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a b s t r a c t 

This study proposes a fuzzy logic approach to model and simulate pedestrian dynami- 

cal behaviors, which takes full advantage of human experience and knowledge and per- 

ceptual information obtained from interactions with surrounding environments. First, the 

radial-based method is adopted to represent the physical space. A pedestrian’s visual field, 

defined as a fan-shaped area with a certain visual distance and visual angle, is divided 

into five sectors. Then, the motion states of a pedestrian are determined by the integra- 

tion of recommendations of local obstacle-avoiding behavior, regional path-searching be- 

havior and global goal-seeking behavior with mutable weighting factors at three different 

scopes. These elementary behaviors and weighting’s assignment principle are modeled as 

fuzzy inference systems with the input information of a pedestrian’s perception toward 

surrounding environments. A pedestrian is guided to avoid the front obstacles and select 

the lowest negative energy path by local obstacle-avoiding behavior and regional path- 

searching behavior, respectively. The global goal-seeking behavior makes a pedestrian has 

a tendency of moving in direction of his/her goal regardless of external environments. The 

magnitudes of weighting factors are adjusted automatically to coordinate three elementary 

behaviors and resolve potential conflicts. At last, the effectiveness of the proposed model is 

validated by simulations of crowd evacuation, unidirectional and bidirectional pedestrian 

flows. The simulation results are analyzed from both qualitative and quantitative aspects, 

which indicate that the fuzzy logic based pedestrian model can get true reappearance of 

self-organization phenomena such as ‘arching and clogging’, ‘faster-is-slower effect’ and 

‘lane formation’, and the fundamental diagrams are in matching with a large variety of 

empirical and experimental data. A further study finds that walking habits have negligible 

influence on the fundamental diagrams of bidirectional pedestrian flow at least for densi- 

ties of ρ < 3p/m 

2 . 
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1. Introduction 

The modeling of pedestrian dynamics as an interdisciplinary research direction has attracted a wider interest of re-

searchers and managers. The traffic capacity at the passage, characteristic features of normal and escape panics, and self-

organization phenomena of crowds have been taken into account by architects and designers for optimization of limited

traffic resources and formulation of urgent evacuation plans. 

In order to understand complicated motion features of pedestrians, the important work is to build a suitable model for

characterization of pedestrians’ behaviors. Many prior studies on pedestrian dynamics have presented various pedestrian

(crowd) models. The state of art of the models is mainly based on the following three type of methods: macroscopic, meso-

scopic and microscopic model. The first, which treats the crowds as a fluid or continuum, uses gas kinetics and hydrody-

namics to describe large crowds [24,25,60] . The second, which doesn’t differentiate between individual pedestrians, focuses

on describing part of global properties of pedestrians [21,22] . The third, which can analyze and research individual behav-

iors with the interplay of pedestrians, always treats a pedestrian as a discrete individual driven by force, potential or utility

[1,5,20] . In the last years much more attention has been focused on microscopic modeling, where the socio-psychological

and complex interactions of individuals and environments are considered in the model. Examples of microscopic models

are the social force model [18,20] , cellular automata model [5,46] , lattice gas model [38,48] , discrete choice model [1] ,

agent-based model [41] , and game theoretic model [4,29] . As a kind of highly complex living organisms, the behaviors of a

pedestrian are jointly determined by personal internal consciousness and external environments. It is difficult to propose a

mathematic model describing and predicting a pedestrian’s behaviors accurately, especially given the complex interactions

with surrounding environments. 

The environmental effect is a critical factor in modeling of pedestrian dynamics, and it varies significantly over time

and space. Researchers in various disciplines have made tremendous effort s to specify the stimuli of surrounding environ-

ments, including pedestrians, groups, obstacles, exits and so on, on pedestrian dynamic behaviors from different perspec-

tives. The level of environmental stimuli is specified as physical force [18,20] , floor field [5,46] , drift (bias) [38,48] , utility

[1] , and payoff [4,29] for quantitative evaluation of environmental factors in the previous studies. For example, Helbing et al.

[18,20] modeled the effects of surrounding pedestrians and walls as interaction forces which shows a negative exponential

decline with distances. In mathematical terms, the change of pedestrian’s states is given by a classical Newtonian mechanics

equation with precise environmental information such as distances, speeds, and directions. Schadschneider et al. [5,46] in-

troduced the concept of a floor field which is modified by the presence of pedestrians and obstacles. This allows the cellular

automation model to take interactions between pedestrians and the geometry of the system into account in a unified and

simple way. The floor field modifies the transition probabilities in such a way that a motion into the direction of larger

fields is preferred. Antonini et al. [1] adopted the concept of ‘utility’ borrowed from economics to quantify the interactions

between the decision maker and the other pedestrians in the scene as well as the dynamic aspects of the decision maker

itself. The utility values of alternatives are then transformed into probabilities and each pedestrian’s movement is randomly

selected according to these probabilities. 

From a review of previous work, we noticed that these microscopic models are presented based on the promise that

precise values of the complex interactions with surrounding environments such as speeds, directions and distances can

be used in real time. The environmental effects on a pedestrian’s behaviors are evaluated quantitatively based on these

precise environmental data. Actually, the information got from environments is perception-based information rather than

measurement-based information in most situation. It is difficult to quantify the size of environmental stimuli in real-life

scenarios because a pedestrian’s perceptions in a specific environment vary from one individual to another, and they are

subjective in nature. Individuals have diverse perceptions when they are confronted with environmental interactions, and

they may react subjectively to similar situations [14,23,43,64] . Moreover, the inter-relationship between pedestrian’s dynam-

ical behavior and pedestrian’s perception toward the surrounding environment is rarely considered in previous studies. The

perception-based information is often neglected in this area of researches. As such, the urgency underlying the current study

is to develop a useful model which can make full use of perception-based information and capture the relationship between

the environmental design and the pedestrian’s perception. 

To meet these goals, we employ a fuzzy logic approach in this study. The theory of fuzzy logic systems, inspired by

the remarkable human capability, possesses the capability of operating on and reasoning with perception-based information

[62–64] . Consider the intrinsic limitations of humans’ cognitive abilities for distinguishing detail and storing information,

pedestrian’s perceptions toward surrounding environments are usually represented by natural language, which are inherently

vague and imprecise. A fuzzy logic approach, compared with other methods, is highly robust in coping with the uncertainty

and imprecision that are inherent in perception information. It also provides a scientific approach for the management

of pervasive reality of fuzziness and vagueness in human cognition [63] . In addition, fuzzy logic also has the ability to

utilize human experience and knowledge and imitate human thought processes [32] . For example, the near obstacle has a

greater impact on the obstacle-avoiding behavior than the far. Using the fuzzy logic framework, the processes of pedestrian’s

reasoning and decision making can be formulated by a set of simple and intuitive fuzzy rules, coupled with advantages of

accessible input information and easily understandable output [62] . 

The novelty of this study is the proposing of the fuzzy logic based pedestrian model, which can incorporate efficiently

human experience and knowledge and pedestrian’s perceptions toward surrounding environments into the modeling pro-

cess. The main contribution of this paper are briefly summarized as follows: (i) A fuzzy logic-based microscopic pedestrian
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Table 1 

Summary of typical microscopic pedestrian behavior models and their characteristics. 

