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Learning With Auxiliary Less-Noisy Labels
Yunyan Duan and Ou Wu

Abstract— Obtaining a sufficient number of accurate labels to form a
training set for learning a classifier can be difficult due to the limited
access to reliable label resources. Instead, in real-world applications,
less-accurate labels, such as labels from nonexpert labelers, are often
used. However, learning with less-accurate labels can lead to serious per-
formance deterioration because of the high noise rate. Although several
learning methods (e.g., noise-tolerant classifiers) have been advanced to
increase classification performance in the presence of label noise, only a
few of them take the noise rate into account and utilize both noisy but
easily accessible labels and less-noisy labels, a small amount of which
can be obtained with an acceptable added time cost and expense. In this
brief, we propose a learning method, in which not only noisy labels but
also auxiliary less-noisy labels, which are available in a small portion of
the training data, are taken into account. Based on a flipping probability
noise model and a logistic regression classifier, this method estimates
the noise rate parameters, infers ground-truth labels, and learns the
classifier simultaneously in a maximum likelihood manner. The proposed
method yields three learning algorithms, which correspond to three
prior knowledge states regarding the less-noisy labels. The experiments
show that the proposed method is tolerant to label noise, and outper-
forms classifiers that do not explicitly consider the auxiliary less-noisy
labels.

Index Terms— Maximum likelihood approach, noisy degrees,
noisy labels, soft constraints.

I. INTRODUCTION

One of the most common assumptions in traditional classification
algorithms is that observed labels reflect true classes; otherwise the
performance of the classifier can be affected and the complexity of
the model is increased [1]. However, this assumption is not met
in real-world situations, where the involvement of human labelers
naturally introduces label noise, which is often due to the influence of
perceptual errors, subjective points of view, and uncertainty resulting
from insufficient evidence [2].

To address this issue, noise-tolerant learning algorithms have been
introduced in the last decade, which make use of noisy labels
with little or no degradation in the performance of classification
algorithms [3]–[5]. Typically, in these algorithms, label noise is
modeled by a probabilistic model called flipping probability, in which
the observed label of a sample is assumed to be flipped from a true
label. A likelihood function or a loss function is then defined based
on the flipping probability. The resulting parameter estimations are
no longer biased by label noise, and the subsequent classification
performance is improved.

In this brief, we propose a learning algorithm as an extension
of these noise-tolerant approaches. Similar to these methods, we
use flipping probability to model label noise; however, our method
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differs in that, in addition to abundant noisy labels, it also includes
auxiliary less-noisy labels for some of the training data. Our work is
inspired by recent developments in crowdsourcing learning [6], [7].
In crowdsourcing learning settings, a vast number of noisy labels
are provided by a large number of nonexpert labelers. Nowadays,
these labels are easy to acquire through network platforms, and they
are collected and utilized to infer a not only consentaneous label
but also a true one. Despite the results achieved, model performance
shows significant improvements when accurate labels are available
in even a small part of the training samples [8], [9]. Likewise,
in noise-tolerant learning, an expert can also be invited to provide
labels for a small part of the training data, within the acceptable
time and expense constraints. These auxiliary expert-generated labels
need not be perfectly accurate as assumed in previous studies; more
realistically and reasonably, they are instead assumed to be less noisy
than labels generated by the nonexperts (or, the crowds).

The consideration of these less-noisy labels is also driven by real-
world applications, for example, the work of radiologists, which
involves determining (i.e., labeling) whether a suspicious region in a
medical image is cancerous. Although accurate (noiseless) labels can
be obtained through tissue biopsy, this is an expensive and dangerous
procedure. As an alternative, radiologists provide labels that are their
professional estimates and that are not guaranteed to be noiseless.
In practice, the expense of consulting radiologists varies and posi-
tively correlates with the expertise level of the individual. A dilemma
thus appears when considering budget and resource limitations: junior
radiologists require less remuneration but the labels they provide can
be noisy, while senior radiologists provide high-quality labels but at
a higher cost. The current line of research contributes to resolving
this dilemma.

