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Abstract. Local descriptor coding is one crucial step in traditional Bag
of Words (BoW) framework for image categorization. However, the slow
coding speed of previous methods is one limitation for applications in
large scale problems. Recently, neural network based models have been
widely applied in various classification tasks. Using neural network mod-
els for descriptor coding is straightforward and efficient due to their fast
forward propagation. In this paper, we propose to use the Auto-Encoder
(AE) network as a local descriptor coding block, and further embed AE
network in the BoW framework for the purpose of image classification.
To make the hidden activities of AE network to be both selective and
sparse, we add an efficient and effective regularization term into the learn-
ing process of AE network, which can promote sparsity of the hidden
layer for each input descriptor as well as the selectivity for each hidden
node. By incorporating the AE network coding with the BoW framework,
we can achieve better results and faster speeds than other state-of-the-
art feature coding methods on Caltech101, Scene15 and UIUC 8-Sports
databases.

1 Introduction

Image classification is one basic and challenging vision task which aims at clas-
sifying images into correct categories. The original Bag of Words (BoW) model
is derived from the document retrieval field, and has been successfully applied
to image classification [1] with state-of-the-art performance [2–5]. An unified
framework of BoW model consists of several steps including (a) local feature
(e.g., SIFT, HOG, SURF, etc.) extraction [6–8], (b) dictionary learning and fea-
ture coding, (c) pooling (Max, Average, and Sum) of the coded features [2–4],
and (d) classifier learning (e.g., one-vs-all SVMs). To incorporate spatial infor-
mation into the BoW framework, Lazebnik et al. [9] proposed the spatial pyramid
matching (SPM) model to improve the performance which is usually denoted as
BoW+SPM.

Local descriptor coding is an essential step in the BoW framework, which has
drawn great attention in recent years. Given the codebook (dictionary), descrip-
tor coding can be seen as the process of activating a small number of codewords
(based on the coding process of the descriptor), which can then generate a coding
c© Springer International Publishing Switzerland 2015
D. Cremers et al. (Eds.): ACCV 2014, Part I, LNCS 9003, pp. 628–642, 2015.
DOI: 10.1007/978-3-319-16865-4 41



Efficient Feature Coding based on Auto-encoder Network 629

vector with the same size (dimension) of the codebook [10]. One class of local
descriptor coding methods is the reconstruction based model, which is usually
designed to minimize the norm (distance) of the descriptors and a linear combi-
nation of codewords (defined as reconstruction error), along with constraints on
the coding vectors. For example, besides the reconstruction term, sparse coding
(SC) [2] adds sparsity constraint on the coding vectors, and locality-constrained
linear coding (LLC) [3] incorporates local neighborhood based constraints. More-
over, voting based coding [1,4,11] can also be viewed as reconstruction based
models with some special constraints on the coding vector.

The optimization formulations of the above models are all based on minimiza-
tion of the reconstruction error and subjection to various kinds of constraints
on the final coding vectors. However, they deal with different descriptors inde-
pendently. To further improve the performance, Gao et al. [12] proposed the
Laplacian sparse coding (LaSC) which incorporates Laplacian constraints of the
descriptors into the sparse coding model. Another class of models considering
the relationships of descriptors are based on the context information of descrip-
tors [13–15].

Recently, the development of deep neural networks (DNNs) has triggered
many interests of using neural network (NN) models for automatical feature
learning in image classification, e.g., the convolutional neural network (CNN) [16]
and the restricted Boltzmann machines (RBM) [17] models. The learned weights
of the neural networks can also be viewed as the codebook when compared
with traditional coding methods. One obvious advantage of NN based feature
learning is the fast speed of descriptor coding after learning the weights. Goh
et al. [18] proposed a feature learning model based on regularized RBM. The
regularizer used there can guarantee the sparsity of hidden activates for each
input descriptor, and meanwhile the selectivity of one hidden node for a batch
of input descriptors. Sohn et al. [19] also advocated complex sparse convolutional
RBM for feature learning.

