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The performance of text-based image retrieval is highly dependent on the tedious and inefficient manual
work. For the purpose of realizing image keywords generated automatically, extensive work has been
done in the area of image annotation. However, how to treat image diverse keywords and choose appro-
priate features are still two difficult problems. To address this challenge, we propose the multi-view
stacked auto-encoder (MVSAE) framework to establish the correlations between the low-level visual fea-
tures and high-level semantic information. In this paper, a new method, which incorporates the keyword
frequencies and log-entropy, is presented to address the imbalanced distribution of keywords. In order to
utilize the complementarities among diverse visual descriptors, we tactfully apply multi-view learning to
search for the label-specific features. Thereafter, the image keywords are finally produced by appropriate
features. Conducting extensive experiments on three popular data sets, we demonstrate that our pro-
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posed framework can achieve effective and favorable performance for image annotation.
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1. Introduction

With the remarkable improvement of the information technic,
the proliferation of digital images on the Internet posed a great
challenge for large-scale image management. In order to organize,
query and scan so large-scale images, image retrieval has been
established. Text-based image retrieval (TBIR) [1], a typical image
retrieval system, allows a user to present his/her information need
as textual query and find the relevant images based on the match
between the textual query and the manual annotations of images.
Carefully chosen keywords can improve image retrieval accuracy,
but the tagging process is known to be tedious and labor intensive
[2]. Due to the tagged image databases containing rich information
about the semantic meanings of the images, many image annota-
tion algorithms exploit the exist tagged images to automatically
annotate new images or add extra keywords to images with a
few existing keywords.

The annotation process can be considered as a multi-label clas-
sification problem, and the existing methods can be grouped into
two categories: generative models and discrimination models.
Generative models try to learn the joint probability distribution
between semantic concepts and image visual features, thus the
image annotation can be achieved by using probabilistic inference
[3-5,9,6-8]. Meanwhile, the discrimination models take the image
annotation task as a supervised learning problem. Many typical
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supervised learning models have been introduced into this task,
such as hidden Markov model (HMM) [10], supervised multi-
class labeling (SML) [11], and support vector machine (SVM)
[12,13]. Compared with the previous work, recent research efforts
have taken more attention on extending the keyword prior knowl-
edge and using hybrid model [14,18,19,17,15,16]. Recently, deep
learning, as a novel machine learning algorithm, has achieved won-
derful performance in the field of image understanding. This algo-
rithm is also introduced to image annotation problem [25,28].

Although these algorithms have got wonderful results, the
results are still unsatisfied. As a matter of fact, the annotation per-
formance is limited in two major aspects:

(1) In real situations, image keywords from the Internet are
extremely diverse with non-uniform distribution. Table 1
shows the image keyword distributions in three data sets,
and we can see that the number of different keywords used
for label images are seriously imbalanced. In this situation,
the learning model trends to produce high accuracy for
major keywords and poor performance for minority key-
words. The average performance for all keywords of the
model is limited by the minority keywords.

(2) Images are often described by diverse features which own
different recognition capacities for different objects. For
instance, in Fig. 1 “sky” and “sea” are likely identified by
color, while “airplane” and “bird” are likely identified by
shape. To capture information of the image as more as
possible, we can concatenate different features into a long
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Table 1
Keyword distribution on the Corel-5 K, ESP game and IAPRTC-12.

Models Keywords Images Avg. images/keyword Max. images/keyword Min. images/keyword
Corel5K 260 5000 66 1120 2
ESP game 268 20,770 364 5059 20
IAPRTC-12 291 19,627 386 5534 50

Fig. 1. Image examples that can be easily annotated by human.

vector. However, this concatenation causes overfitting in the
case of a small size training sample and is not physically
meaningful because each view has a specific statistical prop-
erty. Therefore, how to utilize the different image feature
properties is important in tagging process.

Stacked auto-encoder (SAE) [24], a typical deep learning struc-
ture, can learn extremely complicated relationships between
image features and semantic information. Thus SAE is a suitable
machine learning model for image understanding task. However,
Compare with traditional image classification, image annotation
usually has several keywords for each image. We modify the SAE
model by applying sigmoid function as the SAE predictor and using
ranking algorithm for generating image keywords. Further, the
label number in image classification is usually limited, while the
keywords for image annotation is always abundant. Due to this
reason, image keywords can be seen as image text information.
In this paper, we propose an iteration algorithm to retrain SAE
twice.

To directly address the aforementioned limitations, we propose
the multi-view stacked auto-encoder (MVSAE) with imbalanced
learning. One aim of this paper is to present a simple method
which can avoid low frequency keyword misclassification. Our
method proposes to weigh different keywords depending on their
frequency and adopt log-entropy to modify the object of SAE. For
effectively utilize properties of different features, algorithm in
[18] proposed a single label-specific classifier for each keyword.
We tactfully incorporate the same idea into SAE and design a
multi-view learning algorithm. The multi-view learning algorithm
evaluates the annotation results on each keyword from different
features and chooses the feature which has the best performance
as the label-specific feature. As a result, each keyword can be pro-
duced by the most appropriate features. We carefully implement

MVSAE for image annotation and conduct experiments on three
popular image annotation data sets [14]. The experimental results
demonstrate the effectiveness of MVSAE by comparing with the
baseline algorithms.

The contributions of this paper are threefold:

(1) A novel SAE framework with sigmoid predictor is con-
structed for image annotation problem. Further, we propose
a new iteration algorithm which combines the image visual
features and text information as model inputs.

(2) The imbalance learning method with log-entropy weights is
proposed for solving the problem of image keywords with
imbalanced distribution.

(3) The multi-view SAE (MVSAE) is proposed to utilize the dif-
ferent descriptor properties.

The rest of this paper is organized as follows. Section 2 intro-
duces a related work of image annotation. Section 3 describes
the details of our proposed MVSAE framework. Section 4 compares
our framework with the existing models and analyzes the results.
Section 5 concludes the paper.