Taking both noisy and less-noisy labels into consideration, the
proposed method uses flipping probability to model the noise for
both kinds of labels, and then trains classifiers using a maximum-
likelihood estimation approach. Specifically, the necessary parame-
ters, including flipping probabilities and coefficients of a logistic
regression classifier, are estimated by maximizing the likelihood
based on observations. Depending on the extent to which the noise
rate of the less-noisy labels is known, which we henceforth call prior
knowledge, three cases of the learning process are individually con-
sidered and discussed. The three cases are analyzed in a progressive
manner, with each case featuring looser constraints on the noise rate
of less-noisy labels: in the first case, the accurate value of the noise
rate is available; in the second case, a range of the noise rate is
available; and in the third case, neither the accurate value nor a
range is available. For each case, an expectation–maximization (EM)
algorithm [10] is used to infer the classifier.

Our main contributions can be summarized as follows.

1) To the best of our knowledge, this is the first time that both
noisy and less-noisy labels have been combined to develop a
label noise-tolerant classifier, without requiring that less-noisy
labels are perfectly accurate. Three basic cases concerning the
prior information for the noise rates of less-noisy labels are
considered.

2) Experiments on both synthetic and benchmark data sets show
that our method is robust even in the presence of a noise rate
that is high and asymmetric between classes.
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The rest of this brief begins with a discussion of the related
work in Section II. The proposed method is then presented in
Section III, with the results of empirical studies reported and evalu-
ated in Section IV. This brief ends with a discussion and conclusion
in Section V.

II. RELATED WORK

A. Learning With Noisy Labels

Label noise is a complex phenomenon. To narrow down its
scope, we focus on noise that originates from a stochastic process
where erroneous labels are sample-independent. Noise induced by
systematic errors or anomalous outliers is beyond the scope of this
brief, though it poses important questions as well [11].

In classification tasks, approaches dealing with label noise can be
roughly categorized into three main veins [1]. Some methods are
label noise robust, i.e., their performances are not affected by the
presence of label noise. Algorithms based on the 0–1 loss function
are naturally noise resistant, and strategies that prevent algorithms
from overfitting (e.g., regularization) also eliminate the influence of
noise [12]. Widely used classifiers, however, are usually not label
noise resistant in nature, for instance, support vector machines and
AdaBoost [1].

Another approach to dealing with label noise is data cleansing.
By detecting samples whose labels are suspected to be corrupt, these
samples can be removed [12], reclassified [13], or addressed in a
way combining both solutions before data are fed into the training
phase [14], [15]. As this approach aims to improve the quality of the
training data and has little to do with the complexity of the training
algorithms, it can be directly embedded into the classification model.
It is possible, however, that some methods may remove too many
samples, resulting in a reduction of the model’s power [16].

The third approach is modeling the label noise of training data
in order to develop noise-tolerant classifiers. These methods usually
consist of two components: a noise model and a classification model.
Both models play a role in the training phase, with only the classi-
fication model being applied in the test phase. Probabilistic models
likewise are prevalent in noise modeling. Lawrence and Schölkopf [4]
proposed a probabilistic model of a kernel Fisher discriminant using
the EM algorithm to update the probability of samples incorrectly
labeled. This work further inspired many methods, extending the
original method by combining different classifiers and by applying
the method in different fields [3], [5], [17]–[19].

Apart from the above approaches, neurofuzzy classifiers [20], [21]
are generally used to handle noisy training data (including label
noise) due to the advantages offered by adopting fuzzy theory. This
approach is fundamentally different from the line followed in our
work, however, since neurofuzzy classifiers do not explicitly model
the distributions of noisy labels.

B. Learning With Crowd-Generated Labels

With the advent of online annotation networks, crowdsourcing and
the analysis of crowdsourcing data have appeared in recent years [7],
[8], [22], [23]. Raykar et al. [7] presented a model for inferring true
labels from labels provided by multiple annotators. They assumed that
an observed label depends on both the true label and the reliability
of the annotator. They set true labels as a latent variable and used
flipping probability to model the annotator’s reliability, a technique
that was similar to the noise model proposed in [4]. An extension
of this work was presented in [8]. In addition to noisy labels from
crowdsourcing, they added partial labels from an expert. However,
this expert had to be exactly correct, which may be infeasible due

to the low accessibility of true labels in real situations. Our method,
instead, does not require that the expert labels are exactly accurate.