Considering the slow learning process of CNN and complex contrastive diver-
gence (CD) [20] algorithm used in the RBM training process, in this paper, we
explore to use another neural network for local descriptor learning, namely the
Auto-Encoder (AE) network [21]. The training of AE network is based on an
efficient accessible back propagation (BP) algorithm [22], and we also use an
improved version of regularizer proposed by [18] to constrain the learning process
of AE network. It is obvious that the regularized AE network is also in the class
of reconstruction based coding method. Compared with traditional BoW models
as mentioned above, the selectivity of hidden node in the AE network can be
explained as one kind of context constraint derived from one batch descriptors,
which can bring superior performance for image classification.

The contributions of this paper are: (1) Integrating AE network based fea-
ture learning into BoW+SPM framework (Fig. 1) which is both efficient and
effective. To the best of our knowledge, this is the first trial to integrate AE
network into BoW framework. (2) Incorporating the improved regularizer pro-
posed by [18] into the AE network learning process. (3) Extensive experiments
on Caltech101, Scene15, and UIUC 8-Sports demonstrate the effectiveness of the
proposed method.
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Fig. 1. The hybrid BoW+SPM framework, based on regularized AE network learning
for local descriptor coding. After learning the weights and biases of the AE network,
the hidden activates are coding vectors of descriptors.

The rest of this paper is organized as follows: The related work about descrip-
tor coding are presented in Sect. 2. The proposed regularized AE network is
detailed in Sect. 3. Experimental results, influence of parameter settings and
comparison of coding speed are presented in Sect. 4. Section 5 concludes this
paper and discusses the future works.

2 Related Work

Descriptor coding methods can be roughly classified into five categories [10]:
(i) Voting based methods, e.g., hard assignment coding (HAC) [1], soft assign-
ment coding (SAC) [11] and local soft assignment coding (LSAC) [4]. (ii) Recon-
struction based methods, e.g., sparse coding (SC) [2], local coordinate coding
(LCC) [23], locality-constrained linear coding (LLC) [3], and so on. (iii) Salient
coding (SaC) [5] and group salient coding (GSC) [24]. (iv) Fisher coding [25,26].
(v) Local tangent coding, e.g., super vector coding [27].

Let X = [x1, x2, · · · , xn] ∈ R
d×N be N d−dimensional local features extr-

acted from an image. B = [b1, b2, · · · , bM ] ∈ R
d×M denotes the codebook which

is usually obtained by k-means algorithm. And V = [v1, v2, · · · , vM ] ∈ R
M×N is

the coding matrix of these N features, here vi is the coding vector of xi, with
i = 1, 2, · · · , N . Notations denoted above are used in the whole paper.

The initial BoW model was proposed by [1], where hard assignment was taken
to quantize the local descriptors. HAC records the number of local descriptors
assigned to each codeword in the codebook B, thus obtaining one M dimensional
coding vector for these descriptors. The assignment criteria for descriptor xi is:
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vi,j =

{
1, if j = arg min

k
‖xi − bk‖22,

0, else.
(1)

Different to HAC, SAC [11] assigns weighted value to all codewords of the
codebook for each descriptor. An improved version of SAC is localized SAC
(LSAC) [4] which only assigns value to neighbor codewords of the descriptor.
When the size M of the codebook is large, the searching of neighbor codewords
is time consuming. The performances of HAC, SAC and LSAC are all relative
poor when compared with other more complicated models.

Besides the reconstruction error, SC [2] was proposed to add another sparse
constraint onto the coding vector v. SC can be formulated as an optimization
problem:

v∗ = arg min
v

‖x − Bv‖22 + λ‖v‖1, (2)

where λ controls the tradeoff of the reconstruction and sparsity. We can get the
best coding v∗ of descriptor x through optimizing Eq. (2). Then LCC [28] was
proposed to add locality constraint instead of sparse constraint. Though, the
performances of SC and LCC are better than voting based coding, the optimiza-
tion of them are both time consuming. To speed up, LLC was proposed by [3],
which is formulated as follow:

v∗ = arg min
v

‖x − Bv‖22 + λ‖dist � v‖2, (3)

where � denotes element-wise product and dist = [exp(‖x − b1‖2/δ), exp(‖x −
b2‖2/δ), · · · , exp(‖x − bM‖2/δ)]T ∈ R

M . In Eq. (3), LLC incorporates locality
constraint by L2-norm of element-wise product.

