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Abstract—Text localization in born-digital images is usually
performed using methods designed for scene text images. Based
on the observation that text strokes in born-digital images mostly
have complete contours and the pixels on the contours have
high contrast compared with the adjacent non-text pixels, we
propose a method to extract candidate text components using
local contrast. First, the image is segmented into smooth and
non-smooth regions. After removing non-text smooth regions, the
remaining smooth regions are merged with non-smooth regions
to form a candidate text image, which is binarized into high-value
and low-value connected components (CCs). The CCs undergo
CC filtering, line grouping and line classification to give the
text localization result. Experimental results on the born-digital
dataset of ICDAR2013 robust reading competition demonstrate
the efficiency and superiority of the proposed method.

Index Terms—Text localization, image segmentation, local
contrast, connected components grouping.

I. INTRODUCTION

The text elements embedded in born-digital images, preva-
lent on the Web, carry salient semantic information such as
advertisements and security-related information. Born-digital
images and scene text images together carry a substantial pro-
portion of information on the Web. Antonacopoulos et al. [1]
showed that a large fraction (76%) of text embedded in images
cannot be found anywhere else in the web pages. Therefore,
extracting text information from born-digital images enhances
the semantic relevance of web content for indexing and
retrieval. Usually, a text information extraction system consists
of three steps: text localization, text segmentation and text
recognition. Text localization is critical to the overall system
performance and is suffering from variable image background,
text color and layout.

Many methods have been proposed for text localization in
images, and they roughly fall into two categories: texture-
based and connected component (CC)-based.

Texture based methods [2] [3] are based on the observation
that text regions in images have distinct textural properties
in contrast to non-text regions. Those methods slide a sub-
window in multi-scales through all locations of the image
using a trained classifier to decide whether the sub-window
contains text or not. The exhaustive search makes the compu-
tation of texture-based methods costly.

CC based methods first cluster pixels with similar properties
(e.g. color, intensity, stroke width, etc) into CCs in the hope

that text pixels and non-text pixels are in different CCs. Then
text CCs are identified and grouped into text lines. Researcher-
s frequently use color, stroke width transform (SWT) and
maximally stable extremal regions (MSERs) to cluster pixels
into CCs. Deciding cluster number is the main difficulty for
color clustering based methods [4]. SWT based and MSERs
based methods are both related to local thresholding. SWT
based methods [5] [6] rely heavily on the results of edge
detection, which can be seen as local binarization in a small
neighborhood. Finding MSERs can be seen as a process to
find local binarization results that are stable over a range of
thresholds. To reduce the missing of text CCs, MSERs based
methods [7] [8] [9] [10] generate tremendous non-text CCs,
including many ambiguous ones.

Unlike that many methods have been proposed for scene
text detection, few works have been published specifically
for born-digital images. Because born-digital images present
different characteristics from scene images, it is not necessarily
true that methods developed for scene images are appropriate
for born-digital images. Text strokes in born-digital images
usually have complete contours and pixels on the contours
have high contrast compared with the adjacent non-text pixels.
This is often not true for text in scene images due to non-ideal
camera-capturing environment. Based on this observation, we
identify text contour pixels and utilize them to segment an
image into text and non-text regions. We then apply bina-
rization to each text region separately to get candidate CCs.
Compared to SWT based methods, we have larger regions for
binarization. And unlike MSERs based methods, we only need
to check a single threshold rather than a range of thresholds.
As a result, we have more stable results than SWT based
methods, and generate far less non-text CCs than MSERs
based methods.

In the next section, we give the details of the proposed
method. Section III presents experimental results and Section
IV concludes the paper.

II. METHOD

Our system consists of three stages as shown in Fig. 1.
For an image of multi-color text elements and cluttered back-
ground, global binarization methods with a single threshold



usually cannot separate all text elements from the surround-
ings. Instead, if we segment the image into non-text and
candidate text regions so that each candidate text region
contains one type of text, then we can binarize each candidate
text region separately to generate candidate text CCs. This is
what we do in the first stage and the main contribution of
this paper. Then the CCs undergo CC filtering, line grouping
and line classification to give the text localization result in the
following two stages.

Fig. 1. Block diagram of the proposed algorithm.