III. PROPOSED METHOD

In the method described here, the training data consists of
two parts. The first part contains p independent samples with both
noisy and less-noisy labels, Dp = {xi , yLi , ȳi }p

i=1, where xi denotes
the d-D feature vector of a sample, ȳi ∈ {0, 1} denotes a noisy label
of the sample, and yLi ∈ {0, 1} denotes a less-noisy label of the
same sample (the subscript L indicates less noisy). The second part
of the training data contains f independent samples with only noisy
labels, D f = {x j , ȳ j } f

j=1. As less-noisy labels are available only in a
small portion of the data in real situations, p is usually much smaller
than f.

Given the training data D = Dp ∪ D f , the current method aims
to learn a classifier that can be used to classify testing data. Flipping
probabilities are adopted to model the relationship between true labels
and noisy labels (including less-noisy labels). The parameters of
the flipping probability model and the classifier are then estimated
through a maximum likelihood approach. Furthermore, using the EM
optimization procedure, the process of parameter inference for the
model is presented for three different cases, depending on the prior
knowledge of the noise rates of the auxiliary less-noisy labels. Our
method is referred to as learning with less-noisy data (LLND) for
simplicity. First, flipping probability is defined.

A. Flipping Probability

Similar to [4], we introduce a latent variable to represent the
ground-truth label and assume that noise is generated by a coin-
flipping process. That is, the observable label (either a less-noisy
label yLi or a noisy label ȳi ) of any sample xi is generated from
the true label ( ŷi ) through a probabilistic mechanism, and is the
same as the true label with some probability pr while flipping to
the other side with probability 1 − pr . Here the flipping probability
is assumed to be independent of the sample, i.e., for any sample in
the training data, the corresponding probabilities remain the same.
Flipping probabilities are defined as follows:

αL := p(yLi = 1|ŷi = 1) (1)

βL := p(yLi = 0|ŷi = 0) (2)

ᾱ := p( ȳi = 1|ŷi = 1) (3)

β̄ := p( ȳi = 0|ŷi = 0). (4)

As label yL is assumed to be less noisy than label ȳ, we have
αL > ᾱ and βL > β̄ .

B. Maximum Likelihood Approach

The parameter set � = {w, ᾱ, β̄, αL , βL } is the set of all
parameters that need to be estimated with this approach, where w
is a d-D classifier coefficient (corresponding to the feature vec-
tor x), and the other four parameters are flipping probabilities as
defined in (1)–(4). Generally, the estimation of the optimal parameter
set �̂ML uses a maximum likelihood approach that can be represented
as follows:

�̂ML = {ŵ,̂ᾱ,̂β̄, α̂L , β̂L } = arg max
�

{ln[p(D|�)]}. (5)

The classifier used in this brief is assumed to be a logistic
regression classifier, in which w is the coefficient

p( ŷ = 1|x, w) = 1

1 + e−wT x
= σ(wT x). (6)
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Fig. 1. Graphical representation of observation, ground-truth labels, and the
involved parameters. (a) Case 1. (b) Case 2. (c) Case 3.

To estimate �̂ML through a maximum likelihood approach, the
likelihood p(D|�) is calculated as follows:

p(D|�) =
p

∏

i=1

p(xi , ȳi , yLi |�)

f
∏

j=1

p(x j , ȳ j |�)

=
p

∏

i=1

p( ȳi , yLi |xi ,�)p(xi )

f
∏

j=1

p( ȳ j |x j , w, ᾱ, β̄)p(x j )

∝
p

∏

i=1

p( ȳi , yLi |xi ,�)

f
∏

j=1

p( ȳ j |x j , w, ᾱ, β̄)

=
p

∏

i=1

∑

ŷi∈{0,1}
p( ȳi , yLi |ŷi , αL , βL , ᾱ, β̄)p( ŷi |xi , w)

·
f

∏

j=1

∑

ŷ j∈{0,1}
p( ȳ j |ŷ j , ᾱ, β̄)p( ŷ j |x j , w)

=
p

∏

i=1

∑

ŷi∈{0,1}
p( ȳi |ŷi , ᾱ, β̄)p(yLi |ŷi , αL , βL )p( ŷi |xi , w)