2. Related work
2.1. Advantage of deep learning

Deep neural networks, containing multiple nonlinear hidden
layers, can learn very complicated relationships between their
inputs and outputs. However, the nonlinear mapping between
the inputs and outputs makes network be prone to local optimum
and difficult to converge by back-propagation algorithm [20]. In
order to overcome the learning problem of deep neural network,
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Hinton et al. [21] proposed unsupervised layer-wise greedy train-
ing algorithm based on the Restricted Boltzmann Machines
(RBM). In addition, deep learning methods also appeared in many
deformed structures such as convolution neural network (CNN)
[22], deep boltzmann machines (DBM) [23], and auto-encoder
(AE) [24].

Pretraining followed by finetuning with backpropagation has
been shown to give significant performance boosts over finetuning
from random initializations in certain cases. Generally there are
three ways for pretraining: RBM, DBM and AE. The RBM, the first
model for pretraining, has been used effectively in modeling distri-
butions over binary-valued data. Further, as an extension of RBM,
the DBM is a network of symmetrically coupled stochastic binary
units. The AE is modified from neural network by using inputs as
targets. Among these three models, DBM has the best performance,
but its learning process is complicated and time-consuming. Vin-
cent et al. [24] presented the denoising auto-encoder (DAE), in
which the AE is modified by adding noise into inputs. The DAE
has comparable performance with DBM in image application, and
its learning process is much simpler than DBM. Thereby we choose
DAE to accomplish unsupervised pretraining in this paper.

In practice, deep learning algorithm is widely used in the object
recognition, image classification, speech recognition and other
fields, while it has done seldom work on image annotation task.
Srivastava et al. [25] combined two modified Restricted Boltzmann
Machines (RBM) (Gaussian RBM for image, Replicated Softmax
model for text) with a common latent layer to construct a Multi-
Modal Deep Belief Network. The model can be used to generate
such missing keywords by clamping the observed image features
at the image path (Guassian RBM path) and sampling the hidden
modalities from the conditional distribution by running the stan-
dard alternating Gibbs sampler. Socher et al. [26] and Pinheiro
et al. [27] used recurrent neural network for scene labeling by
assigning a class label to each pixel in an image neither relying
on any segmentation technique nor any task-specific features.
Wang et al. [28] proposed an effective multi-model retrieval based
on stacked auto-encoder which project high-dimensional features
extracted from data of different media types into a common low-
dimensional space for metric learning.

2.2. Imbalance learning

Imbalanced distribution of image keywords is widely existed in
images from the Internet. For instance, “sky” and “water” appear
much more frequently than “hotel” and “museum” in images. If
we treat each keyword equally, the low frequency keywords would
be omitted during annotation process. The reason is that model
selection criteria managing the bias/variance tradeoff often are
more sensitive to larger labels than to smaller labels. For the sake
of learning better on all labels, cost-sensitive methods are pro-
posed [37].

Cost-sensitive methods focus on the imbalanced learning prob-
lem by using different cost matrices that describe the costs for any
misclassifying particular data example. They design optimal classi-
fiers with respect to losses which weigh certain types of errors of
training examples more heavier than others. For instance, Guillau-
min et al. [14] took into account the imbalance among keywords
by incorporating cost for keyword prediction. Cost-sensitivity can
be also introduced to SAE by the most effective way: making the
object cost-sensitive [38].

2.3. Multi-view learning
Images are often described by many views. The concept of

‘views’ used for images refers to different features or attributes
for depicting the objects to be classified. Schemes in Multi-view

learning utilize the features from different views to boost image
classification performance. Extensive work has been done in the
area of multi-view learning for image understanding. Images mea-
sured by different views were used to construct a prior and formu-
late a regularization term for semi-supervised boosting algorithm
in [36]. Guillaumin et al. [14] combined different visual represen-
tations with the keyword feature for semi-supervised image classi-
fication. Liu et al. [19] presented the multi-view Hessian
discriminative sparse coding which seamlessly integrates Hessian
regularization with discriminative sparse coding for multi-view
learning problems. Hu et al. [18] used label-specific feature learn-
ing algorithm to find a suitable feature space for each keywords.
Luo et al. [35] introduced multi-view vector-valued manifold reg-
ularization to integrate multiple features for multi-label image
classification.

3. The multi-view stacked auto-encoder framework

In this section, we introduce the framework of our proposed
model. Fig. 2 shows the whole image annotation scenario. The core
of the MVSAE model is the basic SAE which is used to build the
mapping from image features to keywords. Step 1 (Feature Extrac-
tion), for effectively utilizing different image descriptors, we build
the feature pool extracted from images. Step 2 (Imbalance Learn-
ing), considering the image keywords with imbalanced distribu-
tion, we introduce the imbalance learning model to weigh
different keywords depending on their frequency and generate
the SAE optimal object. Step 3 (Model Learning), different features
are imported to SAE for learning model parameters. Step 4 (Key-
word Distribution Generating), SAE model generates different tag
distribution for given images according to different image views.
Step 5 (Multi-view Learning), the multi-view model is applied to
find the label-specific view for each keyword and generate the final
annotation results. In the following, the details for each step will be
presented.

3.1. Problem formulation

Let Q = {w,,,...,wy} denote the dictionary of M possible
annotation keywords. We consider the typical image annotation
task with N pairs as {(I1,T1), (I, T2), ..., (Iv, Tn) € R x {0,1}M1,
which we suppose to be i.i.d samples from the database. The ith
image is represented by I; = {I,I?,...,I'} € R? and labeled with
T, ={t},&2,...,t"} € {0,1}". In image keyword T;, t/ =1 means
that the ith image is labeled with the word wj, and t/ = 0 means
that the image I; is not labeled with the word w;. Here, we assume
that the image keywords given by data sets are correct and com-
plete. The goal of semantic image annotation is to extract the set
of semantic labels for a given image.

