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Listwise Learning to Rank by Exploring
Structure of Objects

Ou Wu, Qiang You, Xue Mao, Fen Xia,
Fei Yuan, and Weiming Hu

Abstract—Listwise learning to rank (LTR) is aimed at constructing a ranking
model from listwise training data to order objects. In most existing studies,
each training instance consists of a set of objects described by preference
features. In a preference feature space for the objects in training, the structure
of the objects is associated with the absolute preference degrees for the
objects. The degrees significantly influence the ordering of the objects.
Nevertheless, the structure of the training objects in their preference feature
space has rarely been studied. In addition, most listwise LTR algorithms yield
a single linear ranking model for all objects, but this ranking model may be
insufficient to capture the underlying nonlinear ranking mechanism among all
objects. This study proposes a divide-and-train method to learn a nonlinear
ranking model from listwise training data. First, a rank-preserving clustering
approach is used to infer the structure of objects in their preference feature
space and all the objects in training data are divided into several clusters.
Each cluster is assumed to correspond to a preference degree and an ordinal
regression function is then learned. Second, considering that relations exist
among the clusters, a multi-task listwise ranking approach is then employed
to train linear ranking functions for all the clusters (or preference degrees)
simultaneously. Our proposed method utilizes both the (relative) preferences
among objects and the intrinsic structure of objects. Experimental results on
benchmark data sets suggest that the proposed method outperforms state-of-
the-art listwise LTR algorithms.

Index Terms—Listwise learning to rank, clustering, multi-task learning, structure
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1 INTRODUCTION

LEARNING to rank (LTR) has received great attention in recent
years as it is useful in many applications, such as information
retrieval, data mining, natural language processing, and speech
recognition [1]. Existing LTR methods are grouped into three
approaches: pointwise, pairwise, and listwise [6]. Different
approaches define different input/output spaces of training
data and employ different loss functions. In pointwise LTR, the
input space contains the preference features of each object. In
pairwise LTR, the input space usually contains the relative pref-
erence features between a pair of objects. In listwise LTR, the
input space contains a set of objects each of which is described
by the preference features. The listwise approach models the
ranking problem in a more natural way than the other two
approaches, and previous experiments demonstrate the competi-
tive performance of this approach on benchmark data sets [2].
Therefore, this study focuses on the listwise approach in which
the training set consists of instances of objects and ranked object
lists on each instance.

A number of listwise LTR algorithms have been proposed in
previous literature [2], [3], [4], [8], [9], [11], [14], [24]. They can
be categorized into two streams. The first stream defines a loss
function over a ground-truth ordering and a predicted ordering.
A ranking function is then trained according to the minimization
of training loss. Two representative methods are ListMLE [2]
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and ListNet [3]. The former defines a listwise likelihood loss
function based on the Packett-Luce Model [2]. The latter defines
a loss function based on KL-divergence between two permuta-
tion probability distributions. Some other methods include Focu-
sedBoost [19], ListReg [20], and DCMP [21] based on different
loss definitions. The second stream attempts to directly maxi-
mize the information retrieval performance measures (such as
mean average precision (MAP)) in training. Some representative
methods include AdaRank [4], ApproxNDCG [22], and Smooth-
Rank [23].

The target ranking models in most listwise ranking studies
are linear. There are a limited number of studies that construct
nonlinear listwise ranking models which are mainly based on
the decision tree. Pavlov et al. [24] combined a sequence of
boosted tree as a ranking model based on the bag strategy.
Moon et al. [25] also constructed the ranking model based on
the combination of weak learners (i.e., decision trees). These
ranking algorithms still require the relevance labels during
training, although they are claimed to be available for the list-
wise setting. Some other studies focus on feature selection [14],
semi-supervised ranking [15], and cost-sensitive ranking [18] in
a slightly different listwise LTR setting.

Existing listwise LTR algorithms require further investigation
due to the following reasons

(1) The structure of objects in the preference feature space is ignored.
Although the listwise approach still pursues a ranking
model whose input contains the preference features of an
object, it does not directly explore the preference feature
space in learning. The structure of objects in the preference
feature space reflects absolute preference degrees for
objects. In most ranking problems, the absolute preference
degrees for objects exist regardless of whether they are
given. In information retrieval, a document can be consid-
ered highly relevant, relevant, or irrelevant to a given
query.