·
f

∏

j=1

∑

ŷ j∈{0,1}
p( ȳ j |ŷ j , ᾱ, β̄)p( ŷ j |x j , w). (7)

Indeed, the definition of (7) does not consider the basic premise in
this brief that the label yL , which is provided by an invited expert, is
less noisy than the label ȳ. Moreover, in practice, we do have some
further prior knowledge about the noise rates (i.e., αL , βL ) of less-
noisy labels, rather than being completely agnostic. The reason is that
the less-noisy labels are given by an expert with background knowl-
edge (e.g., a professional degree and labeling experience); interaction
with this expert can thus provide valuable prior knowledge about the
noise rates. Three basic cases are examined and abstracted for the
prior knowledge of the noise rates of less-noisy labels. In the first
case (Case 1), the exact values of αL and βL are known; in the second
case (Case 2), the lower bounds of αL and βL are known, which are
referred to as α0 and β0; and in the third case (Case 3), we only know
that less-noisy labels maintain better consistency with true labels than
with noisy labels, and thus αL and βL are larger than ᾱ and β̄.

In all the three cases, prior knowledge can be expressed as a set of
mathematical constraints. The next section presents the optimization
of (5) under the three cases using EM.

C. EM-Based Optimization

The graphical representations of observation D, true labels ( ŷi ),
and the corresponding parameters (i.e., classifier coefficient and
flipping probabilities) under the three cases are shown in Fig. 1.

Based on Fig. 1 and the EM procedure, we obtain a concrete learning
algorithm for each case respectively, namely, LLND-1, LLND-2, and
LLND-3.

Case 1: In this case, αL and βL are given. A special setting of
this case is when αL = βL = 1. In other words, less-noisy labels
are actually true labels. This special setting has been investigated in
crowdsourcing learning [8]. In the present model, a more general
setting is considered as αL and βL are not necessarily equal to 1.

Based on (7) and Fig. 1(a), we obtain

ln p(D|�) =
p

∑

i=1

{ ŷi ln m̄i mLi Pi + (1 − ŷi ) ln n̄i nLi (1 − Pi )}

+
f

∑

j=1

{ ŷ j ln m̄ j Pj +(1 − ŷ j ) ln n̄ j (1 − Pj )} (8)

where

Pi = σ(wT xi ) (9)

m̄i := p( ȳi |ŷi = 1, ᾱ) (10)

n̄i := p( ȳi |ŷi = 0, β̄) (11)

mLi := p(yLi |ŷi = 1, αL ) (12)

nLi := p(yLi |ŷi = 0, βL ). (13)

Since the log-likelihood function contains the latent variable ŷ,
we use the EM algorithm to estimate the parameters.

E-Step: In this process, we calculate the expectation of the log-
likelihood [see (8)] of the observed data with respect to the ground-
truth labels ŷ, the observed data D, and the parameters obtained from
the previous operation �′ (={w′, ᾱ′, β̄′, α′

L , β′
L })

E{ln p(D|�)|�′}

=
p

∑

i=1

{μi ln[m̄i mLi Pi ] + (1 − μi ) ln[n̄i nLi (1 − Pi )]}

+
f

∑

j=1

{μ j ln[m̄ j Pj ]+(1 − μ j ) ln[n̄ j (1 − Pj )]} (14)

where μi = p( ŷi = 1|xi , yLi , ȳi , �′), μ j = p( ŷ j = 1|x j , ȳ j , �′).
Based on Bayes’s theorem

μi = m̄′
i m′

Li P ′
i

m̄′
i m′

Li P ′
i + n̄′

i n
′
Li

(

1 − P ′
i

) (15)

μ j =
m̄′

j P ′
j

m̄′
j P ′

j + n̄′
j

(

1 − P ′
j

) (16)

where m̄′
i , m′

Li , P ′
i , n̄′

i , n̄′
i , n′

Li , m̄′
j , P ′

j , and n̄′
j are calculated by

using (9)–(13) based on �′.
M-Step: Based on the current estimated μ and the observation D,

the model parameters ᾱ, β̄, and w are updated by maximizing the
conditional expectation. By setting the gradient of (14) equal to zero,
the following estimates are obtained:

ᾱ =
∑p

i=1 μi ȳi + ∑ f
j=1 μ j ȳ j

∑p
i=1 μi + ∑ f

j=1 μ j

(17)

β̄ =
∑p

i=1 (1 − μi )(1 − ȳi ) + ∑ f
j=1 (1 − μ j )(1 − ȳ j )

∑p
i=1 (1 − μi ) + ∑ f

j=1 (1 − μ j )
. (18)

We do not have a closed-form solution for w due to the nonlinearity
of the sigmoid function, which necessitates the use of gradient ascent-
based optimization methods. We use the Newton–Raphson method to
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Algorithm 1 Steps of LLND-1

Input: D, αL , βL , the initial values of w, ᾱ, β̄

Output: w, ᾱ, β̄
Steps:
1. Initialize μi = yLi and μ j = ȳ j ;
2. Given μi and μ j , estimate the flipping probabilities ᾱ and

β̄ according to Eqs. (17) and (18) and the logistic regression
coefficient w according to the iteratively performing Eq. (19) till
converge.

3. Given the flipping probabilities and logistic regression
coefficient, update μi and μ j using Eqs. (15) and (16).

4. Iterate 2 and 3 till converge.

estimate w as demonstrated in the following iterations:
w(t+1) = w(t) − ηH−1g

g(w) =
[

p
∑

i=1
[μi − σ(wT xi )]xi ,

f
∑

j=1
[μ j − λ(wT x j )]x j

]T

H(w) = −

⎡

⎢

⎢

⎢

⎣

p
∑

i=1
[σ(wT xi )][1 − σ(wT xi )]xi xT

i

f
∑

j=1
[σ(wT x j )][1 − σ(wT x j )]x j xT

j

⎤

⎥

⎥

⎥

⎦

. (19)

The two steps (the E- and the M-steps) are iterated until
convergence. The log-likelihood increases monotonically after every
iteration, which implies convergence to a local maximum. To sum-
marize, the steps of LLND-1 for Case 1 are shown in Algorithm 1.

Case 2: In this case, accurate values of αL and βL are unavailable;
instead, we know their lower bounds α0 and β0 [see Fig. 1(b) for
the graphical representation]. The optimization problem using the
maximum likelihood approach then becomes

�̂ML = arg max
�

{ln[p(D|�)]}
s.t. αL ≥ α0, βL ≥ β0. (20)

This equation can be rewritten in the following form:
�̂ML = arg max

�
ln{p(D|�)p(αL |α0)p(βL |β0)} (21)

where

p(αL |α0) =
⎧

⎨

⎩

1

1 − α0
αL ∈ [α0, 1]

0 otherwise
(22)

and

p(βL |β0) =
⎧

⎨

⎩

1

1 − β0
βL ∈ [β0, 1]

0 otherwise.
(23)

As both (22) and (23) are not differentiable, new definitions for
the relevant variables should be introduced. By considering αL as an
example, we define

pη(αL |α0) = 1

ℵ(η, α0)
fη(αL) = 1

ℵ(η, α0)

(

1

1 + e(−η(αL−α0))

)

where ℵ(η, α0) is a normalized factor to ensure that the integral
of pη(αL |α0) equals 1 and η (>= 0) is a factor that reflects the
confidence of the prior. When η = 0, the confidence of the prior is
quite low and the constraint in (20) is invalid, while when η = +∞,
pη(αL |α0) approaches (22). The new definition for βL follows a
similar formulation as αL . The steps of LLND-2 are presented in the
online appendix of this brief.

Fig. 2. Comparison of the projection directions learned by LLND and
rLR on synthetic data. The mislabeled points are highlighted by green
circles. The three label noise types are (a) symmetric low, (b) asymmetric,
and (c) symmetric high.

Case 3: In this case, we only know that the less-noisy labels are
less noisy than average-quality labels, i.e., αL > ᾱ and βL > β̄.
Fig. 1(c) illustrates the graphical representation for this case.

The modeling of this constraint on the noise rates can be directly
deduced from Case 2 by merely replacing α0 and β0 with ᾱ and β̄,
respectively. The model estimation and the training procedure follow
the maximum-likelihood estimation and EM algorithm. The learning
algorithm (LLND-3) for this case is thus similar to LLND-2 with
slight modifications.

