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ABSTRACT

Invariant representations of images can significantly reduce
the sample complexity of a classifier performing object iden-
tification or categorization as shown in a recent analysis of
invariant representations for object recognition. In the case
of geometric transformations of images the theory [1] shows
how invariant signatures can be learned in a biologically plau-
sible way from unsupervised observations of the transforma-
tions of a set of randomly chosen template images. Here we
extend the theory to non-geometric transformations such as
blur and down-sampling. The proposed algorithm achieve an
invariant representation via two simple biologically-plausible
steps: 1. compute normalized dot products of the input with
the stored transformations of each template, and 2. for each
template compute the statistics of the resulting set of values
such as the histogram or moments. The performance of our
system on challenging blurred and low resolution face match-
ing tasks exceeds the previous state-of-the-art by a large mar-
gin which grows with increasing image corruption.

Index Terms— invariant representation, non-geometric
transformations, blur, down-sampling

1. INTRODUCTION

Learning transformation invariant representations is now
thought to be the crux of object recognition and thus of
importance not just for computer vision, but also for neuro-
science [1, 2]. Despite recent high profile successes in object
and face recognition, there are several situations in which
existing approaches are not robust enough compared to hu-
man vision. An interesting example is represented by images
that are blurred due to either an out-of-focus lens, or atmo-
spheric turbulence, or relative motion between the sensor and
targets. Similar difficulties arise with low resolution images
taken by surveillance cameras, or from a large distance. In
face recognition there is also the additional problem that the
gallery images to be matched with are typically high reso-
lution, e.g., passport photos, but the probe images are poor
quality surveillance camera frames [3, 4]. The problem can
be cast as one of synthesizing an image representation that

is invariant to these quality-decreasing transformations. We
take this perspective here.

Alternative approaches address this problem by construct-
ing a de-blurred or high resolution image using de-blur [5, 6,
7] or super resolution methods [8]. These methods solve a
harder problem than the one that is strictly needed here, trying
first to obtain a perceptually good reconstruction, and then to
use it for recognition. Arguments based on the accumulation
of errors through multi-step processes, and/or the data pro-
cessing inequality suggest that these methods may not be op-
timally robust. Moreover, most of these methods take advan-
tage of prior information from the data such as the fact that it
is a face. Thus these methods are class specific [9, 10, 8, 11].

A result in Poggio et al [1] (see also [12]) theory of trans-
formation invariant hierarchical architectures is that for trans-
formations that form a locally compact group, such as transla-
tion, scale [13] and rotation in plane [14], it is always possible
to obtain an invariant signature in a generic way, that is, class-
specific templates are not required. We extend these results to
non-geometric transformation by showing that several kinds
of blur and down-sampling transformations satisfy the key hy-
potheses of the theory. We illustrate that this construction is
possible whenever the transformation can be expressed as a
convolution with a linear, symmetric1 filter (we call it Lin-
ear Symmetric Convolution or short for LSC transformation
below).

Our method can also extract invariant features robust to
blur or down-sampling resolution [15, 5, 16]. The current
state of the art for these problems is either class-specific or
supervised: for example, Soma et al [15]’s system simulta-
neously maps the poor quality probe images and high quality
gallery images into a subspace in which distance between im-
ages from the same subject is smaller than the original space.
Her model is a supervised model which means that face data
is needed for training and limited for face application. More-
over, her method is trained differently for different probe res-
olutions which dramatically affect its application since the ac-
tual resolution in real applications is unknown. Gopalan et al

1Here we mean center symmetric, the upper left corner equals the bottom
right corner, such as [0 0.25 0; 0.25, 0.5, 0.125; 0 0.125 0]. This requirement
guarantees (see the proof of 1 in Appendix) that the corresponding operator
is self-adjoint.



[16] proposed a blur descriptor which is robust to both homo-
geneous and spatially varying blur. Unfortunately, one of his
three assumptions that there is no noise in the system is not
practical. Above all, neither of these algorithms address the
problem of blur and down-sampling transformations jointly,
nor do they extend to affine and illumination transformation
easily.