(2) A linear ranking criterion is usually considered. In algorithms
such as ListMLE and ListNet, a single linear ranking func-
tion is learned on the basis of input training data. However,
the ranking mechanisms for many real data by humans are
not globally linear. For example, the ranking criterion
between two images with high visual quality may rely on
the content, while that between an image with high visual
quality and another image with low visual quality may
rely only on the resolution. Nonlinear ranking functions
should be capable of significantly improving the perform-
ances of baseline algorithms [6].

Fig. 1 presents an illustrative example for the above analysis for
existing studies. Fig. 1a shows a set of objects and the underlying
ranking criterion (the blue curve) in the preference feature space.
The blue curve can be approximately fitted by three piecewise line
segments in Fig. 1a. Each line segment corresponds to an object
cluster (denoted by the dotted ellipses). In a viewpoint of pointwise
LTR, all the objects can be divided into three clusters correspond-
ing to three preference degrees ‘highly relevant’, ‘relevant’, and
‘irrelevant’. The ranking criteria of the three line segments
aref(e) =y, f(®) =y, — y,, and f(e) = y,, respectively. Fig. 1b
shows three instances (ranked object lists). Accordingly, the
learned ranking criterion (the orange arrow) by using the current
listwise approach is f(e) = y; — 0.8y,, which is inappropriate to
rank objects from the ‘highly relevant’ and ‘irrelevant’ clusters.
Fig. 1c shows that if object structure is considered and the three
clusters are separately processed, the right ranking criterion for
each cluster can be obtained. The purple lines indicate the global
partition criterion.

Fig. 1 shows that the utilization of object structure in listwise
LTR can benefit the ranking criterion learning. Nevertheless, the
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Fig. 1. (a) Objects in preference feature space and underlying ranking criterion (the
curve). (b) Three ranked lists (x(1), z(2),(3)) and learned ranking criterion (orange
arrow) by listMLE. (c) Learned ranking criterion (purple partition lines and orange
arrows) by considering object structure.

object structure (or the preference degrees) is usually unattainable.
To better utilize the underlying object structure in a preference fea-
ture space, this work introduces a divide-and-train listwise LTR
method. In the dividing step, a rank-preserving clustering (RPC)
approach is performed to divide the objects in all training instances
into different clusters with orders. The objects in each obtained
cluster are assumed to contain the same preference degree. An
ordinal regression algorithm is used to train an ordinal regression
function based on the ordered clusters. In the training step, a multi-
task listwise LTR approach is performed to train multiple linear
ranking functions for all clusters simultaneously. The obtained
ranking model consists of an ordinal regression function and mul-
tiple linear ranking functions. Our work is also inspired by recent
studies on local linear SVM [26] which utilizes a set of local linear
SVM models to replace a nonlinear SVM achieved by the kernel
trick. The proposed method offers several advantages:

(1) The object structure in the preference feature space is
explored. In the dividing step, all the involved objects are
partitioned into clusters in which the ranks among objects
are preserved.

(2)  The learned ranking model can be nonlinear. The learned
model consists of a global ordinal regression function and
multiple local linear ranking functions, which is not neces-
sarily linear.

(3)  The learned ranking model can predict both the absolute
preference degrees of input objects and the full ranked lists
of the objects.

The rest paper is organized as follows. Section 2 introduces the
proposed method. Section 3 introduces our experimental evalua-
tions. Section 4 concludes the work.

2 THE PROPOSED METHOD

The notations used in this paper are firstly introduced. Let X be the
input space whose instances are sets of objects which are described
by preference features, and Y be the output space whose elements
are orderings of objects in an instance. A training instance =" is rep-
resented by (mgi), . 7;vg"7-)
2", and an ordering label y) € Y on z() is represented by

(ygi), RN Ui? ), where yy) is the rank assigned to the object 151) There

), where ni denotes the number of objects in

is no relevance score for z(*) in the training set. Additionally, another
space is included, namely, the preference feature space whose ele-
ments are objects described by preference features. In existing list-
wise LTR work, the preference feature space is not referred.