IV. EXPERIMENTS AND ANALYSES

We evaluated the proposed LLND algorithm quantitatively on one
synthetic data set and three UCI benchmark data sets. Following [5],
we artificially added three types of random noise on ground-truth
labels to generate the corresponding noisy labels:

1) low symmetric noise, i.e., flipping the labels of 20% of ran-
domly chosen points, which corresponds to ᾱ = β̄ = 0.8;

2) asymmetric noise, i.e., flipping the labels of randomly chosen
points with different noise rates for different classes, where
ᾱ = 0.7, β̄ = 0.9;

3) high noise, i.e., flipping the class labels of 40% of randomly
chosen points, with ᾱ = β̄ = 0.6.

As for the auxiliary less-noisy labels, we set αL = βL = 0.95. The
value of η was set to 50.

As learning with auxiliary less-noisy labels has not been explored
in the previous literature, we compared the proposed approach
LLND with the classical learning-with-noisy-labels method, robust
logistic regression (rLR) [3], [17]. Both models were trained on the
mixed training data (Dp ∪ D f ). In the experiments, the updated
version of rLR [3] was used which requires the exact values of the
flipping probabilities (on the mixed data set Dp ∪ D f ) as input.
In addition, other standard logistic regression classifiers that were
trained with three different types of labels were also implemented.
The respective labels in the training set consisted of: 1) average-
quality noisy labels (Avg); 2) less-noisy labels, which were available
in a small portion of the data (Lsn); and 3) true labels (Tru),
which were included to train a logistic regression classifier with
the highest accuracy possible. We conducted 50 independent runs
on each data set and reported the average accuracy as the evaluation
criterion.

A. Evaluation on Synthetic Data Sets

We first constructed a synthetic data set by sampling 200 points
from two 2-D unit normal distributions centered at (2, 0) and (−2, 0),
using 100 points from each distribution. Fig. 2(a)–(c) shows the
projection directions learned by the aforementioned methods, respec-
tively, under all the three cases. In all the three cases, compared with
the rLR method, the estimation given by LLND was consistently
closer to the Tru method (classifier trained by ground-truth labels),
which indicated a better noise-tolerance capability of LLND.
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TABLE I

PERFORMANCES OF DIFFERENT ALGORITHMS ON UCI BENCHMARK DATA SETS. RESULTS OF LLND ARE PRESENTED UNDER DIFFERENT CASES,
RESPECTIVELY (FROM CASE 1 TO CASE 3), AND ARE MARKED IN BOLD IF THEY ARE BETTER THAN OTHER COMPETING ALGORITHMS

Fig. 3. Effect of less-noisy label amount on the estimation of flipping
probabilities.

1) Estimation of Flipping Probabilities: Fig. 3 shows the
estimated flipping probabilities as a function of the proportion
of less-noisy labels. In all the three cases, the estimated flipping
probabilities were close to the true noise rates. At the very start,
estimations were slightly higher than the true noise rates, but then
they quickly approximated the asymptotic line (roughly when the
number of less-noisy labels reached 10). Compared with Case 1, the
estimation in Case 3 showed a larger variance, showing a decreasing
trend due to the prior information in Case 1 being more exact than
in Case 3.

2) Model Performance: Fig. 4 shows the accuracies of the classi-
fiers as a function of the proportion of less-noisy labels. As shown
in Fig. 4, LLND maintained a high and stable performance in
most cases. When labels contained low noise, i.e., ᾱ = β̄ = 0.8,
all algorithms except Lsn performed well and reached nearly the
accuracy of the classifier trained by true labels (Tru). The Lsn method,
however, was vulnerable to the small size of training samples and
showed a clearly rising trend in performance as the proportion
of less-noisy labels increased. When the noise was asymmetric,
i.e., ᾱ = 0.7, β̄ = 0.9, only the performances of LLND and rLR
were comparable to the performance of Tru. It was quite clear that
the Avg was negatively influenced by this kind of noise, which
is consistent with previous results [3]. When the noise rate was
high, i.e., ᾱ = β̄ = 0.6, LLND outperformed all other methods.
LLND showed a mildly increasing trend as the proportion of less-
noisy labels increased, and reached a high performance in a relatively
small proportion (compared with Lsn). In particular, both rLR and
Avg were significantly influenced by high noise, while LLND was
more robust in this setting.