3.2. Stacked auto-encoder

Consider solving the image annotation problem by using deep
neural networks. As ordinary, image features are used as model
inputs and keywords are used as model object. Meanwhile, several
hidden layers are applied for modeling the complex relationship
between features and tags. After the deep neural network well
trained, the model could generate suitable keywords for new
images. Due to the fact that the performance of the deep neural
network is highly depended on initial parameters, the model opti-
mization method is a problem. As mentioned before, the pretrain-
ing is an efficient way for overcome this trouble.

As illustrated in the blue rectangle of Fig. 3, the typical deep
neural network training framework is shown. In comparison to
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Fig. 2. Multi-view stacked auto-encoder (MVSAE) model.
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traditional learning process of neural network by directly optimiz-
ing the model with random initial parameters, the deep learning
can be divided into three stages: a layer-wise unsupervised pre-
training, unrolling and fine-tuning. In the first stage, the image fea-
tures x are used for learning the first layer parameter W; with
unsupervised learning model AE. When the first AE is well trained,
W, is got to generate the hidden layer h;, which will be used as the
inputs of the second AE. As the same way in learning W, the
parameters W, and W3 are learned. In the second stage, the deep
neural network is initialized with the parameters W, W,, W;
learned in the first stage and W, generated randomly. In the last
stage, the backpropagation algorithm is used to optimize the whole
deep neural network as traditional neural network. The final opti-
mal parameters can be wrote as Wy + €;, W, + €, W3 + €3 and
W, + €4 which mean fine-tuning on pretraining parameters
Wy, W,, W3 and W,. Generally, the deep neural networks with

pretraining by AE are also called as Stacked Auto-Encoder (SAE).
Because the deep neural network in this model is stacked with sev-
eral Auto-Encoders.

AE derived from neural network is an effective algorithm for
unsupervised learning as shown in Fig. 4a. Suppose we only have
a set of unlabeled training examples {x1,x,,Xs,...}, where x; € R".
The AE model can learn good representation of inputs x by setting
the AE object to be equal to the inputs x. As shown in Fig. 4a, the AE
is composed by two parts: encoder f, and decoder g,.

Encoder f, transforms an input vector x into hidden representa-
tion h. Its typical form is followed by a nonlinearity:

fo(x) = o(Wx + b)

Its parameter set is 6 = {W,b}, where W is the weight matrix
and b is an bias vector. ¢ =1/(1 +exp(—x)) is the activation
function.
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Decoder g, maps h back to a reconstructed dimensional vector X
in input space. Its typical form depends on the AE inputs:

oWh+b) xel0,1]
(h) =
&) {W’h+b’ xeR

with appropriate parameter 0 = {W’,b'}.

AE tries to learn an approximation to the identity function so as
to output X = g, (f,(x)) which is similar to x. We define the loss
function with respect to our model to be £(x,%), then the model
can be learned through minimizing the loss function as following
optimization:

- L1
0,0 ZaFgH?mNE L(xi,8y (fy(xi))) (1)
: i1

Generally, the auto-encoder is trained by back-propagation
algorithm, and the loss function can be squared error loss or
cross-entropy loss. In addition, the tied weights between W and
W’ follow a strict constraint W' = W',

Unfortunately, the reconstruction criterion alone is unable to
guarantee the extraction of useful features as it can lead to the
obvious solution “simply copy the input” or similarly uninteresting
ones that trivially maximize mutual information [24]. Denoising
auto-encoder (DAE) is proposed to change the reconstruction crite-
rion by optimizing the reconstruction of a clean “repaired” input
from a corrupted version of it as shown in Fig. 4b. Compared with
AE, DAE is done by first corrupting the initial input x into x by
means of a stochastic mapping x ~ q(X|x) (Masking noise: a fraction
of the elements of x (chosen at random for each example) is forced
to 0). Then the corrupted input x is then mapped to a hidden rep-
resentation h = f,(X) from which we reconstruct a X =g, (h). At
last, the parameters {0,0'} are trained to minimize the average
reconstruction error over a training set (¥ as close as possible to
the uncorrupted input x). Therefore, DAE could generate a higher
level stable and robust representation under corruptions of the
input. The optimization objective can be written as follows:

N
00" = argmin L (5.8 £, (5) @)
g i=1

Consider a SAE with L hidden layers for image annotation. Let
le{1,...,L} index the hidden layers of the SAE. Let h' denote the
vector of outputs from layer | (h° =1 is the input and h*"' is the
output). W' and b’ are the weights and biases at layer I. As men-
tioned before, {W', b'}, 1 € {1,...,L} are initialized with the results
of layer-wise pre-training by using DAE, and {W""', bm} are ini-
tialized randomly. The feed-forward operation of a standard neural
network can be described as: for I € {0,...,L — 1},

hl+l _ G(WH]hl +bl+1)
hL+1 _ P(WL+1hL + bL+])

where ¢ is any activation function and P is the prediction function.
There are two common prediction function including softmax func-
tion (a; = e% /5", e%, where a; means the jth) output neuron) and sig-
moid function (a; = 1/(1+e™%), where a; means the jth output
neuron) for SAE. Softmax function grades image candidate classes
correlatively and chooses the biggest one as the image label. It is
suitable for image classification with classes mutually excluded
(for example, images can be classified into “car” or “airplane” solely).
However, keywords in image annotation are usually mutually
related (for example, images can be annotated with “car” and “road”
meanwhile). In comparison to softmax function, sigmoid function
has the advantages of grading each image candidate keywords inde-
pendently and returns the top ranked keywords as the annotations
for images. So Sigmoid function is chosen as the prediction function
in this paper. The whole model is trained by using back-propagation
algorithm for solving the optimization problem in (3).