The proposed method first divides all the objects into clusters
corresponding to underlying preference degrees, and then trains
an ordinal regression function among the clusters and a linear
ranking function for each cluster. The overview of our method is
illustrated in Fig. 2. The two key components are RPC and multi-
task listwise LTR. The ranking for new input instances with the
learned ordinal regression function and multiple linear ranking
functions is shown in Fig. 3. The learned ordinal regression func-
tion divides all the objects in a test instance into different degrees.
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Fig. 2. An overview of the proposed learning method.

The objects in each degree are then ranked by using the corre-
sponding linear ranking function for that degree. The following
sections introduce RPC and multi-task listwise LTR.

2.1 BRank-Preserving Clustering

In conventional clustering, the achieved clusters reflect the inher-
ent structure of data and no order exists. In RPC, the obtained clus-
ters are considered to be associated with preference degrees and
thus order exists. RPC aims to partition the objects in all training
instances into different parts, and the rank relationships among
objects in each instance are preserved. Existing algorithms cannot
be directly used. Therefore, a two-stage approach is proposed.
First, to better utilize the ranking information, metric learning is
used to learn a new metric. Second, a heuristic clustering algorithm
is proposed based on localsearch [12].

2.1.1  Metric Learning Based on Ranking Lists

Different from conventional clustering, RPC has ranks among
objects in an instance. Rank information can be used to aid clus-
tering. In this work, metric learning is adopted to utilize rank
information. In metric learning, the distance metric is in the fol-
lowing form:

i (o.a) = )~V MG o)

where M is required to be a positive semi-definite matrix. When M
is restricted to be diagonal, this corresponds to learning a metric in
which the different dimensions are assigned different weights.
Current metric learning for clustering usually applies additional
constraints to construct two data sets, namely, similar set S, and
dissimilar set D [13], [16], [17]. No obvious constraints are pro-
vided in RPC. Therefore, certain constraints should be established
based on the rank information among objects.

Intuitively, a small position gap between two objects in an
instance indicates a high possibility that the objects belong to the
same cluster. Two sets S, and D, are constructed accordingly
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Fig. 3. The proposed ranking procedure.
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where k| and «, are two thresholds. With the two sets, the optimi-
zation problem defined in [13] is constructed

3

The above optimization problem is convex and can be solved
using gradient descent and iterative projections.

2.1.2  Clustering Based on Localsearch

RPC aims at obtaining K clusters and a low cluster index indicates
the objects are ranked high in the cluster. Let C be clusters and
I' = {u;.}, where p; is the center of the kth cluster. Based on k-
means, we first define

Qu(C,T) =

O Y )

7(1)61( ) rﬁ.z)eck

To preserve ranks among objects in each instance, a new optimi-
zation problem can be constructed:

arg I?in Qu(CT)
st M) < 1af) ) (5)

i=1 7...7N;j:1,....n(’:)—17

where I(-) represents the cluster index of an object and the notation
[i;j] is the index of the object in the jth rank, i.e., yg)]] = j. The con-
straints in (5) are used to preserve the ranks of objects in all the
training instances. Using (5), the obtained clusters correspond to
preference degrees, and the objects in a cluster with a lower index
(i.e., a higher preference degree) have higher rankings than those
in a cluster with a higher index.

Solving (5) directly is difficult. Instead, a heuristic method is
used based on the localsearch clustering algorithm. Localsearch
is an application of a local-search heuristics [12] to the correla-
tion clustering problem. An initial clustering is given. It then
goes through all the objects, and considers each object for
placement in a different cluster (maybe a new singleton cluster
with the considered object). If one placement can obtain a nega-
tive moving cost, then the object is placed in the cluster that
yields the minimum moving cost. In our work, localsearch is
modified to preserve the rankings for each instance.

An initial clustering is given first. It then goes through all the
instances, and considers in each instance the objects whose adja-
cent object belongs to a different cluster index. These objects in an
instance consist of the candidate set for the instance. Informally,
the candidate set of an instance (") is defined as follows:

0 = el itel) #1afl) o Tl £ 1ol

l= 17...,|x(i)|}.