Typical model Study Space and time Environmental factors Specific medium Typical phenomena 

Social force model Helbing et al. [18,20] Wan 

et al. [51] 

Continuous Pedestrians Wall Exit Physical force Clogging Faster-is-slower 

Lane formation Oscillatory 

change 

Cellular automata 

model 

Burstedde et al. [5] 

Schadschneider [46] Fu 

et al. [13] 

Discrete Pedestrians Obstacle Exit Floor field Clogging Lane formation 

Lattice gas model Muramatsu et al. [38] 

Tajima et al. [48] 

Discrete Walkers Wall Exit Drift/Bias Jamming Lane formation 

Discrete choice model Antonini et al. [1] Lovreglio 

et al. [30] 

Discrete Pedestrian Obstacle 

Destination 

Utility Free flow Exit selection 

Agent-based model Pan et al. [41] Tan el al [49] Continuous/ 

Discrete 

Agent Group Obstacle Exit Rule Competitive behavior 

Queuing behavior Herding 

behavior 

Game theoretic model Lo et al. [29] Bouzat et al. 

[4] 

Continuous Agent Wall Target Payoff Clogging Exit selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model is proposed to simulate pedestrian dynamic behaviors. The model differs from other models in that it can take full

advantage of human experience and knowledge and perceptual information obtained from interaction with surrounding en-

vironments, which are widely available and extremely useful, and often neglected in this area of researches. (ii) The effects of

complex interactions with surrounding environments on pedestrian dynamics are considered qualitatively during the mod- 

eling process. The model describes different influences affecting individual pedestrian motions by a few simple fuzzy logic

rules. The local obstacle-avoiding behavior, regional path-searching behavior and global goal-seeking behavior are modeled

as fuzzy inference systems with predefined input and output variables. These behaviors are adopted to guide pedestrians to

avoid the front obstacles, select the lowest negative energy path, and move in direction of their goals, respectively. At each

step, the decisions of turning angle and movement speed are determined by the integration of intermediate results of three

behaviors with the weighted average method. (iii) Weighting’s assignment principles are designed to adjust weighting fac-

tors of three behaviors automatically rather than assign arbitrary fixed values in advance. This enables a pedestrian to avoid

potential conflicts and make reasonable decisions in complex situations. (iv) The characteristics of three common crowd or-

ganization forms, i.e. crowd evacuation, unidirectional and bidirectional pedestrian flows, are investigated by using the fuzzy

logic model. Self-organization phenomena, including ‘arching and clogging’, ‘faster-is-slower effect’ and ‘lane formation’, are 

reproduced by simulations of the proposed model. The fundamental diagrams of speed-density and density-flow are also

investigated in a quantitative way. It is expected to be useful to the exit and hallway design of buildings. (v) The effects of

walking habits on the traffic efficiency of bidirectional pedestrian flows are also performed. 

The organization of this paper is as follows: Section 2 provides an overview of related works. In Section 3 , the architec-

ture of the proposed fuzzy logic model is presented. The detailed implementation methods of the local obstacle-avoiding

behavior, regional path-searching behavior, global goal-seeking behavior, and weighting’s assignment principle are described 

in this section; The validation and simulation of the proposed model are discussed in Section 4 ; Finally, Section 5 concludes

the paper with remarks for future works. 

2. Related works 

2.1. Background of microscopic pedestrian behavior models 

Over the years, researchers have constructed various microscopic models to approximate and simulate pedestrian dy-

namical behaviors in normal and panic scenarios. Examples of microscopic models are the social force model [18,20,51] ,

cellular automata model [5,13,46] , lattice gas model [38,48] , discrete choice model [1,30] , agent-based model [41] , and game

theoretic model [4,29] , which have been proposed to investigate characteristics of crowd evacuation, bidirectional pedestrian

flows, crossing pedestrian flows, exit selection and so on, and further to guide the architectural design. Some wonderful re-

sults such as ‘clogging’ [18,20,29] , ‘faster-is-slower’ [18,20] , ‘lame formation’ [5,18,20,38,46,48] , ‘oscillatory change’ [18,20] ,

and ‘herding behavior’ [41] have been found with simulations of these models. The summary of typical microscopic pedes-

trian behavior models and their characteristics are shown in Table 1 . Each of the typical models mentioned in Table 1 has

its own advantages and weaknesses. Based on the specific requirements and simulation scenario, one model can be more

suitable than the others. 

The social force model [18,20,51] treats pedestrians as particles driven by the resultant force of self-driven force, inter-

action force with pedestrians, and interaction force with walls. The factors such as distances, speeds, and directions are

considered to determine the accelerated velocity of next step. However, its computational complexity rises with the square

of the number of pedestrians. Moreover, it is difficult to capture real behavioral rules in a slightly more complex scenario.

For the cellular automata model [5,13,46] , the physical space is represented by a regular grid composed of cells. Each cell

can be in two states, occupied or unoccupied. At each time step, the state of each cell is updated based on previous states of
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itself and its immediate neighbors. The floor field is introduced to model the longer-ranged interactions with environment

such as obstacle and exit. The simplicity of transition rules makes this model more efficiency and allows it to be used for

simulations of very large crowds. But, pedestrians can only walk inside or at the grids which is not corresponding to the

reality. In addition, tracking total amount of travel time and distance accurately are difficult because of the discrete nature

of space and time. As a special case of cellular automata model, the lattice gas model [38,48] treats pedestrian as an ac-

tive particle on the grid. Since the lattice gas models is conceptually simpler and can be easily implemented on computers

for numerical investigations, it has found wider applications in simulating the counter channel flow and bottleneck flow.

But, the lattice gas model and the cellular automaton model suffered from similar infirmities. As the representative of local

discretization, discrete choice model [1,30] uses a dynamic and individual-based spatial discretization representing the local

space in front of pedestrians. It interprets the pedestrian walking process as a sequence of choices over time. The first step

is to judge which behavioral pattern will be adopt in the next time step according to individual’s current environment, and

then to judge which computing methodology of utility is selected under a certain behavioral pattern. Then, two different

model formulations are used to determine the choosing probability of each alternative. Nevertheless, the difficulties of this

model are parameters calibration and utility computation. The agent-based model [41] proposes a computational methodol-

ogy that pedestrians are modeled as autonomous agents, which are capable of interacting with each other. At a microscopic

level, the framework represents human individuals as autonomous agents equipped with sensors, decision-making rules,

and actuators. At a macroscopic level, it models human social behaviors as emergent phenomena through simulating the

interactions among agents or groups in a virtual environment. Although the agent-based model can reappear many real

behaviors of pedestrians, it is not fully validated as a pedestrian model. Meanwhile, the fundamental diagrams of speed,

density, and flow are difficult to investigate in a quantitative way. The game theoretic model [4,29] is proposed based on

the premise that the interactive decision processes of crowds are rational. In a game, the agents assess all of the available

options and select the alternative that maximizes their utility, and the final utility payoff of each agent depends on the

profile of courses of action chosen by all agents. Actually, the decision making of a pedestrian is not absolute rational in

many scenarios, especially in panic. 

Based on the above discussion, we propose a fuzzy logic model that takes human experience and knowledge into full

consideration in modeling process. Then we associate the perceptual information obtained from environment with the deci-

sion making of pedestrian’s behaviors. The environmental effects on pedestrian dynamic behavior are evaluated qualitatively

based on a series of fuzzy logic rules. Our goal is to devise a realistic model that is able to model and predict pedestrian’s

behaviors in normal and emergency situations. The modeling process is presented in detail in the following section. 