N
0 =argmin® L(FyI;),T; 3
8! ; (Fo(li), Th) 3)

where F(I) = Py, (g4,(... (g4, (I)))) is the compound function of the

SAE, and 0 are model parameters {W' b'}, I € {1,...,L+ 1}. Cross-
entropy loss (£(X,Y) = Xlog(Y) + (1 —X)log(1 —Y)) is defined to
be the loss function in our model for its efficiency and simplicity.
This loss function has been widely adopted in practice, when the
objective element T € [0, 1]. After the model well trained, the SAE

output layer h**! can be seen as the image keyword probability dis-

tribution D for given images. Finally, the image keywords T are
obtained by ranking D.

In image annotation problem, images always have abundant
keywords, and visual features and text information can be both
seen as image representation. Multi-modal classifier unites the
image visual features and texts together for image classification,
which outperforms the model using visual features only. In this
paper, we develop a SAE iterative algorithm shown in Fig. 3 by
retraining SAE twice. At First, visual feature I as model inputs x is
used to train the SAE for generating the initial keyword probability
distribution D' which denoted by red dash arrow. Then I and D'
together compose new representation of images as model inputs
x, which is used to retrain the SAE model for generating the final
keyword probability distribution D?. Finally, image keywords T
are obtained from D?. During the second training step, the parame-
ters of the first layer is augmented to [W4; W, + €] in which W is
initialized randomly and W, + €; follows the result in the first step.
As illustrated in Fig. 3, model parameters after retraining can be
written as [Wg; Wi+ €]+ €1, Wa+ € + €2, W3+ €+ €5 and
W4 + €4 + €4. Unlike the text information being the number of key-
words in Multi-modal classifier, the D! is probability distribution
having the similar structure with visual features. Consequently,
SAE treats D' as the image additional feature and only owns one
path for efficiency.

3.3. Imbalance learning for keywords with imbalanced distribution

Imbalanced distribution of image keywords make classifiers
tend to provide a severely skew degree of accuracies. The majority
keywords have high percent accuracies, while the minority key-
words have low percent accuracies. For addressing this problem,
the object of the SAE is altered to bias the model to focus more
on keywords with low frequency. Inspired by the study in [30],
we modify the object of SAE by incorporating the log-entropy
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weighing scheme based on information theory. Assuming that
there are N images and M different keywords in the data set. The
occurrence amount of jth keyword in training set is denoted as

s’ = >N, t/, where t; is the ith image keywords. Due to the fact that
each keyword is used to annotate at least one image, thus S’ > 0.

Accordingly, the weight for jth keyword in ith image n{ can be cal-
culated as follows:

N J J
j pilogp -
= (1 +’z]: kIOgNk) -log(t] +1) (4)
=

where p] =tl/S'. Let II=[m;j,,,, with each of its row L2-
normalized by one, include the keyword weights assignments for
all the training images. Further, the optimum function of SAE can
be expressed as follows:

N
0" =argmin® L(Fy(I;) = II; = T; 5
g > L(F(ly) * Ti) (5)

i=1

where I1; denotes the ith row of I7, and * denotes element-wise dot.
3.4. Multi-view learning for label-specific features

Numerous features have been proposed for compute vision
problem, and the use of proper features determines the perfor-
mance of learning algorithms. For instance, Unfortunately no fea-
tures can solve the semantic-gap problem on all keywords
efficiently. Inspired by [18,19], we adopt multi-view method based
on the assumption that high-level semantic concepts can be
reflected in a suitable low-level feature for image annotation. We
can understand this assumption in this way. Some semantic con-
cepts can be predicted quite well using color information only,
while the prediction of some other concepts may need shape infor-
mation. If human knowledge can be employed in the annotation
system, the model can choose more suitable features for a test
image. Therefore, in the rest of this section, we will present the
multi-view learning algorithm for training an accurate and effi-
cient image annotation model.

Now, we present the learning process in multi-view learning
algorithm. Given a data set including N images, we extract different
visual features and build a feature pool first. Using the single fea-
ture or the combination of several features, we get V different
views {11,2,,12_%...,I,\,_,v},‘f:1 for each image. Therefore, for the ith
image, we achieve V different image annotation results from V dif-
ferent views. The annotation results are denoted by the matrix R;,
where the vth row elements R; , represent the vth view annotation
result. For comprehensive analysis, the criterion denoted by F1
(details in next section) are chosen to evaluate the annotation
results. The goal of finding the suitable view for a specific keyword
is to select the view which has the highest F1 score to generate
such keyword. We define the vector c to record the best view for
all keywords, and each element c(j), j=1,2,...,M can be calcu-
lated as follows:

c(j) =argmaxFl,;, j=1,2,....M (6)

1<ogV

Consequently, the c(j)th view is label-specific view for the jth
keyword. To estimate the performance of our model, we take
cross-validation to get the appropriate vector c. Based on vector
¢, a M rows and V columns factor matrix F can be obtained, wherein
each row is zero except the position of {j,c(j)} is equal to one.
Finally, the right keywords can be calculated by:

\%4
Ty=>F+R,i=12..N (7)

v=1

where * denotes element-wise dot.

In this paper 9 different visual descriptors [14] are extracted for
image annotation. These features include a GIST feature, 2 Hue fea-
tures, 2 SIFT features, 2 Harris + Hue features, and 2 Harris + SIFT
features. Then the quantized descriptors are represented by a
visual word histogram (e.g. “Dense Hue” and “Harris SIFT”). Subse-
quently a new histogram representation which encodes spatial
information on each histogram is constructed by computing over
a 3 x 1 horizontal decomposition of the image (e.g. “Dense
HueV3H1” and “Harris SIFTV3H1"). All these features in single
forms or combing forms are feed into feature pool to constitute
the different view I;, for image I;.