The costs of placing the objects in Cs) into the cluster, which
the objects” adjacent belongs to, are calculated. If one placement
can achieve moving the minimum negative cost, the object is
placed in the cluster that yields the minimum moving cost. This
algorithm is called pLocalsearch for simplicity.

An illustrated example is used to demonstrate how the place-
ment and costs are operated in an iteration of pLocalsearch.
Assuming that an instance z) and the cluster indexes of all the
objects in () are as follows:

(6)
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W =(1,1,2,2,2,2,3,3).
Then Csl) = {le xfj)g],x?’) } The costs of placing each
object in Cs into a dlfferent cluster are calculated. Take the object

"Eir)2] as an example. The current cluster index of this object is 1. The

cost of placing this object into cluster 2’ is calculated. The placing
costs for the rest objects are calculated and the object with the mini-
mum cost is selected. Let k; and k; indicate two clusters. The plac-
ing cost is defined as follows:

n(k: 3
COSt\j(I Jky — k‘z) = %di (IEZ;Z]JL@)
®
__nlk) 2 (@ ).
) — 1 e

After one iteration is performed, a new clustering is obtained.
Assuming that for z() in an iteration, an object in 2" (1i )) is placed
from cluster k; to k,. We obtain

.Q\[(C F ) — Q]\[(C F) = (’OSt‘u( kl — kQ) 7 (9)
which indicates that in each placement, the value of the objective
function in (5) decreases.

In the above pLocalsearch iterations, the ranks of all the objects
are preserved. As shown in Fig. 2, when all the objects are parti-
tioned into clusters with orders, an ordinal regression method is
used to train an ordinal regression function. This step appears to
be a learning approach from listwise to pointwise.

2.2 Multi-Task Listwise LTR

When all the objects are divided into clusters, new training subsets
can be constructed based on the original training instances and
clusters. The new training subsets are used to learn linear ranking
functions for all the clusters. Considering that the learning tasks
for a ranking function for each training subset are similar and cor-
related, an MTL strategy is used to achieve all the functions. Learn-
ing multiple related tasks simultaneously has been shown to
significantly improve the performance relative to learning inde-
pendently [10].

MTL has two major technical lines. Considering that the
number of clusters in our work is not large, the mean regulari-
zation-based strategy proposed by Evgeniou and Pontil [10] is
adopted. Let W = {wy,...,wg}, where wy represents the linear
ranking function of the kth cluster. The optimization function
for W is

K_ |Gl
min W (W) = min Z Z
w W =

(10)
1(6)| /) L2
—log P(y" |z 7wk‘)+)\”wk_?l§:1wl”27

where —log(P(y/?]2’) w;) is the likelihood loss calculated by the
Packett-Luce model [2], and A is a trade-off parameter. The regular-
ization term of (10) penalizes the functions that are significantly
different from other functions. The solution of (10) is obtained by
iteratively operating

0 _LN~0
w :}sz

K _ |G|
Wit = (ugmmZZ—logP YD’ D wy) + N wy —
W k=i

O
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Fig. 4. Results on MQ2007-list data.

To minimize (11), stochastic gradient descend (SGD) can be
used for each function parameter w;.. The objective value of (10) is
decreased at each iteration of (11). The proof is omitted due to lack
of space.

2.3 Algorithmic Steps

The previous sections introduce the key components of the pro-
posed method. The proposed method integrates RPC and multi-
task listwise LTR, and is thus called RPC-MTL for brevity. In
summary, RPC-MTL seeks an ordinal regression function f,4
and a set of multiple linear ranking functions (parameterized by
W) corresponding to K clusters. The algorithmic steps are pre-
sented in Algorithm 1. When K equals 1, RPC-MTL is reduced
to the listwise LTR algorithm ListMLE because there is only
one cluster.

Algorithm 1. RPC-MTL

Input: {z@ 4D} i=1, ..., N, WO K t=1,and MaxT
Output: An ordinal regression function f,q, and W
Initial: All the objects in each instance are placed into K clusters
according to their positions.
Steps:

1. Learn a new metric matrix M by optimizing (3).

2. Perform pLocalsearch to cluster all the objects:

While (t < MaxT or ~convergence)

2.1 Construct the candidate set Cs”) based on (6).

2.2 Search the object in Cs!”) which has the minimum
and negative moving cost for each instance. If the
minimum moving costs for all instances are non-
negative, break.