2.2. Related research on fuzzy logic and its applications 

Understanding how an individual’s perception toward the surrounding environment affects modeling of pedestrian dy-

namic behaviors is a critical step toward a more reliable description of pedestrian flows in real-life situations. Researchers

have made many effort s to evaluate the effects of environmental perception on pedestrian’s wayfinding [23,43] , displace-

ment/locomotion [31,59] , and steering behavior [39,40] from different perspectives. In general, the perceptual information

is described by natural language because of the intrinsic limitations of humans’ cognitive abilities for distinguishing details

and storing information. Fortunately, humans have outstanding ability of computing and reasoning with imprecise informa-

tion instead of exactly numerical value, arriving at reasonable conclusions expressed as words from premises expressed in

a natural language or having the form of mental perceptions. For example, backing a truck to a loading dock is a complex

nonlinear control problem. It is difficult to model this process mathematically. But skilled drivers can accomplish this task

easily by their heuristic experience without any accurate measurement and calculation. They do not necessarily know the

more concrete information of steering wheel angle and position of accelerator but imprecise and incomplete information

such as ‘big’, ‘small’, and ‘Middle’. Fuzzy sets theory proposed by Zadeh [61] provides a useful tool to model and charac-

terize the imprecision and uncertainty of perceptual information. This theory has been rapidly developed since it was put

forward. It has been widely used in decision making [28] , pattern recognition [9] , fuzzy control [8,33,34,67] and so on. It’s

worth mentioning that besides the fields enumerated above, another fontal and crucial field is the complex systems, which

has made many achievements in modeling, analysis, control and evaluation of complex systems [35,52–55,62] . 

Fuzzy logic, as an extension of fuzzy set theory and an approximate reasoning methodology, possesses the capability of

computing and reasoning with perception-based information. It also provides a scientific approach for the management of

pervasive reality of fuzziness and vagueness in human cognition [63] . In addition, fuzzy logic also has the ability to utilize

human experience and knowledge and imitate human thought processes [32] . During the past five decades, fuzzy logic has

found numerous applications in fields of finance [16] , industry [65] control [33] , and robotics [6,7] etc. It is worth mention-

ing that fuzzy logic based modeling and simulation have been implemented successfully in robot navigation. Seraji et al.

[47] presented a behavior-based navigation model for field mobile robot, using a fuzzy logic approach. A fuzzy navigation

strategy was generated lies in the ability to extract heuristic rules from human experience and to obviate the need for an

analytical model of the process. Zhu et al. [68] built a fuzzy logic system with 48 fuzzy rules based on the human expe-

rience and knowledge, and then made the behavior-based mobile robot to achieve target seeking, obstacle avoidance and

barrier following in dynamic environments with uncertainties. Wang et al. [56] addressed the fuzzy logic approach to im-

plement the behavior design and coordination, and ultimately realized real-time robot navigation in unknown environments

with dead ends. 
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Similarly, for the problems relate to modeling and simulation of pedestrian’s behaviors, a fuzzy logic approach also has

certain advantages over other approaches, such as its ability to use perceptual information, utilize human experience and

knowledge and imitate human thought processes. So, it is a natural and suitable tool to model pedestrian dynamic behaviors.

Some studies have been carried out to apply a fuzzy logic approach to model and analyze certain pedestrian’s behaviors

such as steering behavior and crowd evacuation behavior. Haciomeroglu et al. [17] studied the group-based movement of a

large proportion of pedestrians in an urban environment by using the fuzzy logic approach. Three fuzzy logic engines are

designed for maintaining inter-persona distances, achieving the desired speed, and maintaining the distance to a sub-group,

respectively. The approach was shown to adhere to the average speed of pedestrians in groups and the distance between

members in the groups. Li et al. [27] introduced a new approach, which integrated fuzzy logic with a data-driven method,

to study crowd behaviors. The modified algorithm is adopt to extract fuzzy behavior rules from the state-action samples

obtained from crowd videos. Mauro et al. [11] proposed a fuzzy logic-based behavioral model for crowd evacuation, which

incorporates the fuzzy perception and anxiety embedded in human reasoning. Some of fuzzy inference system are built to

provide the direction of motion, delay in egress, and choice of exit. Nasir et al. [39] proposed a genetic fuzzy system to

model and simulate a pedestrian’s steering behavior in a built environments. The fuzzy-based model was built to infer the

degree of turning angle according to the pedestrian’s perception of environmental effects of three future positions as its

input. Nasir et al. [40] further investigated same question through built environments under normal, non-panic conditions.

The information of environmental influence and imprecise and subjective perception from environment stimuli were taken

as the inputs of fuzzy logic model to determine the walking path of a pedestrian. The main difference is that a real walking

trajectories data was collected to validate the fuzzy-based model. 

Although some positive results for pedestrian dynamics have been achieved by using a fuzzy logic approach, each of

them was usually only applied to a given scenario such as a building environment [39,40] , urban environments [16] or

panic situations [11] . A general model has not been proposed for the description and prediction of different pedestrians’ be-

haviors in different scenarios. And the effectiveness of these models haven’t been fully validated in the past studies. The arm

of this paper is to consider the use of fuzzy logic for modeling and simulation of pedestrian dynamic behaviors in different

scenarios. The proposed model can take human experience and knowledge into full consideration in modeling processes,

and associate the perceptual information obtained from environments with the decision making of pedestrian’s behaviors.

The environmental influences on pedestrian dynamics are evaluated quantitatively based on the obtained perceptual infor-

mation. Finally, the fuzzy logic model is fully validated by simulations of crowd evacuation, unidirectional and bidirectional

pedestrian flows. 

3. Model description 

In this section, we first introduce a method of representation of physical space which plays a central role in the modeling

and simulations. Then, we present the architecture and elements of the fuzzy logic-based pedestrian model. Pedestrian

dynamic behaviors are determined by integration of local obstacle-avoiding behavior, regional path-searching behavior and 

global goal-seeking behavior with mutable weighting factors at three different scopes. Three elementary behaviors and the

weighting’s assignment principle are modeled as fuzzy inference systems with predefined input and output variables. 

3.1. Representation of space 

The representation of physical space plays a crucial role in the modeling and simulation of pedestrian dynamic behav-

iors. In general, there are three most commonly used space representation methods, i.e., grid and individual-specific dis-

cretization, radial and individual-specific discretization, and network-based representation [2] . A grid and individual-specific

discretization is a static method, which divides the physical space into a grid of cells with a dimension of 10–80 cm [5,46] .

Each pedestrian occupies one or more cells, depending on the sizes of cell and body. The recommendations of next step are

determined by goal information and local interactions of cells. Contrary to the static representation, a radial and individual-

specific discretization is a dynamical representation method. The space is divided into sectors originating at the individual

locations, which varies with time and is different for each pedestrian in a scenario [1] . The motion states are ascertained

by what a pedestrian actually perceives in each sector. The network-based representation is a completely different approach

[3] . The space is consist of links and nodes which represent the key points such as street and entry point or departure

point, respectively. The pedestrian can capture strategic decisions even before being in a scene, like route choice and goal

seeking. In this study, we adopt a radial-based method for representation of space. Its sample chart is shown in Fig. 1 .

Pedestrians are seen as a points or particles in a 2D environment with the radius of r n . Each pedestrian n is characterized

by its current position p n . The behavior variables are defined as the current direction θn and current speed V n . The default

maximum value of visual distance d max and visual angle 2 φ° determine the shape and size of a pedestrian’s visual field

(VF), as shown in the blue shaded area of Fig. 1 A [37] . From current position P n ( x n , y n ) of the decision maker, a goal (the

purple dot), which represents the place where pedestrians want to reach, lies in the ‘goal angle’ γ g at a ‘goal distance’ d g .