A. CCs generation

Text strokes in born-digital images mostly have complete
contours, so we can use the contours to detach text pixels
from the adjacent non-text pixels. The text pixels on the
contours have high contrast compared with the adjacent non-
text pixels, and we can identify them based on local contrast
thresholding. As illustrated in Fig. 2, we segment an image
(Fig. 2(a)) into smooth (Fig. 2(b)) and non-smooth regions
(Fig. 2(c)), with pixels of small local contrast constituting
smooth regions, and pixels of large local contrast constituting
non-smooth regions. The threshold is selected to guarantee
that text contour pixels are segmented into non-smooth regions
(Fig. 2(c)). The smooth region may also contains text pixels,
which are usually in the inner area of strokes. We identify
such text smooth regions (Fig. 2(d)), and merge them with
non-smooth regions. Then each merged region (Fig. 2(e)) is
binarized separately to generate low-value and high-value CCs
in image L (Fig.2 (f)) and H (Fig. 2(g)), respectively.

Fig. 2. An illustration for CCs generation. White pixels are used to isolate
different regions. (a) An input image. (b) Smooth regions. (c) Non-smooth
regions. (d) Text smooth regions selected from b. (e) The merging result of
non-smooth regions and text smooth regions. (f) Image L with low-value CCs.
(g) Image H with high-valued CCs.

1) Smooth/non-smooth regions segmentation: The gradient
magnitude of a pixel can be used to measure the local
smoothness. We compute the gradient magnitudes of all pixels
and split them by a threshold T selected heuristically. As
a result, pixels with magnitudes smaller and larger than T
constitute smooth (Fig. 2(b)) and non-smooth regions (Fig.
2(c)), respectively.

For each pixel, we calculate its gradient magnitudes in
RGB channels separately using the Sobel operator, and use
the largest among the three as the final magnitude.

The threshold is selected to guarantee that text contour pix-
els are classified into the high-contrast (non-smooth) regions.
Assuming that text pixels and neighboring non-text pixels have
at least a gap of 15 in a certain channel, which is reasonable
for born-digital images, then the gradient magnitudes of those
pixels are approximately equal to 60. Therefore, we set T
empirically as 60.

2) Text smooth regions selection: We can abandon smooth
regions consisting of only non-text pixels without affecting
the text localization result. The smooth regions containing text
pixels (Fig. 2(d)) are merged with non-smooth regions (Fig.
2(c)) to form a candidate text image (Fig. 2(e)).

When selecting text smooth regions (we treat each region
as a CC), we deal with small-sized and large-sized regions
differently. Small-sized text regions lose the shapes of the
original text (e.g. we cannot read “L” in Fig. 2(d)). Thus we
select all small-sized regions to ensure that no small-sized text
regions are excluded. On the other hand, we use a text/non-
text CC classifier to select large-sized text regions because



TABLE I
11 FEATURES EXTRACTED FROM A CC C FOR TEXT SMOOTH REGION

IDENTIFICATION, WITH B, Con, S AND Cs REPRESENTING ITS BOUNDING
BOX, CONTOUR, SKELETON AND CONTOUR OF THE SKELETON (FIG. 3

SHOWS AN EXAMPLE), RESPECTIVELY. WE USE THE THINNING
ALGORITHM PROPOSED IN [11] TO GET S.

# Description
1 The Euler number of C
2 The number of pixels in C divided by the area of

B
3 The width of B divided by the height of B
4 The area of the convex hull of C divided by the

area of B
5 For the CC image, the average number of white-

to-black or black-to-white transitions of all rows
6 For the CC image, the average number of white-to-

black or black-to-white transitions of all columns
7 The stroke width of C divided by the height of B
8 Stroke width consistency
9 The number of endpoints in S
10 The number of pixels in S divided by the number

of pixels in Con
11 The similarity of C and S

they preserve the shapes of the original text (e.g. we can read
“SA” in Fig. 2(d)). Heuristically, we identify a region as large-
sized if its stroke width is larger than three. We compute the
stroke width of a CC as follows. For a CC C, we adopt an idea
similar to the one proposed in [12] to assign a value equal to
the stroke width to each pixel. We first use distance transform
[13] to compute the distance from each pixel to the nearest
background pixel, and pixels at the skeleton of C are assigned
a value equal to half the stroke width. Then the stroke width
information is propagated from the skeleton to the boundary
so that every pixel in C has a value representing stroke width.
We compute the stroke width of C as the mean of all the
values.