To consider the saliency of codewords, salient coding was proposed by [5],
wherein relative proximity is used to represent the salient response of the code-
words. Given K nearest neighbor codewords of one descriptor, salient coding
utilizes the difference between the nearest codeword and the rest K −1 neighbor
codewords to represent saliency. Recently, group saliency coding (GSC) [24] was
also proposed to utilize all the saliency responses of a group of codewords, where
the final coding vector of a descriptor on one codeword is the maximum value
of all responses under different group sizes [10].

3 Auto-Encoder (AE) Network Based Descriptor Coding

In this paper, the descriptor coding process is based on Auto-Encoder (AE) net-
work [21]. The AE network consists of an encoder process of descriptors and
an decoder process of hidden outputs (Fig. 1). The objective is to minimize the
reconstruction error and the activate functions of the hidden layer are usually
nonlinear, (e.g., sigmoid and tangent), therefore, AE network is a reconstruction
based and nonlinear coding process. To further improve the descriptor coding
performance, we also add a regularization term in the learning process to guar-
antee both sparsity and selectivity of the AE network.
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3.1 Auto-Encoder Network

We use the notations denoted in Sect. 2 for convenience. The number of nodes
for both the input and output layer are d, which is the same as the descriptor
dimension. In the BoW framework, we have M codewords in the codebook B,
therefore, we also set the number of hidden nodes in the AE network as M ,
which means the coded vectors of AE network and other BoW models have the
same discrete dimensionality (M can be set as 1024, 2048, etc.).

Let W (1) ∈ R
d×M , b(1) ∈ R

M be the weight and bias of the input-hidden
layer, W (2) ∈ R

M×d, b(2) ∈ R
d be the weight and bias of the hidden-output layer.

Figure 1 shows the architecture of the AE network. Suppose we have extracted
N descriptors: X = [x1, x2, · · · , xN ] ∈ R

d×N from the training images around
N interesting points (by dense sampling or interesting points detection). Then
the formulation of AE network is:

arg min
Θ

L =
1

2N

N∑
t=1

‖xt − h(xt)‖22 +
λ1

2
(‖W (1)‖2F + ‖W (2)‖2F ), (4)

where Θ = {W (i), b(i)|i = 1, 2} and λ1 controls the elements of the weights to be
small, which can avoid over-fitting. The h(xt) is the reconstruction of xt which
is defined as

h(xt) = σ(W (2)�
σ(W (1)�

xt + b(1)) + b(2)), (5)

where σ(x) = 1
1+e−x is the sigmoid activate function. Then Eq. (4) is optimized

by batch gradient decent (BGD) based on BP algorithm [22].

3.2 Sparsity and Selectivity Regularizer with Random Distortion

In the striate complex cells, the selectivity is the response distribution of a
neuron across a set of stimuli, and sparsity is the response distribution of several
neurons to one single stimulus [29]. In the AE network, each hidden node can
be viewed as a neuron and each descriptor can be viewed as a stimuli. To make
the AE network to be both sparse and selective, i.e., the output hidden activate
vector of one input descriptor is sparse, and the activate vector of one hidden
node for the batch descriptors is selective, we should regularize our AE network
learning process with sparsity and selectivity just the same as the striate complex
cells [29].

To facilitate the next steps of pooling and classification in the hybrid BoW
framework (Fig. 1), Goh et al. [18] have proposed one regularizer into the learning
process of RBM. In this paper, we also incorporate this regularizer into the AE
network. To further improve the performance, we also add random distortion
into the constructing of the regularization term.