The angle between current direction and goal direction (current position point to goal point) is denoted as the ‘goal angle’,

as well as the distance between current position point and goal point as ‘goal distance’. As shown in Fig. 1 B, the visual

field of a pedestrian n is divided into five sectors by the radial-based representation method. These sectors are marked as

left (l), front left (fl), front (f), front right (fr), right (r), and occupied the central angles of 40 °, 30 °, 30 °, 30 °, and 40 ° from
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Fig. 1. The sample chart of space representation. (A.) Definition of variables in the descartes rectangular coordinate system: heading direction ( ξ n ), move- 

ment speed ( V n ), goal angle ( γ g ), goal distance ( d g ), visual angle (2 φ°), and horizon distance ( d max ). (B.) Discretization of space based on 5 radial directions, 

i.e., left (l), front left (fl), front (f), front right (fr), and right (r) from left to right, respectively. (C.) Three different scopes of influence for elementary be- 

haviors, i.e. local, regional and global scope for obstacle-avoiding behavior, path-searching behavior and goal-seeking behavior, respectively. 

Fig. 2. The overall structure of fuzzy logic based pedestrian model. It mainly consists of five components: inputs, fuzzy inference systems, defuzzification, 

integration and outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

left to right, respectively. A pedestrian can determine his/her movement direction and speed of next step according to what

they actually perceived from predefined five sectors. Fig. 1 C shows three scopes of space: local (green shaded area), regional

(blue shaded area) and global (gray shaded area) scope, which are used to ascertain the affected scopes of obstacle-avoiding

behavior, path-searching behavior and goal-seeking behavior, respectively. These mean that the obstacle-avoiding behavior is

only affected by objects located in the local scope as well as other two behaviors. It is also shown that there exist inclusion

relations between three scopes, i.e. Local ⊆ Regional ⊆ Global . In general, obstacles which are far away from the decision

maker have little effect on the obstacle-avoiding behavior. Based on previous observations and researches, when an obstacle

appeared in the visual field of the decision maker, he/she might not react immediately to avoiding possible collision un-

til the distance between them is less than a certain value [36] . Through synthetical analysis, d ao = 3 m is considered as a

suitable value. 

How to define the concept of visual field is a key problem in representation of physical space. Antonini et al. proposed

that visual field is a sector domain with visual angle (170 °) in front of the pedestrian, namely the region he/she can actually

see [1] . Another definition was presented by Moussaïd et al. [37] , that is “the vision field of pedestrian n ranges to the left

and to the right by φ with respect to the line of sight � H n ”. In addition, it was also defined by Tan et al. by casting laser rays

from the eye position of an agent within a visual angle (e.g., 170 °) and visual distance (e.g., 10 m ) [49] . All these showed

that the size of visual field is mainly determined by visual angle and the ‘horizon distance’ d max . d max and 2 φ° represent

the maximum perceptual distance and visual angle of the decision maker, respectively. The definition of visual field used in

this study is similar with Moussaïd et al. and Tan et al. [37,49] . For simplicity, we have arbitrarily selected d max = 8 m and

2 φ = 170 ◦. 

3.2. The fuzzy logic based pedestrian model 

Pedestrian dynamics are determined by integration of three elementary behaviors, i.e. local obstacle-avoiding, regional

path-searching and global goal-seeking with mutable weighting factors at three different scopes. The overall structure of this

model is shown in Fig. 2 . A pedestrian is guided to avoid the front obstacles and select the lowest negative energy path by

local obstacle-avoiding behavior and regional path-searching behavior, respectively. The global goal-seeking behavior makes

a pedestrian has a tendency of moving in direction of his/her goal regardless of external environments. The weighting’s
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Fig. 3. Membership functions for (a) turning angle, and (b) movement speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

assignment principle is proposed to integrate multiple behaviors and resolve potential conflicts. All four items are mod-

eled as fuzzy inference systems with the input information of a pedestrian’s perception toward surrounding environments,

which have greater impact on final decision behaviors. For local obstacle-avoiding behavior, the major factor that strongly

affects the decision is the distance between the decision maker and the closest obstacle in each of the predefined sectors.

We can use a fuzzy inference system to establish the relationship between a pedestrian’s decision and perceived distance

information. The similar approach is adopted for the other three items. The final recommendations of turning angle α and

movement speed V are obtained by integration of outputs of three elementary behaviors with mutable weighting factors.

The magnitudes of weighting factors are adjusted automatically to coordinate three elementary behaviors. For example, IF

the distance between the position of decision maker and goal point is considerably large then the position of nearest ob-

stacle, THEN the weighting factors of local obstacle-avoiding behavior is set as ‘large’, regional path-searching behavior as

‘normal’, and global goal-seeking as ‘small’. The turning angle α is represented by the five linguistic fuzzy sets {Large-Neg,

Small-Neg, Zero, Small-Pos, Large-Pos}, with the trapezoidal membership functions shown in Fig. 3 (a), where ‘Neg’ and ‘Pos’

turn a pedestrian to left and right directions, respectively. Similarly, the movement speed V is represented by the three

linguistic fuzzy sets {Stationary, Slow, Fast}, with the trapezoidal membership functions shown in Fig. 3 (b). The values of

universe of discourse of turning angle and movement speed in Fig. 3 (a) and (b) are defined as intervals of [ −75 ◦, 75 °] and

[0 m/s, 5 m/s], respectively. 

The number of linguistic fuzzy sets, which are used to cover the discourse of universe of antecedents and consequents,

decides the accuracy of fuzzy logic systems. For a certain structural model, the time complexity rises exponentially as the

number of input fuzzy sets increases. In this study, we choose two, three, or five fuzzy sets to represent input and output

variables in order to trade-off the computing efficiency and accuracy. 

3.2.1. Model assumptions 

The following reasonable model assumptions related to modeling and simulations of pedestrian dynamic behaviors are

made in order to simplify and articulate the proposed model. 

• The modeling and simulations are done under normal crowd density in this paper, so pedestrian dynamics are mainly

determined by heuristic-based walking behavior rather than physical interactions [37] . 

• Pedestrians abide by the same rule set in a simulation. 

• A pedestrian is characteristic as a circle of radius r n = 0 . 25 m on the horizontal plane (2D) [15] . 

• The desired speeds of pedestrians follow a Gaussian distributed with mean value 1.34 m/s and standard deviation 0.26

m/s in simulations [10] , the degree of memberships are set as μ fast (1 . 34) = 1 and μslow 

(1 . 34) = μstationary (1 . 34) = 0 . 

• Pedestrians only aware of regional information in their visual field and the goal details rather than global information of

environments. 

• The effect of inertia is ignored during the modeling process, i.e. the saltation of speeds is permitted. 

3.2.2. The local obstacle-avoiding behavior 

The role of local obstacle-avoiding behavior is to make pedestrians avoid front obstacles located in the local scope. In this

study, we define obstacles as any corporal objects such as group of people, walls, columns and tables which may delay or

block the movement of pedestrians. The local obstacle-avoiding behavior is dominant in the decision process if the distance

between decision maker and the closest obstacle is near. Usually, the distance information obtained from the surrounding

environment is reflected as perceptual information such as ‘about 3 m ’, ‘far’ and ‘near’ in mind, which is imprecise and

uncertain in nature. 

To effectively utilize these perceptual-based information, a fuzzy inference system is founded to describe this behavior.

The closest pedestrian-obstacle distances in five sectors are replaced by d l o , d 
f l 
o , d 

f 
o , d 

f r 
o and d r o from left to right, respectively.

If there is no obstacle appeared in one of these sectors, the distance of this sector is set as d ao . The distance is represented

by the three linguistic fuzzy sets {Very-Near, Near, Far}, with the trapezoidal membership functions shown in Fig. 4 (a). The

rule sets for ascertaining the turning angle and movement speed of local obstacle-avoiding behavior are discussed in this

section. 

