∈Q

rt
i, j,k(x

t
i− xt

j)(x
t
i− xt

j)
T

(15)

Here t indicates the iteration number. In the E-step, the
sample learning is operated in the learned feature space.
The posterior rt

i, j,k indicates how well the low dimensional
feature space Wk expresses the sample xi. If Wk can not ex-
plain V̂i, j well, it would have less contribution to the learn-
ing of Wk since the each sample is multiplied by rt

i, j,k in
Eq.(20).

Finally, given two videos Vi and Vj, the pair-wised repre-
sentative samples {(Rv1

i ,Rv1
j), · · · ,(RvK

i ,RvK
j )} can be ob-

tained in the K feature spaces. The similarity between two
videos can be estimated using Euclidean distance as

d(Vi,Vj) =
K

∑
k=1

p(Wk)||Rvk
i −Rvk

j||22 (16)

Then, given a testing video Vnew, the class c can be ob-
tained by minimizing the distance between Vnew and Vi in
the gallery.

c = argmin
i

d(Vnew,Vi) (17)

The algorithm is summarized in Algorithm 1.

Algorithm 1 Joint Sample and Feature Space Learning
(SFL)
Input:

The video set V = [V1,V2 · · ·VN ] ;
The number of feature projection matrixes K;

Output:
feature projection matrixes {Wk} and conditional prob-
ability {p(Wk)} (k = 1,2 · · ·K);

1: Randomly divide V into K parts and calculate the cor-
responding Wk by Eq.(8) using fisher criterion.

2: for t = 1 to T do
3: for k = 1 to K do
4: Project the original data V into K feature spaces

{Wk} to get {V 1, · · ·V K} where V k =VWk.
5: end for

Sample Space Learning
6: for k = 1 to K do
7: Update the training set {(x̂k

i, j, li, j)} using Eqs.(5-
7);
Update rt

i, j,k using Eq.(12)
8: end for

Feature Space Learning
9: for k = 1 to K do

10: Update ξ
t+1
k using Eq.(13);

Update Wk using Eqs.(14-15);
11: end for
12: end for
13: return {Wk} and {p(Wk)}

2.3. Kernel SFL via Randomized Nonlinear

The feature learning method above can not efficiently
deal with nonlinear data due to its inherent linearity. In-
spired by these recent advances in kernel approximations
[7] , we produce an m-dimensional random feature z(x) for
x by randomly sample ω from a data-independent distribu-
tion p(ω).

z(x) = [cos(ωT
1 · x+b1), · · · ,cos(ωT

m · x+bm)] ∈ Rm (18)

where ω1, · · · ,ωm ∼ p(ω) and b∼Uni f (0,2π).
For video data, each frame is firstly randomized by

Eq.(22), and then fed to SFL, which lead to a randomized
version called RSFL. It is easy to verify that the computa-
tional complexity of RSFL is O(m2n), which will be helpful
to deal with large scale data.

3. Experiments
Three benchmark video face databases including Honda

[11], Mobo [6] and YouTube Celebrities (YTC) [9] are
used for evaluation. The Honda/UCSD dataset contains 59
videos of 20 persons, each has at least 2 video. The CMU
Mobo dataset contains 96 video sequences of 24 persons.



The YTC is the most challenge dataset. There are 1910
video sequences of 47 celebrities collected from YouTube.
For Honda and YTC datasets, we first detect face automati-
cally by the face detector proposed in [14], and then resize
the face images to 30×30. In the image pre-processing pro-
cedure, only simple Histogram equalization is used to sup-
press the illumination noise. For Mobo dataset, we directly
use the LBP feature as input mentioned in [1].

To make a fair comparison, the same protocol mentioned
in the state-of-the-art works [17, 15, 1, 13, 12] is used in
our experiments. In our experiments, the feature dimension
of Wk and the number of feature projection matrix K are
empirically specified as 300 and 3, respectively.

3.1. Results and Analysis

Comparison with other algorithms : We investigate
the performance of RSFL in multiple experiments against
state-of-the-art methods [18, 10, 17, 15, 1, 8, 16, 2, 13, 12].
The standard implementations of all the compared meth-
ods were provided in the original literatures. We follow the
same parameter settings. Since there is a single video from
each class in the Honda and MoBo datasets for training, for
those need within-class sets, we randomly and equally di-
vided each video clip into several partitions to model the
within-class variation.