For text/non-text CC classification, we use a linear support
vector machine (SVM) as the classifier, trained with the 11
features presented in Table I. The features are extracted based
on the contour, area, bounding box, skeleton and stroke width
of a CC. The first 8 features characterize the properties which
have been considered quite often in the problem of text/non-
text CC classification. We propose three new features which
consider the relationship between the CC and its skeleton. The
features #1-7 are calculated straightforwardly. The features #8-
11 are elaborated below.

• Feature #8. Via skeletonization and distance transform,
we have a value to represent stroke width for each pixel.
We measure the stroke width consistency as the standard
deviation divided by the mean of all the values.

• Feature #9. We call a pixel an endpoint of a skeleton
if it has only one 8-connected neighboring pixel. For
example, “F” has three endpoints (Fig. 3(d)). The number
of endpoints reflects the number of strokes in a character.

• Feature #10. Because a character and its skeleton share
similar structures, we can recognize a character by its
skeleton. The more similar a CC is with its skeleton, the
closer the value of feature #10 is to 0.5. Therefore, feature
#10 reflect this similarity roughly.

• Feature #11. The directional feature of stroke contour
has been adopted in character recognition [14], and
it is approximately invariant to stroke width variation.
Therefore, a text CC should share a similar directional
feature of contour with its skeleton. We adopt the method
of Liu et al. [14] to compute directional features. A
CC image is decomposed into 4 directional subimages
by a raster scanning. The codes 0, 1, 2, 3 correspond
to horizontal, left-diagonal, vertical and right-diagonal
direction, respectively. The feature vector is composed of
the histograms of the direction codes, and the similarity of
a CC and its skeleton is computed as the cosine similarity
between their feature vectors.

(a) (b) (c) (d) (e)

Fig. 3. An example of a CC and its skeleton. (a) A CC “F”. (b) The red
rectangle is the bounding box of “F”. (c) The contour of “F”. (d)The skeleton
of “F”. (e) The contour of the skeleton of “F”.

3) Text regions binarization: After merging text smooth
regions with non-smooth regions, most regions in the merged
image contain only one type of text (Fig. 2(e)). Therefore,
we can apply binarization to each region separately to get
text CC candidates. In the sense of classifying each pixel as
either foreground or background, binarization is a two-class
classification problem. Otsu’s binarization algorithm [15] aims
to maximize the ratio between inter-class variance and intra-
class variance. We apply Otsu’s binarization algorithm in RGB
channels separately, and choose the channel with the biggest
ratio as the result. To facilitate following procedures, we place
high-value and low-value CCs in image H and L (Fig. 2(f),
(g)), respectively.

There are non-ideal cases when a text region contains not
only text pixels and background pixels adjacent to strokes, but
also pixels in other parts of the image (e.g. the first column of
Fig. 4). However, since text pixels and the adjacent non-text
pixels are contrasted, they are very likely to be binarized into
different images, and thus form text CCs and non-text CCs
separately (e.g. the last two columns of Fig. 4).

B. CC analysis

After binarization in the merged candidate text image as
described above, we select text CCs by text/non-text CC
classification and recovering some rejected CCs. We adopt
the same text/non-text CC classifier as used in Sect.II-A2, and
remove the CCs which are labeled as non-text. Then we adopt



Fig. 4. Text pixels and adjacent non-text pixels are separated by binarization.
Left: regions isolated by white pixels. Middle: image L with low-value CCs.
Right: image H with high-value CCs.

the method of Gonzlez et al. [16] to recover some rejected
CCs. The main idea is that a CC should be recovered if it has a
neighboring text CC and they meet several heuristic constraints
concerning color, stroke width, distance and alignment.

C. Text line analysis

We adopt the method of bai et al. [17] to group CCs into text
line candidates. Two neighboring CCs are linked into a pair
if they obey several heuristic constraints. Then pairs sharing
a common CC are merged sequentially to construct text line
candidates until no pairs can be merged. We abandon all lines
consisting of less than two CCs and apply text/non-text line
classification to the remaining lines. The classifier is a linear
SVM with the features in Table II.

Then we use the method of Bai et al. [17] to separate text
lines into words according to horizontal distances between
consecutive CCs, and combine the results from images H
and L. We use arbitrarily oriented minimum bounding boxes
(AOMBBs) to represent words. If there are two AOMBBs
which have a overlapping area larger than one fourth the
smaller one’s area, they are replaced by an AOMBB which
contains them precisely. We do this sequentially until no more
AOMBBs can be merged. At last, an AOMBB localizes a word
in the original image.