We propose a two layers fuzzy inference system to reduce the number of rules and the computational complexity. In the

first layer, we search the farthest distance sector in the whole left and right regions independently with a preference toward
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Fig. 4. Membership functions for (a) the closest pedestrian-obstacle distances, (b) collision risk, (c) angles between decision maker and pedestrians, (d) 

influence of obstacles. (e) angles occupied by obstacles, (f) negative energy, (g) goal angle, and (h) weighting factors. 

Table 2 

Inference rule set for selecting 

preferred-left sector. 

d l o d f l 
o 

F N VN 

F SN LN LN 

N SN SN LN 

VN SN SN SN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the front direction. The whole left sector includes the left sector and front left sector, as well as the whole right sector. In

the second layer, we determine the best sector among the preferred left, preferred right, and front sectors. The inference

rules of the first layer for turning angle are summarized in Table 2 which are used to find the preferred left sector and the

nearest pedestrian-obstacle distance d 
pr 
o , where LN is an abbreviation of ‘Large-Neg’ and SN is ‘Small-Neg’. For example, the

(1, 3) element of top layer in Table 2 can be written out as IF d l o is ‘Far’ AND d 
f l 
o is ‘Very-Near’, THEN αl is ‘Large-Neg’.

The bottom left corner of Table 2 can be written out as IF d l o is less than or equal to d 
f l 
o , THEN αl is ‘Small-Neg’. The rules

reflect the empirical evidence that pedestrians tend to select the direction closest to the current direction (front sector) so

that they do not make unnecessary rotation [37] . A similar fuzzy inference system can be constructed for the right regions

by replacing l and N by r and P . The outputs of the first layer are the preferred turning angles associated with the preferred

left ( PL ) and preferred right ( PR ) sectors. The turning rules for the second layer are shown in Table 3 , where UNC and Z

stand for ‘Uncertainty’ and ‘Zero’, respectively. Note that when the distance d 
f 
o is ‘far’, i.e., the left part of the Table 3 , the

decision maker is dominated to walk along the current direction until he/she faced a front obstacle. If the distances in each

sector are the same, the front sector would be chosen as the walking direction. Notice that the first line of middle part and

right part in Table 3 , when a pedestrian meets the same circumstances of PL and PR sectors, i.e., the values of d 
pl 
o and d 

pr
o 

are the same, the recommendation of turning angle is UNC . It has the following expression: 

UNC = 

{
P N (P = K s ) 
P P (P = 1 − K s ) 

(1)
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Table 3 

Turning rule set of local obstacle-avoiding behavior. 

Input Output Input Output Input Output 

d f o d pl 
o d pr 

o α1 d f o d pl 
o d pr 

o α1 d f o d pl 
o d pr 

o α1 

F F F Z N F F UNC VN F F UNC 

F F N Z N F N PP VN F N PP 

F F VN Z N F VN PP VN F VN PP 

F N F Z N N F PN VN N F PN 

F N N Z N N N Z VN N N UNC 

F N VN Z N N VN Z VN N VN PN 

F VN F Z N VN F PN VN VN F PN 

F VN N Z N VN N Z VN VN N PN 

F VN VN Z N VN VN Z VN VN VN Z 

Fig. 5. Illustration of the decision maker P n facing nearby pedestrians. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where K s ∈ [0, 1], the PN is selected with a probability of K s , as well as PP with a probability of 1 − K s . The selection

probability K s mainly depends on people’s living habits. For example, the Chinese people have a tendency to walk on the

right side of the road, while the Japanese are just the opposite. So the probability K s is usually larger than 0.5 in China and

smaller than 0.5 in Japan [26] . The advantage of using UNC , over choosing either left or right sector arbitrary, is that it offers

pedestrians a selection to reduce subjective biases. 

The recommendation of a pedestrian’s speed for the local obstacle-avoiding behavior is determined by the closest

pedestrian-obstacle distance in front sector, i.e. d f . We can use three fuzzy logic rules to describe the speed choosing strate-

gies. 

(1) IF d 
f 
o is Very-Near, THEN V 1 is Stationary; 

(2) IF d 
f 
o is Near, THEN V 1 is Slow; 

(3) IF d 
f 
o is Far, THEN V 1 is Fast. 

The decision maker will slow speed or even stop suddenly when facing a front obstacle at the local scope, whereas,

he/she will walk freely with desired speed. 

3.2.3. The regional path-searching behavior 

This section analyzes the modeling process of the regional path-searching behavior which drives a pedestrian to the

safest path in the regional scope (i.e. the visual field). A fuzzy inference system, as shown in Fig. 2 , is constructed to de-

scribe this behavior. The concept of negative energy (NE) is defined to evaluate the degree of safety. Its value depends on

the distribution of pedestrians and obstacles which appeared in the visual field of the decision maker. We use the collision

risk (CR) and influence of obstacle (IO) to characterize the energy produced by pedestrians and obstacles, respectively. The

speeds of front pedestrians, and the angles and distances between pedestrians and the decision maker are considered as

the dominant factors of the CR. The size of IO is determined jointly by the visual angle occupied by obstacles and clos-

est pedestrian-obstacle distance. With a manner similar to the local obstacle-avoiding behavior, the final turning angle is

determined by the values of NE in five sectors. The speed is determined by the NE of the front sector. 

(a) Collision risk assessment: In this study, collision risk is defined as the possibility of a collision with the neighbors

who appeared in the visual field of the decision maker. CR is represented by three linguistic fuzzy sets {Low, Middle,

High}, with the membership functions shown in Fig. 4 (b). It is determined by the variables of θnm 

, d nm 

, and V m 

.

They are illustrated in the left part of Fig. 5 , where d nm 

is the distance between the decision maker P n and a nearby
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Table 4 

Collision risk assessment rules R 1 for a moving pedestrian. 

Input Output Input Output 

θ ∗
nm V ∗m d ∗nm CR ∗m θ ∗

nm V ∗m d ∗nm CR ∗m 

A Fast VN H D Fast VN L 

A Fast N H D Fast N L 

A Fast F H D Fast F L 

A Slow VN H D Slow VN L 

A Slow N M D Slow N L 

A Slow F M D Slow F L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

moving pedestrian p m 

in the visual field, V n and V m 

are the speed of P n and p m 

, respectively. θnm 

is defined as the

angle between the movement direction of a pedestrian m and the decision maker n : 

θnm 

= θm 

− θn , θn = 90 

◦, θm 

∈ ( 0 

◦, 360 

◦] (2)

where θn and θm 

are angles from x -axis to movement directions, turning in a counterclockwise direction. The effects

of d nm 

and V m 

on CR should be obvious. But, the effect of θnm 

is relatively complex. For example, a pedestrian ap-

peared in the left or right part of visual field with same angle θnm 

brings different degree of risk to the decision

maker. The assessment rule follows a basic rule of thumb that a pedestrian who walks toward the decision maker P n
brings more risk than deviates from P n . 