We highlight our contributions in the following three
aspects. First, we theoretically and experimentally prove
that invariant signature of the LSC transformation can be
achieved: two typical examples of LSC transformation are
illustrated. We can compute invariant representations ro-
bust to blur and down-sampling transformations in the same
framework. Second, we show empirical demonstrations of
the theoretical result that LSC transformations are generic.
That is, we can use templates from one class (even noise
patches!) and obtain a representation which is invariant even
when tested on other classes. Lastly, although our model only
involves two simple steps – inner product and pooling – we
also propose a method to speed up the computation (without
sacrificing performance) by skipping the computation of dot
products that turn out not to contribute to the final solution.

2. THEORY

M-theory [1] – as well as one of its specific and partial im-
plementations (the HMAX model [3]) is based on a cascade
of Hubel-Wiesel (HW) modules [17] which consists of two
layers: simple cells and complex cells. The simple cell (S-
unit) implements a dot product with a stored transformation
of a template t, while the complex cell (C-unit) implements
the pooling operation. We now explain how by these two op-
erations we can compute a transformation-invariant signature
under certain conditions for the case of the blur transforma-
tion.

Consider an image blurred by convolution with a Gaus-
sian filter with variance σ2 which for simplicity here is sup-
posed to be discretized between 1 and N (σ2 = j). We show
that pooling with the max operation using a set of templates
blurred to different degrees provides a signature that has par-
tial blur invariance, that is invariance for certain ranges of blur
of the input image. Our algorithm is based on the following
proposition

Proposition 1. Let I, t ∈ L2(R). Let tk = gk∗twith gk(x) =

e−
x2

k , k = 1, ..., N . Let u(I) = maxk∈[0,···n]
〈
I, tk

〉
. Fur-

ther let k∗ = argmaxk∈[0,···n]
〈
I, tk

〉
. We have

u(I) = u(Ij), ∀ j < k∗, I ∈ L2(R)

The proof is simple (see supplementary material). The re-
sult shows that we only need to store a group of templates
tk with k = 1, · · · ,K and all of its blurred version (over a
range of blur variances) instead of observing and storing all of

the possible blurred version of I . This follows the paradigm
of the M-theory approach in which given a novel image, we
can use the full group of several templates t1, t2, . . . , tK and
their transformations (under G) to compute a signature u(I)
which is invariant to g ∈ G. Previous work developed the the-
ory for geometric transformations and applied it to the affine
group in the plane (translation, scale and rotation [23, 19-20])
and to non group smooth, class-specific transformations (such
as change of pose of a face or a body). The work here is
the first to apply a similar approach to non-geometric trans-
formations. The proposition above suggests the algorithmic
pipeline shown in Figure 1. Note that the templates are inde-
pendent from the input image (the transformation is generic
and not class-specific) so that the templates can be almost any
image including noise patches.

3. EXPERIMENTS

In this section, we show a set of experiments on Extended
Yale Face Database B [18] and Multi-PIE database [19]. Fig-
ures are better viewed when magnified.

In the first set of experiments, we test two LSC transfor-
mations, namely Gaussian-blur and down-sampling, on the
extended Yale Face Database B. This dataset contains 16128
images of 28 human subjects under 9 poses and 64 illumi-
nation conditions. Since pose and illumination are class spe-
cific transformation, we only select 8 frontal faces per hu-
man subjects here to focus on LSC transformation. There are
only some subtle illumination or expression changes between
probe images and gallery images, as shown in Figure 2 Panel
II. The Gaussian kernels is of size 31× 31 with ranging from
1 to 21 in steps of 2 (11 variations), so the pooling range of
each templates is 88. While the resolution of input image for
down-sampling test varies from 96×84 to 6×4 (9 variations),
so the pooling range of each templates is 72.