Fig. 4. Effect of the variation of the less-noisy label amount on the
performance with different noise rates.

B. Results on Real-World Data Sets

Three data sets from the UCI database were used: German,
Heart, and Thyroid. The corresponding results are shown in Table I.
In addition, we included the results of a weighted logistic regres-
sion classifier, l̃log, as used in [5], for purposes of comparison.
Our experimental settings, which included the data sets and noise
rates, were the same as those used in [5]. Two more competing
methods were used on these UCI data sets. One is the neuron-fuzzy
classifier [20], [21]; the other is an early version of rLR [17], which
does not require the exact values of the flipping probabilities as input.
Therefore, the updated version of rLR, which requires the flipping
probabilities, is denoted by rLR1 and the early version is denoted
by rLR2.

From the results in Table I, LLND was superior to rLR (includ-
ing both rLR1

1 and rLR2) and standard logistic regression with
limited labels (i.e., Avg and Lsn), which was consistent under all
the three cases. The comparison suggests that the simple mixing
of two sets of labels is inferior to explicitly modeling the noisy
and less-noisy ones separately. Second, by comparing LLND for

1The results showed that LLND-3 significantly outperformed rLR1 on
Thyroid at all noise levels, ps < 0.05. On Heart, LLND-3 was significantly
better at two levels, ps < 0.05, while when ᾱ = β̄ = 0.8, their difference did
not reach significance, p > 0.1. On German, the results were mixed: LLND-3
and rLR1 did not significantly differ when ᾱ = β̄ = 0.8; rLR1 outperformed
LLND-3 when ᾱ = 0.7 and β̄ = 0.9; LLND-3 outperformed rLR1 when
ᾱ = β̄ = 0.6. To summarize, LLND-3 outperformed rLR1 in six of
the nine comparisons, while the two methods performed closely in two
comparisons, and only in one comparison did rLR1 perform better. With
these results, LLND-3 does achieve a higher accuracy than rLR1 on these
benchmark data sets, especially when noise rates were relatively high.
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the three cases, a decreasing trend from Case 1 to Case 3 was
observed, which demonstrated that our method could benefit from
the elaboration of prior knowledge about noise rates. Third, both
LLND and rLR1 were robust to symmetric and asymmetric noise, in
contrast to the low performance of Avg in the presence of asymmetric
noise. rLR2 was inferior to rLR1 on all the three data sets. Fourth,
NFC achieved good results on the three data sets when the noise
rates were low. However, when the noise rates were increased, its
performance decreased significantly. Finally, all methods except Lsn
suffered from high noise rates to some extent (compared with the
low-noise condition), though LLND showed a relatively smaller loss
in accuracy (around 5%) when compared with the 10% loss of Avg
and rLR1. Overall, the proposed LLND methods were competitive
and were able to tolerate asymmetric and high noise levels in labels.

V. DISCUSSION AND CONCLUSION

In this brief, we proposed a new method (LLND) that utilized both
noisy and auxiliary less-noisy labels to learn a classifier in the pres-
ence of label noise. The method was based on the flipping probability
of label noise and a logistic regression classifier. By maximizing the
likelihood of the observations under an EM framework, the classifier
was trained, and the noise rates of noisy labels as well as true labels
were estimated jointly. We then implemented the EM-based maxi-
mization under three cases according to the extent to which we knew
about the noise rate of less-noisy labels. Experiments showed that the
proposed method provided accurate estimation for parameters and
outperformed noise-tolerant methods proposed in previous studies.
When the amount of information on the prior knowledge regarding
the noise rates of less-noisy labels was increased, the performance
of LLND improved, as is evident from the results witnessed from
Case 3 to Case 1. The experimental comparison also indicated that
LLND was especially effective in the presence of asymmetric and
high noise. As for real-world applications, this research theoretically
proved that receiving a small portion of labels from an expert as
well as lots of labels from crowds was helpful, as this combination
improved the classification accuracy compared with relying entirely
on either an expert or the crowds. Future work includes introducing
active learning to select samples whose labels are probably noisier
than others, and combining the main technical line of neurofuzzy
classifiers with the main approach in this brief.
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