3.5. MVSAE algorithm

Algorithm 1 lists the detailed procedure of MVSAE. The algo-
rithm consists of three major components: the pro-processing
stage (line 1-2) which builds different image views and modifies
SAE object, iterative training stage (line 3-7) which combines key-
word probability distribution got by first iteration and image fea-
tures for image annotation, and multi-view method stage (line
8-14) which searches for the label-specific view to generate final
annotation results. In the algorithm, we use subscript Tr to indicate
the data from training set, subscript Va to indicate the data from
validation set, and subscript Te to indicate the data from test set.

[I; D'] denotes combining I and D' together as model inputs.

Algorithm 1. Image Annotation Based on Multi-view Stacked
Auto-encoder

Input: Training set I, Tr, Validation set Iy, Tyg, Test set Iz,
Output: Test image keywords Tr.

1 Compute modified object TTr = II * Tt according to Eq. (4)
2 Build image views Ity ,, Itry, Itry, v=1{1,2,..., V} from

ITr- IVa-, ITe
3for v=1to Vdo

4| Train model by using It ,, Trr
5| Get initial keyword distribution probabilities D, ,, Dl ,

and D, , from Iy, Iye, and Ire,

6| Train model by using [Ir; ,; D], T

7| Get final keyword distribution probabilities D%W, Dﬁw
and D3, ,, from (It »; Dy, ), [lvaws Dyg,) and [Ire s Di,,)

8| Rank D}, ,, D%, and get image keywords Tyy,, Ty, for
each view

9| Compute F1 score F1,;, j={1,2,...,M} from TVM

10 forj=1to Mdo

11 L Compute c(j) according to Eq. (6) for each keyword

12 Transform vector c to matrix F.

13 Compute Tre from TTM, v={1,2,...,V} according to Eq.
(7)

14 Return TT@

4. Experimental result

In this section, we evaluate the quality of the multi-view SAE
model on three standard benchmark data sets. First, we intro-
duce the details of data sets, image features and evaluation met-
ric. Then, we test the effectiveness of the SAE model with
imbalance learning and show signification of multi-view method.
Finally, we compare the performance of our model with several
state-of-the-art annotation methods and give some practical
examples of the image annotation.
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4.1. Experimental setup

We begin with a detailed description of the data sets, image fea-
tures and evaluation metric.

4.1.1. Date sets

We use the three current image annotation data sets: Corel-5 K,
ESP game and IAPRTC-12, to verify our algorithm. The details are
introduced as follows:

Corel-5 K. The data set contains 5000 images collected from the
larger Corel CD set. Each image is manually annotated with key-
words from a dictionary of 260 distinct terms. On average, each
image was annotated with 3.5 keywords. The training set contains
4000 images, validation set contains 500 images and test set con-
tains 499 images.

ESP game. The data set consists of 20,770 images of a wide vari-
ety, such as logos, drawings, and personal photos, collected for the
ESP collaborative image labeling task. The images are annotated
with a total of 268 keywords. Each image is associated with a max-
imum of 15 keywords and 4.6 keywords on average. The training
set contains 15,689 images, validation set contains 3000 images
and test set contains 2081 images.

[APRTC-12. The data set consists of 19,627 images of sports,
actions, people, animals, cities, landscapes and many other aspects
of contemporary life. Keywords are extracted from the free-owing
text captions accompanying each image. Overall, 291 keywords are
used. The training set contains 15,665 images, validation set con-
tains 2000 images and test set contains 1962 images.

For all these data sets, the training/validation/test split follows
previous work.

4.1.2. Evaluation metric

For full comparability, we adopt the same evaluation metric as
in [14]. First, all images are annotated with the five most relevant
keywords (i.e. we rank the keywords for the test images in the
descending order based on their probabilities of the output and
return the top ranked keywords as the annotations for images.).
Second, precision (P) and recall (R) are computed for each keyword.
The reported measurements are averaged across all keywords. For
easier comparability, both factors are combined in the F1-score
(F1 = 2P % R/(P +R)), which is reported separately. We also report
the number of keywords with non-zero recall value (N+). In all
metrics, a higher value indicates better performance.

4.2. Effect of modified SAE

The experiments described here evaluate the effect of the mod-
ified SAE. For clearness, we define the SAE with softmax predictor as
SAE-soft, the SAE with sigmoid predictor as SAE-sigm and the SAE
with iteration algorithm as SAE-iter. Particularly, SAE-iter uses sig-
moid function as its predictor. The same idea of combining image
visual features and text information is also used in the
multi-auto-encoder (Multi-AE) [28]. The Multi-AE derives from
multi-model algorithm with SAE [29] which is the first
multi-model deep learning algorithm combining the Audio and
Video information. It builds the bilateral relationship between

Table 2
Mean annotation results of all keywords from different SAE models on the Corel-5 K.
(Bold numbers report when a model outperforms all others.)

Models P R F1 N+

SAE-soft 0.20 0.28 0.24 120
SAE-sigm 0.27 0.36 0.32 149
SAE-iter 0.30 0.38 0.34 155
Multi-AE 0.15 0.20 0.17 110

image and text for image annotation and retrieval. We adopt com-
binative features, including all dense features (SIFT, SIFTV3H1, Hue
and HueV3H1) and GIST feature, to represent the image visual
content.

Table 2 summarizes the average precision/recall/F1/N + of all
keywords for the different SAE models. It can be observed that
SAE-sigm has much better performance than SAE-soft. It indicates
that, In comparison to softmax function, sigmoid function is suit-
able for multi-label image annotation problem. Further, SAE-iter
model slightly outperforms the SAE-sigm model, which suggests
the effect of combined inputs. At last, due to the fact that Multi-
AE is deemed not be a specialized model for image annotation,
Multi-AE has the worst result during all these SAE models. In the
following paper, SAE-iter is applied for image annotation and
abbreviated to SAE for short.