Let Xbatch = [x1, x2, · · · , xK ] ∈ R
d×K be one batch descriptors during the

AE network training, H = [σ(W (1)�
x1 + b(1)), σ(W (1)�

x2 + b(1)), · · · , σ(W (1)�

xK + b(1))] ∈ R
M×K be the forward activates matrix of Xbatch. The sparsity and

selectivity of the hidden activates can be introduced by forcing γ(W (1), b(1)) =
‖H − P‖2F → 0 during the AE network learning process, where P ∈ R

M×K is
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Fig. 2. (a) v and its corresponding rank(v), here v =[0.8 0.3 0.3 0.4 0.1 0.6 0.2],
rank(v)=[7 3.5 3.5 5 1 6 2]. (b) vi, (i = 1, 2) and their normalized ranking vectors,
without and with random distortion. It can be seen that v1new = v2new when no
distortion added, v1new �= v2new when distortion added. (c) Hrow is the matrix obtained
by row ranking of H, without or with random distortion. Left: first column of Hrow

without distortion. Right: first column of Hrow with distortion. It’s obvious we get
better Hrow with distortion added.

a matrix constructed based on H forcing both sparsity and selectivity. Then
the gradient updating of W (1), b(1) is modified by adding the increments of
γ(W (1), b(1)) w.r.t. its parameters during the regularized AE network learning
process.

In practice, many choices of penalty satisfying H → P can be taken. In
order to embed the derivative calculation into the residual error during the back
propagation [30], we use another penalty, i.e., KL divergence of H and P instead
of the F-norm of them. The KL divergence of H and P is:
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Algorithm 1. Construction of P

Input:
Hidden activates: H ∈ R

M×K , μ1, μ2

Output: P ∈ R
M×K

1: Process column begins:
2: randDistort = rand(1, K).
3: for t = 1 → K do
4: P (:, t) = rank(H(:, t));
5: MaxP = max(P (:, t));
6: P (:, t) = P (:, t)/(MaxP + randDistort(t));
7: P (:, t) = P (:, t)1−1/µ1 ;
8: end for
9: Process row begins:

10: randDistort = rand(1, M).
11: for t = 1 → M do
12: P (t, :) = rank(P (t, :));
13: MaxP = max(P (t, :));
14: P (t, :) = P (t, :)/(MaxP + randDistort(t));
15: P (t, :) = P (t, :)1−1/µ2 ;
16: end for

T (W (1), b(1)) =
M∑
i=1

K∑
j=1

pij log
pij

hij
+ (1 − pij) log

1 − pij

1 − hij
, (6)

where H = [hij ]M×K and P = [pij ]M×K . It is easy to proof that the derivative
of Eq. (6) w.r.t. W (1), b(1) is the same as the derivative obtained by cross-entropy
of H,P , used in [18].

Based on the batch data Xbatch, the overall optimizing objective function is

L =
1

2K

K∑
t=1

‖xt − h(xt)‖22 +
λ1

2
(‖W (1)‖2F + ‖W (2)‖2F ) + λ2T (W (1), b(1)), (7)

where λ2 controls the tradeoff between sparsity, selectivity and the reconstruc-
tion.

Construction of Sparse and Selective Matrix P , based on H . In this
Subsection, we present the construction of P .

Based on the initial algorithm in [18], we propose to add random distortion
after getting the rank score of the column or row of H. Denote ν as one column
or row of H, the distorted and normalized new vector νnew is:

νnew = rank(ν)/(max(ν) + τ ∗ rand), (8)

where τ controls the extent of random distortion, τ = 1 in all our experiments.
And rank(ν) returns the ranks of the values in ν. If any values in ν are equal,
rank(ν) returns their average rank (Fig. 2(a)).
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Adding random number into Eq. (8) can enhance the robustness of νnew. On
the one hand, when two different vectors ν1, ν2 have the same ranking results:
ν1new = ν2new, adding random number can make them also different (Fig. 2(b)),
which is more reasonable for afterward processing. On the other hand, after
obtaining the ranked matrix Hrow by ranking all rows of H by Eq. (8), equal
value elements will occur in some columns, that is confused for afterward max-
pooling operation (Fig. 2(c)). Adding random number in generating Hrow can
avoid this problem.