III. EXPERIMENTAL RESULTS

We evaluated the performance of our method on the
database of the ICDAR2013 robust reading competition -
Challenge 1: Reading Text in Born-Digital Images (Web and
Email) [18].

The born-digital dataset comprises images extracted from
web pages (news, personal, commercial, social, government,
etc) and email messages (spam, newsletters, etc). There are
551 of them with a minimum size of 100 * 100 pixels,
out of which 410 and 141 images are used for training and
test, respectively. The organizers of the competition maintain
a website [19] where the dataset with ground truth can be
downloaded after registration. The website also accepts detect-
ed results and outputs the evaluation results. The evaluation
protocol is described in the report of the competition [18]. It is

TABLE II
NINE FEATURES EXTRACTED FROM TEXT LINE CANDIDATE L WITH N CCS
(c1, c2, . . . , cn). FOR A CC, WE DENOTE THE AVERAGE RBG VALUES OF

ALL PIXELS AS (r, g, b), THE STROKE WIDTH AS sw AND THE HEIGHT AS h.
FEATURE #4, #5 AND #6 ARE FURTHER NORMALIZED TO [0, 1] BY

DIVIDING 255.

# Description
1 The average of the text/non-text CC classification

output scores of c1, c2, . . . , cn
2 min(sw1, . . . , swn)/max(sw1, . . . , swn)
3 max(sw1, . . . , swn)−min(sw1, . . . , swn)
4 max(r1, . . . , rn)−min(r1, . . . , rn)
5 max(g1, . . . , gn)−min(g1, . . . , gn)
6 max(b1, . . . , bn)−min(b1, . . . , bn)
7 The height of L divided by the width of L
8 The total horizontal distances between consecutive

CCs divided by the width of L
9 The average of regression errors when fitting the

centers of c1, c2, . . . , cn with a straight line using
least square error regression divided by the average
height of c1, c2, . . . , cn

TABLE III
RANKING OF OUR METHOD AND THE METHODS SUBMITTED TO

ICDAR2013 ROBUST READING COMPETITION ON BORN-DIGITAL
DATASET.

Method Name Recall (%)Precision (%)F-score(%)
Our method 85.80 91.57 88.59
USTB TexStar [9] 82.38 93.83 87.74
TH-TextLoc 75.85 86.82 80.96
I2R NUS FAR 71.42 84.17 77.27
Baseline 69.21 84.94 76.27
Text Detection [20], [21] 73.18 78.62 75.81
I2R NUS 67.52 85.19 75.34
BDTD CASIA 67.05 78.98 72.53
OTCYMIST [22] 74.85 67.69 71.09
Inkam 52.21 58.12 55.00

based on word-level match over the whole test set, taking into
account one-to-one, one-to-many and many-to-one matches
between detected and ground truth text boxes. We present
the results of our method and the methods submitted to the
competition in Table III. Brief descriptions of the submitted
methods can be found in [18]. The winner was USTB TexStar,
a method based on MSER segmentation. It also won the task
of scene text localization.

The results in Table III shows that our proposed method
yields superior performance compared to the competition
results in ICDAR2013. After CC segmentation, we use con-
ventional techniques for CC filtering, line grouping and word
partitioning. The superior performance indicates that the pro-
posed local contrast-based segmentation method is promising.

Fig. 5 shows some examples of successful detection on
images in the dataset.

Fig. 6 shows two failure cases in our experiments. For



Fig. 5. Examples of successful text localization results.

Fig. 6(a), we miss the text because our method cannot handle
curved text lines. In Fig. 6(b), we identify a non-text region
as text because it has text-like features.

(a) (b)

Fig. 6. Two failure cases of text localization.

IV. CONCLUSION

We proposed a new CC based method for text localization
in born-digital images. By segmenting an image into text and
non-text regions based on local contrast, each text region is
binarized to generate text CC candidates. The CCs undergo
CC filtering, line grouping and line classification to give the
final result. Our method has achieved state-of-the-art perfor-
mance on the born-digital dataset of ICDAR2013 Competition,
convincingly demonstrating the effectiveness. We anticipate

higher performance if we improve the algorithms for CC
classification and line grouping in the future.
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