To illustrate, the left-hand side of Fig. 5 shows four pedestrians with same values of speed V m 

and distance d nm 

,

who located in the left part and pointing to the right half of the plain ( P 1 ), in the left and pointing to left half

of the plain ( P 2 ), in the right and pointing to right half of the plain ( P 3 ) and in the right and pointing to left half

of the plain ( P 4 ), respectively. The range of angles are θn 1 , θn 3 ∈ [ 180 ◦, 270 ◦] ∪ [ −90 ◦, 0 ◦] and θn 2 , θn 4 ∈ [0 °, 180 °).
Obviously, pedestrians whose moving directions pointing to the decision maker are considered to have large effects

on CR, i.e., the pedestrians located in the left side with angle of θnm 

∈ (0 °, 180 °] or in the right side with θnm 

∈
[ 180 ◦, 270 ◦] ∪ [ −90 ◦, 0 ◦] . Conversely, the moving directions deviating from the decision maker have small effects on

collision risk. We can see from the right-hand side of Fig. 5 that the size of CR is P 1 > P 2 in the yellow region,

whereas, it is completely opposite in the blue region, i.e., P 3 < P 4 . The angle θnm 

is represented by the two linguistic

fuzzy sets {Approach , Deviation}, with the membership functions shown in Fig. 4 (c). The representation of V m 

and

d nm 

are same as the movement speed V and closest pedestrian-obstacle distance d ∗o , respectively. In accordance with

the above analysis, the rule set of collision risk assessment for a pedestrian is shown in Table 4 . Note that the output

of system is low when the pedestrian deviated from the decision maker. Conversely, a pedestrian brings high risk if

and only if he/she walked toward the decision maker with a big speed or a very near distance. The overall risk for

pedestrians in each sector is 

C R 

∗ = 

∑ 

m =1 , 2 , ··· ,N 
R 1 (θ

∗
nm 

, d ∗nm 

, V 

∗
m 

) (3)

where the asterisk ( ∗) indicates one of the five sectors { l , fl, f , fr , r }, N is the total number of pedestrians appeared in

this sector. 

(b) Analysis the influence of obstacles: Obstacles in the visual field also bring negative energy for the regional path-

searching behavior. The impact imposed on the decision maker will differ depending on the visual angle occupied by

obstacles and closest distances between decision maker and obstacles, which are denoted by φ∗
oi 

and d ∗
oi 
, respectively.

A schematic of the decision maker facing obstacles is shown in Fig. 6 . The obstacles hidden behind the others (i.e. the

white grid regions shown in the Fig. 6 ) have no effect on IO , as well as outlying obstacles (i.e. the blue grid regions

shown in Fig. 6 ), we can ignore these obstacles when analyzing their influences. The size of IO 

∗ is represented by the

three linguistic fuzzy sets {Small, Middle, Large}, with the membership functions shown in Fig. 4 (d). 

As the occupied central angle of each sector is not exactly the same (40 °, 30 °, 30 °, 30 ° and 40 ° from left to right),

so the domain of discourses of φ∗
oi 
(∗ ∈ { l , f l , f, f r, r} ) are not identical. We convert them to the same interval with

a scaling factor. Then the φ∗
oi 

are represented by the three linguistic fuzzy sets {Small , Middle, Large}, with the

membership functions shown in Fig. 4 (e). The rule set for assessment the influence of an obstacle is shown in Table 5 ,

which is derived directly from the occupied visual angle φ∗
oi 

and closest distance d ∗
oi 

. Observe that two factors are

equally important for IO 

∗. The large the blocked vision angle and the closer the distance, the greater the value of IO 

∗.

The total influence of obstacles in each sector is 

I O 

∗ = 

∑ 

i =1 , 2 , ··· ,M 

R 2 (φ
∗
oi , d 

∗
oi ) (4)

where the definition of asterisk ( ∗) is same as above, M is the total number of obstacles appeared in this sector. 

(c) Turning rules and movement rules: Negative energy of a sector ( NE ∗) is produced from the repulsive interactions with

obstacles and pedestrians, and it dominates the regional path-searching behavior directly. As illustrated in Fig. 2 , its
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Decision maker

Ordinary obstacle

Obscured obstacle

Outlying obstacle

Eye ray

Fig. 6. Illustration of the decision maker P n facing obstacles. (For interpretation of the references to colour in the text, the reader is referred to the web 

version of this article.) 

Table 5 

Inference rules R 2 for influence of 

an obstacle. 

d ∗
oi 

φ∗
oi 

S M L 

F S S M 

N S M L 

VN M L L 

Table 6 

Inference rules for negative energy. 

CR ∗ IO ∗

L M S 

H L L M 

M L M M 

L M M S 

 

 

 

 

 

 

 

 

 

 

 

 

 

effect arises from synergistic interaction between primitive factors, collision risk and influence of obstacles. The rules

for evaluating negative energy is shown in Table 6 . From this table we can see that the negative energy is ‘small’ if

and only if CR ∗ and IO 

∗ are all ‘low’, and it increases obviously until one of them reaches the ‘middle’ or ‘high’ level. 

We develop a system for the regional path-searching behavior, which is similar with that used to model the local

obstacle-avoiding behavior. Negative energy obtained from each of five sectors are replaced by { NE l , NE fl, NE f , NE fr , NE r }.

It is covered by the three linguistic fuzzy sets {Small, Middle, Large} with the membership functions shown in Fig. 4 (f). The

rule sets are similar to those described in Tables 2 and 3 , with d ∗o replaced by NE ∗ and {Very-Near, Near, Far} replaced by

{Small, Middle, Large}. Note that pedestrians always tend to choose the minimum negative energy sector as their preferential

path in the region scope. 

3.2.4. The global goal-seeking behavior 

The goal-seeking behavior is a kind of global behavior which reflects a tendency that pedestrians always move in direc-

tions to their goals regardless of external environments [1,37] . The turning angle for global goal-seeking behavior is deter-

mined by the goal angle γ g . We can see from Fig. 1 (A) that the range of goal angle is γg ∈ [ −75 ◦, 75 ◦] , and it is represented

by five linguistic fuzzy sets {Large-Left, Small-Left, Zero, Small-Right, Large-Right} with the membership functions shown in

Fig. 4 (g). The turning rules are summarized in Table 7 . 

Note that once the decision maker deviates from the direction of goal, the turning rules of the global goal-seeking be-

havior will eventually turn his/her movement direction back toward it. 

The following five rules are developed to determine the recommendation of movement speed of the global goal-seeking

behavior: 
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Table 7 

Turning rules for the global goal-seeking be- 

havior. 

Input γ g LL SL Z SR LR 

Output α3 LP SP Z SN LN 

Fig. 7. Weighting’s assignment rules for three elementary behaviors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) IF d g is Far, THEN V 3 is Fast; 

(2) IF d g is Near AND γ g is Zero, THEN V 3 is Fast; 

(3) IF d g is Near AND γ g is not Zero, THEN V 3 is Slow; 

(4) IF d g is Very-Near AND γ g is Zero, THEN V 3 is Fast; 

(5) IF d g is Very-Near AND γ g is not Zero, THEN V 3 is Stationary. 

The ‘goal distance’ d g is represented by three linguistic fuzzy sets {Very-Near, Near, Far} with the membership functions

shown in Fig. 4 (f). The first rule reveals that the decision maker moves freely with desired speed if the value of d g is big

enough. The speed is ‘fast’ as long as goal angle is ‘zero’. But, the speed is ‘stationary’ when the decision maker is very close

to but not facing the goal. 