4.3. Advantage of imbalance learning

The experiments described here evaluate the performance of
imbalance learning SAE (SAE-im) on typical different frequency
keywords. In original SAE model, the object is represented by

T, ={t},t2,...,t"} € {0,1}", where t/ =1 if the jth keyword
appears in the ith image and t{ = 0 otherwise. In SAE-im, the object
is represented by II; * T; (x denotes element-wise dot) according
to Eq. (4). The same features are used as before.

Table 3 gives the annotation results of several typical keywords
and Mean annotation results from SAE and SAE-im on the Corel-
5 K. As shown in Table 3, the imbalance learning method has differ-
ent influence on different frequency level keywords. Towards high
frequency keyword, F1 score slightly decreases, because tendency
to low frequency may cause high frequency keywords misclassi-
fied. On the other hand, low level frequency keywords have better
performance than original SAE. Consequently, imbalance learning
can improve the performance of low frequency keywords with
slightly sacrificing high frequency keywords. The last row in Table 3
shows that the performance of SAE-im outperform the SAE model
on the mean annotation results of all keywords, which suggests the
advantage of imbalance learning method on whole annotation
performance.

4.4. Analysis of multi-view learning

In order to confirm the effectiveness of multi-view learning, the
SAE-im is applied to a feature pool with single features and two
mixture features: dense mix features (including Dense Sift, Dense-
SiftV3h1, Dense Hue, and GIST), and Harris mix features (including

Table 3
Annotation results of several typical keywords and the average of all keywords from
SAE and SAE-im on the Corel-5 K. (Bold numbers report when a model outperforms all
others.)

Word Num. SAE SAE-im
P R F1 P R F1

Water 1004 0.51 0.79 0.62 0.53 0.77 0.62
Tree 854 0.42 0.68 0.52 0.37 0.61 0.46
Buildings 408 0.47 0.65 0.54 0.38 0.70 0.49
Snow 267 0.58 0.71 0.64 0.53 0.74 0.62
Stone 212 0.70 0.70 0.70 0.61 0.70 0.65
Sand 184 0.40 0.63 049 0.32 0.58 0.42
Cars 134 0.50 0.59 0.54 0.73 0.65 0.69
House 124 0.32 037 0.34 0.40 0.53 045
Tracks 103 0.64 0.82 0.72 0.82 0.82 0.82
Coral 89 0.58 0.78 0.67 0.73 0.89 0.80
Sunset 76 0.22 0.57 0.32 0.40 0.86 0.55
Petals 59 0.23 0.75 0.35 0.25 1.00 040

Average 0.30 0.39 0.34 0.32 0.40 0.36
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Hue Hue Hue Hue SIFT SIFT SIFT  SIFT Mix Mix
V3H1 V3H1 V3H1 V3H1
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Fig. 5. The annotation results of different views on selected keywords.

045p—-—-—- BF1 ®Precise ORecal -—————

GIST Dense Dense Harris Harris Dense
Hue HueV3H1 Hue HueV3H1 SIFT SIFTV3H1 SIFT SIFTV3H1  Mix Mix feature feature

Dense Harris Harris  Dense Harris Full  Multi-view

Fig. 6. The mean annotation results of different views.

Harris SIFT, Harris SIFTV3H1, Harris Hue, and GIST). Fig. 5 shows
details of annotation performance of different views over selected
keywords. It can be observed that, for each keyword different
views achieve different performance, and some views have poor
performance on several special keywords(like “grass”, “palace”,
and “river”). Obviously, no feature always gets best annotation per-

formance on any keyword. Therefore, it is essential to find the
label-specific view for each keyword.

For utilizing different feature properties, we apply the MVSAE
to find the label-specific feature (multi-view feature) for each key-
word. A similar effect could have been achieved by concatenating
different features into a long vector (full feature) and simply using
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Comparison of MVSAE and other baseline algorithms in terms of P, R, F1 score and N+ on the Corel-5 K, ESP game and IAPRTC-12. (Bold numbers report when a model outperforms

all others.)

Models Corel-5 K ESP game IAPRTC-12

P R F1 N+ P R F1 N+ P R F1 N+
CRM([4] 0.16 0.19 0.17 107 N/A N/A N/A N/A N/A N/A N/A N/A
SML[11] 0.23 0.29 0.26 137 N/A N/A N/A N/A N/A N/A N/A N/A
GS[31] 0.30 033 032 146 N/A N/A N/A N/A 0.32 0.29 0.32 252
MBRM]5] 0.24 025 0.24 122 0.18 0.19 0.18 209 0.24 0.23 0.23 223
JEC[9] 0.27 032 0.29 139 0.24 0.19 021 222 0.29 0.19 0.23 211
TagProp|14] 0.33 0.42 037 160 0.39 0.27 032 238 0.45 0.34 0.39 260
LM3L[32] 0.33 0.37 0.35 146 0.40 0.26 032 239 0.44 0.28 0.34 242
KSVM-VT][33] 0.32 0.42 0.37 179 033 0.32 033 259 0.47 0.29 0.36 268
2PKNN[34] 0.44 0.46 0.45 191 0.53 0.27 0.36 259 0.54 0.37 0.44 278
MVSAE 0.37 0.47 0.42 175 0.47 0.28 034 246 0.43 0.38 0.40 283

Table 5 frequency keywords by imbalance learning. For the synthetical

Comparison of MVSAE and 2PKNN in terms of approximate testing time of 500 images
in second.

Models Corel-5 K ESP game IAPRTC-12
MVSAE 0.13 0.20 0.19
2PKNN 22 139 133

PCA for its dimensionality reduction. Fig. 6 shows the mean anno-
tation results of different views. It is noteworthy that multi-view
feature outperforms others, and the performance of full feature is
even inferior to the dense mixture feature. It demonstrates that
multi-view method can more effectively utilize the complemen-
tary among different features than full feature and significantly
improve the annotation results.