2.3 Place the object searched in Step 2.2 for each
instance into its adjacent cluster; t = ¢ + 1.

3. Learn an ordinal regression function f,; based on the
obtained clusters (The relevance score for the training

object zgi) is set as K—I(:v;.“)).
4.  Learn multiple linear ranking functions (W) by itera-
tively performing the two steps in (11) using the train-

ing subsets on the obtained clusters.

2.4 Computational Complexity

The computational complexity of the solving of (3) in metric learn-
ing is O(n2) [13], where n, is the feature dimension of the training
objects. Let 1 be the number of all involved objects. The computa-
tional complexity of localsearch is O(n?) + O(C?n) [12], where O
(%) is for the calculation of the pairwise distances for all involved
objects. Nevertheless, the computational complexity of pLocal-
search is significantly lower than that of localsearch because it only
calculates the pairwise distances for all the adjacent objects. The
complexity of pLocalsearch is O[(C? + 1)n]. Assume that the aver-
age number of iterations for the solving of (11) is 71 and the aver-
age number of SGD iterations in each iteration is T,, the

Fig. 5. Comparisons with/without metric/multi-task learning on MQ2007-list.

computational complexity of the multi-task listwise LTR is approx-
imate O(C = T} = T * n x n,g). The total computational complexity is
approximate O[n? + (C? + 1)n + C * Ty * Tb * n * ny).

3 EXPERIMENTS

Because our study focuses on the standard setting of listwise LTR
in which relevance labels are unavailable during training, this sec-
tion compares the proposed method RPC-MTL against two classi-
cal linear LTR algorithms including ListMLE and ListNet. Three
data sets are used. The first two are the MQ2007-list and MQ2008-
list data sets used in various listwise LTR studies. The third is a
data set for ranking the visual quality of images.

In all the experiments, the parameters of our proposed method
are set as follows. In metric learning, «; should be small and «»
should be large. They are heuristically set to 2 and 5, respectively.
In RPC, the range K is determined according to the average objects
in the instances in each experimental data set; the value of MaxT is
set to 1,000. In multi-task listwise learning, the value of X is
searched in [0.001, 0.01, 0.1, 1, 2] based on validation data. For
MQ2007-list and MQ2008-list, the five-fold settings compiled by
LETOR package [5] are adopted. Finally, the normalized dis-
counted cumulative gain (NDCG) [4] is calculated. When this
metric has higher values, improved results are achieved.

3.1 Results on MQ2007-list and MQ2008-listData

Both MQ2007-list and MQ2008-list are also provided by the LETOR
package [6]. These two data sets are compiled based on Gov2 Web
page collection and two query sets from Million Query track of
TREC 2007 and TREC 2008. There are about 1,700 queries in
MQ2007-list with ranked documents and about 800 queries in
MQ2008-list with ranked documents. There are 46-dimensional
features for each query-document pair. The five-fold cross valida-
tion strategy is adopted and the five-fold partition setting in
LETOR is followed. In each fold, there are three subsets for learn-
ing: training, validation and testing. On both data sets, the rele-
vance scores are not provided. Therefore, to calculate NDCG, the
normalized ranks are used as the relevance scores which are
defined as follows. For the instance z(?, the relevance score of
the document in x”, whose rank is k, is defined as (|z@|—k)/
(Jz'7| — 1). The scores are only used for NDCG calculation.