After νnew is obtained, another step, transforming it into a long-tailed vector
is carried out as follow:

νlast = ν(1−1/μ)
new

, (9)

where μ controls the shape of the long-tailed vector. Inspired by [18,23], we
first carry out column ranking of H, then row ranking. Complete constructing
procedure of P is listed in Algorithm 1.

3.3 The Hybrid Algorithm of AE Network with Sparse
and Selective Regularization

In this Subsection, we summary the modified BP algorithm used to train the
regularized AE network. BP algorithm [22] is usually run on batch data. Based on
notations in the above Sections, the batch mode gradient descending procedure
on Xbatch = [x1, x2, · · · , xK ] ∈ R

d×K is listed in Algorithm 2. The � and �
denote element-wise product and division of matrices respectively.

Based on Algorithm 2, we can train the regularized AE network to cover all
training data for several iterative epoches. After (W (i), b(i)), i = 1, 2 have been
learned, we can use them to do forward propagation to code all local descriptors,
e.g., given descriptor xi ∈ R

d, its coding vector is

vi = sigmoid(W (1)T ∗ xi + b(1)) ∈ R
M .

After coding the local descriptors by our trained AE network, 1 × 1, 2 × 2, 4 × 4
spatial partitions (SPM) [9] are adopted to incorporate spatial information.
Then, max pooling on each sub-regions are adopted. By concatenating all the
pooled sub-region vectors, we get the final image representations, which are fed
into the linear SVM [31] (one-vs-rest) to train classifier.1

4 Experiments

In this Section, we first present the experimental settings in Subsect. 4.1. Then
Subsect. 4.2 gives classification accuracy and illustrates the impact of different
hidden node size on three datasets. Subsection 4.3 shows the impact of μ1, μ2

and λ2. Subsection 4.4 compares the speed of the proposed methods with several
other coding methods.
1 We utilized lib-linear toolkit [32] in this paper for SVM training.
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Algorithm 2. One batch Learning of Regularized AE Network
Input:

Batch data: Xbatch ∈ R
d×K

λ1 = 0.0001, λ2, μ1, μ2, hiddenNodes = M
momentum = 0.05, learnRate = 1, layer = 3

Output: (W (i), b(i)), i = 1, 2
1: Forward propagation:
2: H(1) = Xbatch;
3: for t = 2 → layer do

4: H(t) = sigmoid(repmat(b(t−1), 1, K) + W (t−1)T ∗ H(t−1));
5: end for
6: Calculate P based on H(2) ∈ R

M×K

7: Back propagation:
8: D(layer) = −(Xbatch − H(3)) � H(3) � (1 − H(3));
9: for t = layer − 1 → 2 do

10: SparsitySelectivity = λ2 ∗ ((1 − P ) � (1 − H(t)) − P � H(t));
11: D(t) = (W (t) ∗ D(t+1) + SparsitySelectivity) � H(t) � (1 − H(t));
12: end for
13: for t = 1 → layer-1 do

14: DW (t) = H(t) ∗ D(t+1)T /K;
15: Db(t) = sum(D(t+1), 2)/K;
16: end for
17: Gradient updating :
18: for t = 1 → layer-1 do
19: vW (t) = momentum ∗ vW (t) + learnRate ∗ (DW (t) + λ1 ∗ W (t));
20: vb(t) = momentum ∗ vb(t) + learnRate ∗ Db(t);
21: W (t) = W (t) − vW (t);
22: b(t) = b(t) − vb(t);
23: end for

4.1 Experimental Settings

In this paper, three datasets, i.e., Caltech101 [33], Scene15 [9], and UIUC 8-
sports [34] are used to validate the proposed model. Images in Caltech101 and
Scene15 datasets are resized to be no larger than 300 in height or width, and
images in UIUC 8-sports no larger than 400. In all our experiments, single scale
(16× 16) 128-dim SIFT [6] are densely extracted from all images. The step sizes
of extracting SIFT for Caltech101, Scene15 and UIUC 8-sports datasets are 6
pixels, 8 pixels and 4 pixels respectively. 20 k descriptors are used for regularized
AE network learning in three datasets.