Using the max pooling procedure, we find, as expected,
that the max value always comes from the same row, as shown
in Figure 1. In the dataset of Figure 2 we experimentally find
that 90.1 percent of the max value is from the same row and
99.1 percent is from the same or adjacent rows. Therefore
we can first compute the inner product between the input im-
age and the full orbit of one template and find the max value
(for instance, the j-th inner product); then we only need com-
pute the inner product between the input image and j-th im-
age of the full orbit of other templates. In this way, we can
skip the computation of most dot product and pooling opera-
tion. Roughly speaking, if the number of templates is K and
each full orbit has M images, then this simplified algorithm
reduces the complexity of our model from K × M to M .
From the comparison between the cyan curve and red curve
of Figure 2, we can see that this simplified model achieves
comparable recognition accuracy with the original model.

Interestingly, high recognition accuracy (95%) can still
be achieved even with face images that are down-sampled to



Fig. 1. Pipeline of the proposed algorithm. There are two steps. First, the normalized dot product between the input image and
each one of the templates of the i-th subject (thought to be stored in memory) is computed. Second, the max value (pooling
function in all the following experiments is max pooling.) over the set of these inner products gives the i-th component of
the representation of the input image. These two steps are repeated for each template until a K-dimensional representation is
produced.

6× 5, as shown in Figure 2 Panel I (Blur curve in left chart)
in which noisy patches are adopted as templates. Further ex-
periments on varying amount of noise patch templates can be
found in Figure 3 A.

In the second set of experiments, we first analysed the
performance of the proposed model with varying amount of
templates on subset of YaleB dataset. Since we can train our
model even on noise patch images, we can create as many
templates as possible. From Figure 3 A, we can find that
we can achieve perfect invariance across different standard
deviations while preserve the identity information using 100
templates.

Then we compared our model with the state-of-the-art
on blur invariance. The experimental set-up is similar with
Taheri2 [20]. We resized all images to 64 × 64, added 30dB
white Gaussian noise to test robustness and created eleven
different synthetically blurred sets of images using Gaussian
kernels. However, we test our model on more severe cases:
we adopt kernels of size 3131 with ranging from 1 to 21 in
steps of 2 into our templates. In order to be more practical,
the standard deviations of the input image are from 2 to 20
in steps of 2. The recognition accuracy are presented in Fig-
ure 3 B, where we compare with Taheri’s model [20] and two
existing deblurring-based methods [7, 6]. We can see that
our model achieve perfect invariance even under severe con-
ditions without knowing the Gaussian kernels before. Due to
limited pages, we show more results on motion blur in our
supplementary material.

In the last part, we further compare our model with
Soma’s algorithm across down-sampling transformation and
illumination variation. This experiment is performed on
CMU Multi-PIE face dataset [19] which contains images of
337 subjects. All subjects were taken under 15 view points

2Note that our result is based on YaleB dataset instead of FERET dataset.
The probe image has some subtle illumination and expression variation com-
pared to the gallery image.

and 20 illumination conditions while displaying a range of
facial expressions. We randomly choose 200 subjects which
have neutral expression and 20 illuminations for training and
the rest for testing. The final recognition accuracy is achieved
by averaging 20 different illumination conditions. The reso-
lution of gallery image is 48 × 40 while probe image varies
from 48×40 to 6×5. There are 6 resolution variation and 20
illumination conditions, so pooling range in this experiment
is 120. Figure 4 shows the recognition accuracy on different
probe image resolution. We can see that our model can get
a good result even when probe images are down-sampled
to 6 × 5. Compared with Soma’s algorithm, our model can
achieve much better result on very low resolution images and
the margin grows with increasing image corruption. Despite
the better performance, our model is neither class-specific nor
resolution-specific.

4. CONCLUSION

In this paper, we illustrate that partially invariant signature
can be obtained also in the case of non-geometric transfor-
mations, in particular blur transformations, which are not a
group. Despite its extreme simplicity, our algorithm shows
impressive performance on LSC transformation even when
the unsupervised learning only uses noisy patches.
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