4.5. Comparison to state-of-the-art

In order to verify the effectiveness of MVSAE, the MVSAE algo-
rithm is compared with nine state-of-the-art algorithms
[4,5,11,9,14,31-34] on Corel-5 K, ESP game and IAPRTC-12. Table 4
shows detailed comparisons between MVSAE algorithm and other
algorithms. It is noteworthy that our recall score get best perfor-
mance on Corel-5K and IAPRTC-12 due to enhancing the low

a \ |

_8v

score F1, our model significantly outperforms the other methods
and aligns with the state-of-the-art Algorithm PKNN. Moreover
the present data confirms the role of multi-view learning. How-
ever, as we demonstrate next, MVSAE achieves enormous speedup
over 2PKNN in testing process.

Although 2PKNN achieves superior performance on several
benchmark datasets, O(n) test complexity hinders its applicability
to large scale datasets (where n is the number of training samples).
Table 5 shows the approximate testing time of 500 new images
required by MVSAE and 2PKNN on these three datasets (All exper-
iments were conducted on a desktop with dual 2-core Intel i5 cpus
with 3.2 GHz). Obviously, the testing time consumed by MVSAE
model is much shorter than the time consumed by 2PKNN model,
and grows little with the increasing training sample number. So
the MVSAE model is suitable for large scale image annotation task.

Fig. 7 presents some examples of image annotation produced by
MVSAE algorithm. Unlike traditional methods, which always pro-
vide images with the same number of keywords (usually 5), our
model can annotate images with different number of keywords
according to their features. It is more reasonable for images in real
situation. Here we give two annotation levels to analyze the real
image annotation effectiveness. Completely correct tagged images
are listed in the first row. In this level, the model can annotates the

- :
’ i/
0 A

R

Ground skv. sun. clouds. land sky, jet, plane, stone, sculpture, grass, bear, sky, train,
Truth Y ! ’ smoke buddha meadow, grizzly locomotive, railroad
Predicted sky, sun, clouds, sky, jet, plane, stone, sculpture, buddha, grass, bear, sky, train,
keywords land, sea, sunset smoke, f-16, sand people, temple, hats  meadow, grizzly locomotive, railroad
Ground sky, tree sky, buildings,
! ! sky, water, pool ! ’ boats, museum wood, fox
Truth flowers, shrubs ¥ p street, cars
Predicted tree, flowers, sky, water, buildings, street, sky, tree, grass, rocks,
keywords garden, petals tree, buildings clouds, skyline people, food coyote, giraffe

Fig. 7. Keywords predicted by using MVSAE for several images on the Corel-5 K.
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images with most related keywords besides the ground truth. The
second row is the images annotated with partial correct keywords.
In this level, some keywords are missing for their abstractive con-
cepts and keywords with similar image texture are easily
confusing.

5. Conclusion

In this paper, we have presented a novel MVSAE model to
jointly build the correlations between low-level image features
and high-level semantic keywords to realize automatically images
annotation. First, we modify the SAE by using sigmoid function
predictor and iteration algorithm. Second, for solving the image
keywords with imbalanced distribution, we apply the imbalance
learning method to weigh different frequency keywords. Third,
we introduce the multi-view method to the model for the comple-
mentary information between different features can boost the tag-
ging performance. The proposed algorithm is verified in three
typical data sets, corel-5 K, ESP game and IAPRTC-12. The experi-
ment results show that the multi-view stacked auto-encoder with
imbalance learning can effectively realize the image annotation
automatically, and get annotation results as well as the best tech-
niques in the baseline.

The multi-view stacked auto-encoder can be easily incorpo-
rated into an image tagging tool, where for large amount of given
images the well-trained model will perform well and automati-
cally recommend keywords for the images. Building such a tool
will make image annotation more efficient, less labor intensive,
and ultimately help retrieve the huge number of images on the
Internet more easily.

References

[1] M.S. Lew, N. Sebe, C. Djeraba, R. Jain, Content-based multimedia information
retrieval: State of the art and challenges, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP) 2 (1) (2006) 1-19.

[2] L. Wenyin, S Dumais, Y Sun, H. Zhang, M. Czerwinski and B. Field, Semi-
automatic image annotation, in: Proc. of interact: conference on HCI. 2001, pp.
326-333.

[3] J. Jeon, V. Lavrenko, R. Manmatha, Automatic image annotation and retrieval
using cross-media relevance models, in: Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in
informaion retrieval(ACM), 2003, pp.119-126.

[4] V. Lavrenko, R. Manmatha, J. Jeon, A model for learning the semantics of
pictures, in: Advances in neural information processing systems, 2003.

[5] S.L. Feng, R. Manmatha, V. Lavrenko, Multiple bernoulli relevance models for
image and video annotation, in: Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition(CVPR), 2004,
pp-1002-1009.

[6] K. Barnard, P. Duygulu, D. Forsyth, F. Nando, B. David, M.I. Jordan, Matching
words and pictures, The Journal of Machine Learning Research 3 (2) (2003)
1107-1135.

[7] D.M. Blei, M.I. Jordan, Modeling annotated data, in: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in
informaion retrieval (ACM), 2003, pp. 127-134.

[8] S.C.H. Hoi, W. Liu, M.R. Lyu, W. Ma, Learning distance metrics with contextual
constraints for image retrieval, in: 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2006, pp. 2072-2078.

[9] A. Makadia, V. Pavlovic, S. Kumar, A new baseline for image annotation, in:
Proceeding of the 10th European Conference on Computer (ECCV), 2008, pp.
316-329.

[10] J. Li, J.Z. Wang, Automatic linguistic indexing of pictures by a statistical
modeling approach, IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (9) (2003) 1075-1088.

[11] G. Carneiro, A.B. Chan, P.J. Moreno, N. Vasconcelos, Supervised learning of
semantic classes for image annotation and retrieval, IEEE Transactions on
Pattern Analysis and Machine Intelligence 29 (3) (2007) 394-410.