As for training-test set partition, we randomly select 30 training images
per category for training, the rest for testing for Caltech101 dataset. For Scene15
dataset, we follow the partition manner in [9], i.e., randomly select 100 images per
category for training, the rest for testing. For UIUC 8-sports dataset [34], 70 train-
ing images and 60 test images are randomly chosen from each category. The final
result is the mean accuracy and standard deviations, which is based on 5 times
experiments with different random partition of the training and test set.
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Table 1. Classification rate (%) comparison on Caltech101, Scene15 and 8-Sports
datasets.

Algorithms Caltech101(30train) Scene15 8-Sports

Hard Assignment [9] 64.60±0.80 81.40±0.50 −
Soft Assignment [4] 72.56±0.65 81.09±0.43 82.04±2.37

Local Soft Assignment [4] 74.21±0.81 82.70±0.39 82.29±1.84

ScSPM [2,12] 73.20±0.50 80.30±0.90 82.74±1.46

LLC [3,4] 73.40 81.53±0.65 81.41±1.84

SaC [5] − 82.55±0.41 −
GSC [24] 73.4±1.20 83.2±0.4 −
LC-KSVD [35] 73.6 − −
Ours 74.24±0.96 83.27±0.83 85.29±1.49

During our regularized AE network training, we fix the following parameters,
i.e., learning rate = 1, batchsize = 100 or 200, momentum = 0.05, λ1 = 0.0001,
max iterative epoches ≤ 6. Now, we only have three free parameters: λ2, μ1, μ2.

4.2 Classification Accuracy

Table 1 lists the average accuracies and standard deviations of different models.
We can find that our model is better than other state-of-the-art models. Because
we did not know the exact parameter settings and the implementation details
of the compared models, the results of the compared models are borrowed from
the cited references. It can be concluded that our proposed method is superior
to other coding methods (reconstruction based coding, voting based coding,
saliency coding, etc.) consistently. It is worthy to mention that our model is only
based on single scale SIFT feature, while other methods are usually based on
multi-scale SIFT features. Moreover, the maximal hidden node size (dictionary
size) of our AE network is 3072, while some other methods use much larger
dictionary than ours, e.g., GSC [24] uses a dictionary with 8192 codewords to
obtain their results in Table 1.

We also explore accuracies under different hidden node size, i.e., the dimen-
sionality of the coding vectors. We list the results on Table 2. It can be seen that
different hidden node size has different performance. Best results are obtained
with hidden node size 2048 for Caltech101 and 8-Sports datasets. While the best
hidden node size is 3072 for scene15 dataset.

4.3 Impact of Hyper-Parameters

In this Subsection, we discuss the impact of the hyper-parameters, i.e., λ2 in
Eq. (7), μ1, μ2 in Algorithm 1. To save processing time, we only discuss these
parameters on Caltech101 and Scene15 datasets. Figures 3 and 4 present the
classification rate change tendency along different λ2 and μ1, μ2.
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Table 2. Classification rate (%) comparison on Caltech101, Scene15 and 8-Sports
datasets under different size of hidden node.

Hidden node number Caltech101(30train) Scene15 8-Sports

1024 72.26±1.53 81.57±0.34 85.13±1.35

2048 74.24±0.96 82.61±0.18 85.29±1.49

3072 73.62±0.90 83.27±0.83 84.92±1.25

Fig. 3. Changing tendency of the classification rate along λ2 on Caltech101 and Scene15
datasets (color figure online).

Classification results of one time experiment for Caltech101 and Scene15
datasets are drawn in Fig. 3 (red curve corresponding to Caltech101, blue curve
corresponding to Scene15), with training-test set partition the same as the man-
ner in Subsect. 4.1. Here, λ2 takes 50, 55, · · · , 100, other relevant parameters of
AE network are fixed. It can be seen that classification performance of our model
w.r.t. λ2 is stable, i.e., the fluctuation of accuracy is less than one percentage
with the changing of λ2.