3.2.5. Integration of multiple elementary behaviors and conflict resolution 

In the previous sections, the local obstacle-avoiding behavior, the regional path-searching behavior, and the global goal-

seeking behavior are described independently for determination of pedestrian’s turning angles and movement speeds at

three different scopes. Each behavior has different degree of effects on the final decision results in different situations. A

conflict occurs if two of these three elementary behaviors give whole contrary recommendations. For example, the local

obstacle-avoiding behavior dominates the pedestrian to turn right with a big turning angle, and the regional path-searching

behavior dominates to turn opposite direction. The conflict may lead to wrong decision, which will take a pedestrian into

region where he/she didn’t want (have) to go. There are many strategies such as the degree-of-architecture method [50] ,

context-dependent blending method [44] , weighted mean method [56] have been proposed to integrate multiple behaviors

and resolve potential conflicts. The integration methodology we employed in this study is the simple weighted mean method

[56] . The recommendations of three elementary behaviors are calculated independently by using the fuzzy inference systems

proposed above. The weighting factors of these behaviors are adjusted dynamically according to perceptual information

obtained from surrounding environments rather than adopted arbitrary fixed values in advance. The values of weighting

factors δao , δsp , and δsg dominate the degree of influence of each behavior on the final results of α and V , where δao , δsp ,

and δsg represent the weights of the local obstacle-avoiding behavior, regional path-searching behavior and global goal-

seeking behavior, respectively. These weights are represented by the three linguistic fuzzy sets {Small, Middle, Large} with

the membership functions shown in Fig. 4 (h). The rule set for the weighting’s assignment principle is summarized in Fig. 7 .

The weighting’s assignment rules continuously update the weighting factors of three behaviors to resolve conflicts in

response to possible environmental conditions. When a pedestrian faces a safe and obstacle-free environment, the global

goal-seeking behavior dominates and drives he/she toward the goal. When a pedestrian faces a cluttered environment, con-

versely, the weights of local obstacle-avoiding behavior and regional path-searching behavior are increased significantly to

avoid the potential collision and get out of the high negative energy region at the expense of deviating from the nominal

path to the goal. Observing that the above weighting assignment rules are complete and exhaustively partition the entire

space of possibilities. 
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Fig. 8. Snapshots of crowd evacuation: (a) at time step 10, (b) at time step 150, and (c) at time step 250. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final results of turning angle α and movement speed V are determined by integration of recommendations of

obstacle-avoiding behavior, path-searching behavior and goal-seeking behavior with mutable weighting factors by using the 

weighted average method. ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

α = 

˜ δao · ˜ α1 + ̃

 δsp · ˜ α2 + ̃

 δsg · ˜ α3 ˜ δao + ̃

 δsp + ̃

 δsg 

V = 

˜ δao · ˜ V 1 + ̃

 δsp · ˜ V 2 + ̃

 δsg · ˜ V 3 ˜ δao + ̃

 δsp + ̃

 δsg 

(5) 

where ̃  represents the crisp value of the counterpart fuzzy set which is calculated by using the Center-of-Gravity defuzzi-

fication method [42] . Three elementary behaviors are mutually coordinated and restrained by the weighting’s assignment

rules so that pedestrians can arrive at their goals safely with suitable strategies. 

4. Simulations and results 

Once the fuzzy logic-based pedestrian model has been established, we can use it to predict pedestrian dynamics and then

discover crowd’s characteristic features and collective phenomena in different scenarios. But before that, the effectiveness

of the proposed model must be validated. General methods used to validate the pedestrian models include the computer

simulations and controllable real experiments. For the computer simulations, a commonly used strategy is to compare with

the well-known collective phenomena or adjust the parameters and components of the models until a similar tendency

between the simulation results and the fundamental diagrams are satisfied [58] . For controllable real experiments, the real

data collected by cameras or experimenters are used to contrast with model-based simulation results until an acceptable

range of the error between them is reached [40] . 

4.1. Validation of the model 

In this study, the time-based computer simulation approach is selected with the time step of τ = 0 . 5 S s . First, we validate

the model in the simple evacuation situation. The scenario is a square room of size 15 m × 15 m with a 1 m wide exit. It

is the same as that adopted by Helbing et al. [18] . The exit is located at the middle position of the east wall. Pedestrians

are assumed to be scattered in a random positions without overlap between each other. The initial directions and speeds

are given at random. Other parameters of this simulation are set as follow: the initial number of pedestrians N = 200 ,

the pedestrian’s radius r p = 0 . 25 m , and the desired speeds follow a Gaussian distributed with mean value 1.34 m/s and

standard deviation 0.26 m/s [10] . 

Fig. 8 (a)–(c) display the snapshots of crowd evacuation initially with 200 pedestrians ( N = 200 ) in the room at time step

10, 150, and 250, respectively. First, all pedestrians walk toward the exit at a desired speed. Then, the arching and clogging

of crowd occurs, and only a few pedestrians who approach the exit have enough space through the exit. At last, the remnant

part of pedestrians evacuate from the room in an orderly manner. We can observe the generating process of arching crowds

and bursting exit behaviors near the exit. 

In Fig. 9 we plot the evacuation time T versus pedestrians’ desired speed V p . The simulation results derive from averaging

the testing values of repeated simulations with the same model parameters. The following results are got by the same way

unless otherwise specified. The pink lines in Fig. 9 is obtained by simulations of the proposed model in the room evacuation

scenario with different desired speeds, which shows a similar changing trends with the results of Helbing et al. [18] and
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Fig. 9. Evacuation time T versus pedestrians’ desired speed V p contrasting with empirical results. 
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Fig. 10. The influence of exit widths on evacuation times: (a) comparing with empirical results, (b) under different initial densities. 
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Fig. 11. The hallway scenario used for measuring the average speed and density of a pedestrian. The solid circles represent pedestrians crossing the hallway 

from the left to the right hand side and reentering the hallway from left-hand boundary once they are quitted from the right-hand boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Song et al. [57] . The evacuation time decreases with growing desired speed when V p is relatively small. The desired speed

higher than 1.5 m/s in turn reduces the evacuation efficiency, which could reflect the effect of ‘faster-is-slower’ phenomenon

[18] . 

The influence of the exit widths on evacuation times are investigated in the same evacuation scenario. From Fig. 10

(a), the results of comparison with existed works showed that the relation curve obtained by the simulation of fuzzy logic

model is almost the same as that by social force model [18] and CAFE model [57] . Evacuation time T decreases nonlinearly

as the exit width W increased, eventually reaching a saturation state where further increases in W does not have significant

impacts on T . It is shown in Fig. 10 (b) that the variety of crowd density do not affect the inverse-correlative property of

curves, but affect the values of evacuation time. The results demonstrated in Fig. 10 can be used to support the design of

exit width. A critical size of the exit would be determined if the room size and expected density was given. 

Then, we investigate the relationship between speed and density which is known as the fundamental diagram obeyed by

pedestrian dynamics. A 3 m × 15 m hallway scenario with periodic boundary conditions, see Fig. 11 , is designed to measure

the speed-density relation of unidirectional pedestrian flow. A measurement segment of 3 m × 3 m representing with green

dotted box is set in the middle of the hallway. The global density of the hallway is controlled by adjusting the total number

N at initial time, and the number of pedestrians is varied from 20 to 135 in this simulation. A fixed number of pedestrians

with random directions and speeds are scattered in the hallway without overlap between each other. Pedestrians cross the

hallway from the left to the right hand side, and reenter the hallway from left-hand boundary once they are quitted from
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Fig. 12. Measured speed-density relationship contrasting with empirical results. 

Fig. 13. Typical simulation results for lane formation in bidirectional pedestrian flows through a hallway. The red dots represent pedestrians crossing the 

hallway from the left to the right hand side which is opposite to that of pedestrians symbolized by black dots. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the right-hand boundary. We use the measurement method proposed in Ref. [10] to obtain the average speed v n and density

ρn of a pedestrian n at a time interval. 