Table 1. The average recognition rates % of methods on the three
datasets.

Method Honda MoBo YTC
MSM [18] 92.5 85.5 61.5
DCC [10] 94.9 88.1 64.8
MMD [17] 94.9 91.7 66.7
MDA [15] 97.4 94.4 68.1
AHISD [1] 89.5 94.1 66.5
CHISD [1] 92.5 95.8 67.4
SANP [8] 93.6 96.1 68.3
CDL [16] 97.4 87.5 69.7
DFRV [2] 97.4 94.4 74.5

LMKML [13] 98.5 96.3 78.2
SFDL [12] 100 96.7 76.7

RSFL 100 98.8 79.1

All the recognition results are summarized in Table 1.
It is easy to see that, our RSFL gets better performance
than the other state-of-the-art algorithms. This is because
most other methods only consider one learning task, either
in sample space or in feature space, which is not powerful
enough to deal with these challenge datasets. However, our
joint learning strategy effectively promotes each other and
hence outperforms others.

Joint vs. Individual : To analyse the individual effect

of the two space learning and the superiority of combina-
tion, we compare our RSFL method with the individual
sample space learning (SL) and feature space learning (FL)
method. More specially, SL directly calculates the pair-
wised representative samples without learning W . While
FL simply uses the mean of the video sequence as repre-
sentative samples (i.e., XA = 1

m ∑
m
i=1 xi and Y B = 1

n ∑
n
i=1 yi).

Table 2 demonstrates the recognition rates of these three
methods. We can find that our proposed joint method out-
performs the individual methods because these two tasks
are complementary to each other and the iterative procedure
can correct the possible error in each task. Also SL gets bet-
ter performance than FL, illustrating that learning in sample
space is more important when dealing with data with large
intra-class variations.

Table 2. The average recognition rates % of different sample and
feature learning strategy in the three datasets .

Method Honda MoBo YTC
SL 94.9 94.4 75.5
FL 94.9 91.7 66.3

RSFL 100 98.8 79.1

Randomize vs. Linear : To show the advantage of the
proposed randomized property, we compare with the lin-
ear version called LSFL which directly feeds the original
data into the learning algorithm. Table 3 illustrates the per-
formance comparison. We can find that RSFL outperforms
LSFL in all the three datasets, especially in the most chal-
lenging YTC, illustrating that RSFL can more effectively
explain the real-world data than LSFL.

Table 3. The average recognition rates % of linear and randomized
nonlinear methods on three datasets.

Method Honda MoBo YTC
LSFL 97.44 97.39 76.7
RSFL 100 98.8 79.1

Table 4. The average recognition rates % of Single-RSFL and
RSFL on three datasets.

Method Honda MoBo YTC
Single-RSFL 100 97.2 78.0

RSFL 100 98.8 79.1

Parameter Analysis : We first investigate the effect of
the number of components in the mixture modal. Table 4



(a) Honda dataset (b) Mobo dataset (c) YTC dataset

Figure 2. Average recognition rates (%) versus different number of iterations on Honda, Mobo and YTC datasets.

shows the results of Single-RSFL(K = 1) and RSFL(K =
3). We can find that RSFL can explain the data better with
higher recognition rate.

Another important parameter is the the number of iter-
ations of our RSFL. Fig.2 illustrates the recognition rate
versus different number of iterations on Honda, Mobo and
YTC. We can find that the performance of the proposed
RSFL is stable with small number of iterations.

4. Conclusion
We have proposed a joint space learning method for

video-based face recognition, which simultaneously identi-
fies the most representative samples and discriminative fea-
tures from facial videos. We have developed an alternate
minimization algorithm to monotonically optimize the joint
learning problem. In each iteration, pair-wised represen-
tative samples are extracted by minimizing the mutual ex-
pression errors of samples, and discriminative features are
learned by maximizing inter-class distance and minimizing
the intra-class distance. To further capture the nonlinear
structure in data, we have applied randomized techniques
to approximate kernels. Experiments demonstrate that our
proposed joint space learning method surpasses state-of-
the-art results on three commonly used video datasets.
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