Figs. 4 and 5 are the results on MQ2007-list data. Figs. 6 and 7
are the results on MQ2008-list data. In both Figs. 4 and 6, to com-
pare RPC-MTL with ListMLE and ListNet more comprehensively,
the value of K in RPC is set to 3 and 5. Two concrete methods are
then obtained, namely, RPC-MTL;3; and RPC-MTLs. The values of
NDCG@n (n =1, 2,...,10) are displayed. By conducting the t-test,
both RPC-MTL; and RPC-MTLs5 outperform ListMLE and ListNet
(p-value < 0.01) significantly. To evaluate whether the introduced
metric learning and multi-task learning are useful and to test the
robustness of RPC-MTL in terms of K, we compare the values of
NDCG®@1 and 5 under different K values when RPC-MTL uses or
does not use the metric learning/multi-task learning introduced in
Section 2.1. When K increases, the performance of RPC-MTL
increases and becomes stable when K > 4. The partial reasons lies
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in that more piecewise-linear functions may construct more com-
plex nonlinear functions. According the experimental results, K
can be set to 6 in real applications. When the learned metric is
used, RPC-MTL can obtain higher NDCG values according to both
Figs. 5 and 7 (p-value < 0.05). When K is larger than 5, RPC-MTL
outperforms RPC-MTL without multi-task learning significantly
(p-value < 0.01). Both metric learning and multi-task learning do
improve the learning performance.

3.2 Results on Image Visual Quality Ranking

Automated evaluation of the visual quality of photos can facilitate
next-generation image retrieval [7]. In Web image search, for exam-
ple, the visual quality of an image can be incorporated into ranking
so that the most relevant and best looking photos can be returned.
Existing studies focus on the construction of a model to score or
classify the visual quality of images. The current study considers
the construction of a visual quality ranking model that can be
directly used in Web image search.

The third dataset was compiled by Datta et al. [7] based on pub-
lic data from photo.net. This dataset consists of 3,581 photos, with
each photo described by 58 features and associated with an average
visual quality score rated by photo.net users. The average visual
quality score ranges in [3, 7], and a higher score indicates higher
visual quality. Based on the photos and average scores, a new
image visual quality ranking data set is compiled as follow: every
15 photos take turns being selected from all the 3,581 photos to
form an instance, and the average scores for each of the 15 photos
are used to obtain the photo ranking label for the 15 photos. In
total, 238 instances are obtained, with each instance containing 15
photos and an ordering label. The 238 instances are divided into 5
folds. In each experimental run, two folds take turns being selected
as the test and validation sets, and the rest are used for training.
The experimental run is repeated 20 times and the average results
are recorded.

The values of NDCG@n (n = 1,2,...,10) of the competing algo-
rithms are displayed in Fig. 8. With the help of t-test, in terms of
NDCG, RPC-MTL; achieves significantly better results than
ListMLE and ListNet (p-value < 0.01). RPC-MTLs5 outperforms
ListMLE and ListNet when n < 4 (p-value < 0.01), and achieves
comparable results when n> 4. The comparison between RPC-
MTLs with and without using metric/multi-task learning is also
similar to the observations of the experiments on the former two
data sets. The corresponding figure results are omitted.
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Fig. 7. Comparisons with/without metric/multi-task learning on MQ2008-list.
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3.3 Discussion

The experimental results indicate that RPC-MTL outperforms
ListMLE and ListNet. The main reason is that RPC-MTL utilizes
more useful information that is usually ignored in existing algo-
rithms. Compared with existing algorithms, there are two addi-
tional components in RPC-MTL: metric learning and object
partition based on RPC. The metric learning explores the full rank-
ing information in the training instances to assign distinct weights
to different raw features, whereas existing algorithms such as
ListMLE and ListNet take all the raw features equally. RPC
explores the intrinsic structural information for objects in all train-
ing instances, whereas existing algorithms do not consider the rela-
tionships among objects in different training instances. In addition,
ListMLE is a special case of RPC-MTL when K is set to 1, which
guarantees that RPC-MTL should not be inferior to ListMLE. In
many real applications, it is difficult to obtain full-ordering
ground-truth labels. The proposed method can also be easily to be
extended for top-k listwise ranking applications.

4 CONCLUSION

This study has proposed a divide-and-train listwise LTR method
RPC-MTL. The new method employs an RPC algorithm to divide
involved objects into clusters. Each cluster in the preference feature
space is assumed to correspond to a preference degree. Metric
learning is used to pursue new metrics in order to improve RPC. A
multi-task listwise LTR procedure is used to train linear ranking
functions for each cluster. The learned ranking model then consists
of an ordinal regression function and multiple linear ranking func-
tions, which are combined to achieve orders for objects in a test
instance. Experimental results indicate the effectiveness of the pro-
posed method.
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