The results of speed-density relation (bright blue circles) are shown in Fig. 12 . The blue line represents the best fitted

curve ( R 2 = 0 . 916 ) obtained by using a least squares procedure. It can be find that the tendency of the fundamental diagram

is consistent with that derived by the former researchers [19,45,58] at the density domain 0 < ρ < 3 p/m 

2 . When the

density is below 0.5, pedestrians can move at a desired speed because of the adequate space and slight effects of other

pedestrians and obstacles. The average speed decreases obviously with the increase of density. Further, the crowds almost

remained stationary when the density exceeds the critical condition. 

4.2. Simulations of bidirectional pedestrian flow 

As a most common traffic-organization form, the bidirectional pedestrian flow is more complex than unidirectional

pedestrian flow because of complicated interactions and head-on conflicts between counter pedestrian. Understanding the 

characteristics of bidirectional pedestrian flow is very important to improve the efficiency of emergency evacuation and

transport infrastructure. 

A simulation of bidirectional pedestrian flows is presented in Fig. 13 , which shows the results of a simulation with a

8 m wide and 20 m long hallway. Pedestrians enter the hallway at the ends of each side at random positions with the

flow of two person per second. Those intending to walk from the left side to the right side are represented by red dots,

whereas pedestrians intending to move into the opposite direction are represented by black dots. The value of probability

K s in (1) is set as 0.5. In this simulation, a pedestrian automatically chooses the proper route to avoid collision with others

at suitable speed. Sometime later, four dynamic lanes are formed by the pedestrians who intend to walk into the same

direction. Our simulation result is in accord with the conclusion of Helbing et al. [20] that the average expected number N l 

of lanes emerging on a hallway scales linearly with its width W h ( N l (W h ) = 0 . 36 ∗ W h + 0 . 59 ). The number of lanes is four
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Fig. 14. Measured density-specific flow relationship contrasting with empirical results. (For interpretation of the references to colour in the text, the reader 

is referred to the web version of this article.) 
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Fig. 15. Comparison of density ρ and specific flow Q for different values of probability K s . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when the wide of hallway is 8 m . This proves that the result of proposed model is rational in the simulation of bidirectional

pedestrian flow in the hallway. Because the time-consuming avoidance behaviors and head-on conflicts are replaced by the

simple following behaviors, the passing efficiency of hallway is significantly improved after the lane formation phenomenon

is occurred. Simulation results show that the ‘lane formation’ phenomenon is not a result of the pedestrian organization but

an emergent property of the many interactions within bidirectional pedestrian flows. 

Then, we investigate the relationship between specific flow and density which is known as another fundamental diagram

obeyed by bidirectional pedestrian flows [12,58] . The instantaneous flow in the measurement region is computed as the

product of density and average speed. The measurement region of 4 m × 8 m is set in the middle of the hallway. The global

density of the hallway is controlled by adjusting the entering flows of both left side and right side, which is varied from

one person per second to eight persons per second. The flows of both sides are equal in this simulation. The measurement

methods of density and speed are identical with above. 

The measured results for the fundamental diagram of density against specific flow (bright blue circles) are shown in

Fig. 14 . The blue line represents the best fitted curve ( R 2 = 0 . 907 ) obtained by using a least squares procedure. The tendency

of the relationship between speed and density is good agreement with that derived by Weidmann [58] and Flötteröd and

Lämmel [12] at least for the density ρ < 3 p / m 

2 . The specific flow increases with the enhancing of global density when ρ
is relatively small. Global density bigger than 1.8 p / m 

2 will not contribute to increasing specific flow. 

Meanwhile, we investigate the effect of walking habits on the fundamental diagram of density and specific flow relation.

The K s in (1) depicts probability of a pedestrian selecting the preferred left direction when a pedestrian faces the same

preferred right and left conditions, which are both attractive than front sector. The value of K s = 0 . 5 indicates that a pedes-

trian’s choice is completely random, while K s = 1 indicates the choice is completely decisive. Simulations of bidirectional
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pedestrian flows are performed in the same hallway scenario with different values of probability K s . The values of K s are set

as 0.5, 0.7, and 1.0, respectively. Fig. 15 gives the relation of the specific flow Q and crowd densities under different values of

probability K s . We can see that the varying of K s has negligible influence on the density-specific flow relation at the density

domain ρ < 3 p / m 

2 . This finding is agree with the result of Zhang et al. [66] . One reasonable explanation of this could be

that the head-on and cross-directional conflicts occurred in bidirectional pedestrian flow have little impact on the passing

efficiency when the density is not too high. That is, the walking habits considered in this study have little effect on the

fundamental diagram of bidirectional pedestrian flows at least for density ρ < 3 p / m 

2 . 

In summary, all these simulations show that the proposed fuzzy logic-based model can describes some observed phe-

nomena such as ‘arching and clogging’, ‘faster-is-slower effect’ and ‘lane formation’ realistically, and the measured funda-

mental diagrams such as speed-time, speed-density, and flow-density relations match well with the empirical results. So

we have reason to believe that the proposed model can be applied to a reliable description and prediction of pedestrian

dynamic behaviors. 

5. Conclusion 

The main contribution of this paper is the proposing of a new model for pedestrian dynamical behaviors by using a

fuzzy logic approach. First, a pedestrian’s visual field is divided into five sectors by radial-based discretization method.

The decisions of turning angle and movement speed of each step are made by integration of the intermediate results of

local obstacle-avoiding behavior, regional path-searching behavior and global goal-seek behavior with mutable weighting 

factors. The weighting factors of three elementary behaviors are adjusted automatically with the variation of surrounding

environments. By simulations of crowd evacuation, unidirectional and bidirectional pedestrian flows, the effectiveness of 

the proposed model is validated from both qualitative and quantitative aspects. The self-organization phenomena, such as

‘arching and clogging’, ‘faster-is-slower effect’ and ‘lane formation’, are observed in these simulations. The analyzed results

indicate that the tendency of fundamental diagrams are in line with published empirical data. The evacuation time of the

proposed model decreases with the increasing of exit width, which is accord with the results of the social force model and

CAFE model. Meanwhile, we also found that the walking habits has negligible influence on the fundamental diagram of

density-specific flow relation at the density domain ρ < 3 p/m 

2 . 

The pedestrian model proposed in this paper embodies the following three human experience or behavioral heuristics: 

• A pedestrian keeps a safe distance with the closest obstacle in the walking direction, and turns a suitable angle to avoid

collision with it, but he/she dislikes deviating too much from current direction; 

• A pedestrian always searches the safest path (the minimum negative energy sector) taking into account the complicated

interactions with obstacles and pedestrians in the visual field; 

• A pedestrian has the trend of walking toward his/her final goal no matter what the environment. 

The proposed fuzzy logic-based pedestrian model has major advantages over exiting analytical methods. First, the model

has the ability of making the most of perceptual-based information, which are imprecise and uncertain in nature and often

overlooked for other methods during the modeling procedure. This does not, however, mean that the proposed model can’t

deal with precise information. It has the same processing capability for measurement-based information by treating them

as a special form of perceptual-based information. Second, it makes the proposed model highly robust in coping with the

cognitive and perceptive disparities of things. And third, the use of human experience and knowledge makes the proposed

fuzzy logic model more realistic for description and prediction of pedestrians’ behaviors. In addition, the adopted elementary

behavioral analysis and weighting integration strategies can be extended conveniently to incorporate new behaviors such as

separation and herding behavior, whereas this requires complete reconstruction for analytical methods. 

In this paper, pedestrian dynamic behaviors in common scenarios, i.e. a square room with an exit, unidirectional and bidi-

rectional hallways, have been investigated by using the fuzzy logic model. In the subsequent research, the proposed model

will be further applied to pedestrian stream simulation in a more complex scenario such as subway station or stadium. 
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