To visualize the performance of the accuracy w.r.t. μ1, μ2, we show the
(μ1, μ2,accuracy) maps of one time experiment both on Caltech101 and Scene15
datasets. The training-test partition manner is the same as the ones in Sub-
sect. 4.1. The grids of μ1, μ2 used to draw the maps in Fig. 4 are in the range
of μ1 ∈ [0.001, 0.1] and μ2 ∈ [0.001, 0.02], other parameters are fixed. It can be
concluded from Fig. 4, our model is stable w.r.t. μ1, and best μ2 is located at
interval: [0.001, 0.006] for all datasets.

4.4 Comparison of Coding Speed

In this Subsection, we compare the coding (forward propagation) speed of our
method with HAC [1], SAC [11], LSAC [4], SC [2], Approximate SC [2] (first
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Table 3. Average single image processing time (second) on Caltech101 dataset under
different dictionary size. The numbers in brackets are knn number of corresponding
methods. SC(200) is the approximate SC [2] algorithm.

DictionarySize HAC SAC LSAC(5) SC SC(200) LLC(5) SaC(5) Ours

1024 0.196 0.047 0.191 1.355 2.007 0.343 0.179 0.027

2048 0.351 0.076 0.307 1.885 2.248 0.481 0.301 0.045

3072 0.502 0.112 0.449 3.382 2.437 0.721 0.437 0.050

Fig. 4. Changing tendency of the classification rate along μ1, μ2 on (a) Caltech101 and
(b) Scene15 datasets.

find the neighbor codewords, denoted as B̃, then coding the descriptors based
on the sub-codebook B̃ instead of B), LLC [3] and SaC [5]. Average single
image processing time is recorded for each method under different codebook
(dictionary) size. Here, hidden layer size is the dictionary size for our AE network.
We only reported the time on Caltech101 dataset. The average time on other
datasets should be similar as Caltech101, because all three datasets have the
same image magnitude, i.e., around 300-400 width and height. The experimental
platform of comparing coding time is MATLAB8.1.0.604 (R2013a) in a server,
with an Intel E5-2670 CPU (2.60 GHz and 16 cores) and 126.1 GB RAM.

To save dictionary learning time of other methods, K-means clustering is
used to obtain the needed dictionaries of different size. Meanwhile, the weight
(W (1), b(1)) with different hidden node size (the same as dictionary size) should
be learned. After that, we randomly select 10 images per class to test the coding
speed of all these methods. The compared coding methods are implemented by
us based on their public codes.

Results are listed in Table 3. It can be seen that our method is much faster
than their counterparts. Moreover, weight learning time of our regularized AE
network is also much faster than SC, LLC. In practical AE network learning
process, less than six epoches are enough to gain good results, one epoch only
takes several minutes. On the contrary, obtaining the dictionary by SC and LLC
usually takes several hours or days. The fast inferring speed makes the proposed
hybrid model more suitable for real application.
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5 Conclusion and Future Work

In this paper, we propose a hybrid framework by combining traditional BoW+
SPM model with the regularized Auto-Encoder (AE) network. We use AE net-
work to learn nonlinear transformation of local descriptors, which can be also
seen as codebook learning in the viewpoint of BoW, by viewing the weights
W (1) of AE network as the learned dictionary. During the AE network training,
a random distortion based sparse and selective regularizer is also incorporated to
guarantee the sparsity for each input descriptor and meanwhile the selectivity for
each activate node in the hidden layer. After learning the weights (W (1), b(1)) of
the AE network, the inference speed (forward propagation) of local descriptors is
very fast compared with some other state-of-the-art coding methods (e.g., HAC,
SAC, LSAC, ScSPM, LLC and SaC). The classification accuracy of our model
also consistently outperforms some recently proposed popular models (ScSPM,
LLC, K-SVD, etc.).

In the future, we will consider incorporate discriminative information into
regularized AE network and construct deep AE model for better coding of the
descriptors. On the other hand, incorporating the relationship information (such
as Laplacian constraint) of descriptors into the AE network learning process is
also an interesting topic.
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