[12] C. Cusano, G. Ciocca, R. Schettini. Image annotation using SVM, in:
International Society for Optics and Photonics on Electronic Imaging, 2003,
pp. 330-338.

[13] D. Grangier, S. Bengio, A discriminative kernel-based approach to rank images
from text queries, IEEE Transactions on Pattern Analysis and Machine
Intelligence 30 (8) (2008) 1371-1384.

[14] M. Guillaumin, T. Mensink, J. Verbeek ], C. Schmid, Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation, in: [EEE
12th International Conference on Computer Vision (ICCV), 2009 pp. 309-316.

[15] N. Zhou, W.K. Cheung, G. Qiu, X. Xue, A hybrid probabilistic model for unified
collaborative and content-based image tagging, IEEE Transactions on Pattern
Analysis and Machine Intelligence 33 (7) (2011) 1281-1294.

[16] M. Chen, A. Zheng, K. Weinberger. Fast image tagging, in: Proceedings of The
30th International Conference on Machine Learning (ICML), 2013, pp. 1274~
1282.

[17] L. Wu, R. Jin, AK. Jain, Tag completion for image retrieval, IEEE Transactions on
Pattern Analysis and Machine Intelligence 35 (3) (2013) 716-727.

[18] J. Hu, KM. Lam, An efficient two-stage framework for image annotation,
Pattern Recognition 46 (3) (2013) 936-947.

[19] W. Liu, D. Tao, ]J. Cheng, Y. Tang, Multiview hessian discriminative sparse
coding for image annotation, Computer Vision and Image Understanding 118
(1) (2014) 50-60.

[20] D. Erhan, Y. Bengio, A. Courville, P. Vincent, Why does unsupervised pre-
training help deep learning, The Journal of Machine Learning Research 11
(2010) 625-660.

[21] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (5786) (2006) 504-507.

[22] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE, 86(11)(1998) 2278-2324.

[23] R. Salakhutdinov, G.E. Hinton, Deep boltzmann machines, in: International
Conference on Artificial Intelligence and Statistics. 2009, pp. 448-455.

[24] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol, Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion, The Journal of Machine Learning Research 9999 (2010)
3371-3408.

[25] N. Srivastava, R. Salakhutdinov. Learning representations for multimodal data
with deep belief nets, in: International Conference on Machine Learning
Workshop, 2012.

[26] R. Socher, C.C. Lin, C. Manning, A.Y. Ng, Parsing natural scenes and natural
language with recursive neural networks, in: Proceedings of the 28th
International Conference on Machine Learning (ICML), 2011, pp. 129-136.

[27] P. Pinheiro, R. Collobert. Recurrent convolutional neural networks for scene
labeling, in: Proceedings of The 31st International Conference on Machine
Learning (ICML). 2014, pp. 82-90.

[28] W. Wang, B.C. Ooi, X. Yang, D. Zhang, Y. Zhuang, Effective Multi-Modal
Retrieval based on Stacked Auto-Encoders, in: Proceedings of the PVLDB, 2014,
pp. 649-660.

[29] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning,
in: Proceedings of the 28th International Conference on Machine Learning
(ICML), 2011, pp. 689-696.

[30] Z. Feng, R. Jin, A. Jain, Large-scale Image Annotation by Efficient and Robust
Kernel Metric Learning, in: 2013 IEEE International Conference on Computer
Vision (ICCV), 2013, pp. 1609-1616.

[31] S. Zhang, J. Huang, Y. Huang Y, Yu, H. Li, Automatic image annotation using
group sparsity, in: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 3312-3319.

[32] B. Hariharan, L. Zelnik-Manor, M. Varma, S.V.N. Vishwanathan, Large scale
max-margin multi-label classification with priors, in: Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010, pp. 423-430.

[33] Y. Verma, C.V. Jawahar, Exploring svm for image annotation in presence of
confusing labels, in: Proceedings of the 24th British Machine Vision
Conference, 2013.

[34] Y. Verma, C.V. Jawahar, Image annotation using metric learning in semantic
neighbourhoods, in: Proceeding of the 12th European Conference on Computer
(ECCV), 2012, pp. 836-849.

[35] Y. Luo, D. Tao, C. Xu, et al., Multiview vector-valued manifold regularization for
multilabel image classification[]], IEEE transactions on neural networks and
learning systems 24 (5) (2013) 709-722.

[36] A. Saffari, C. Leistner, M. Godec, et al., Robust multi-view boosting with priors,
in: Computer VisionCECCV 2010, Springer, Berlin, Heidelberg, 2010, pp. 776~
789.

[37] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Transactions on
Knowledge and Data Engineering 21 (9) (2009) 1263-1284.

[38] M.Z. Kukar and 1. Kononenko, Cost-Sensitive Learning with Neural Networks,
in: European Conf. Artificial Intelligence, 1998, pp. 445-449.


http://refhub.elsevier.com/S1047-3203(15)00197-2/h0005
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0005
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0005
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0030
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0030
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0030
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0050
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0050
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0050
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0055
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0055
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0055
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0065
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0065
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0065
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0075
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0075
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0075
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0085
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0085
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0090
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0090
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0095
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0095
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0095
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0100
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0100
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0100
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0105
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0105
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0120
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0120
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0120
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0120
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0175
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0175
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0175
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0180
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0180
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0180
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0180
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0190
http://refhub.elsevier.com/S1047-3203(15)00197-2/h0190

	Image automatic annotation via multi-view deep representation
	1 Introduction
	2 Related work
	2.1 Advantage of deep learning
	2.2 Imbalance learning
	2.3 Multi-view learning

	3 The multi-view stacked auto-encoder framework
	3.1 Problem formulation
	3.2 Stacked auto-encoder
	3.3 Imbalance learning for keywords with imbalanced distribution
	3.4 Multi-view learning for label-specific features
	3.5 MVSAE algorithm

	4 Experimental result
	4.1 Experimental setup
	4.1.1 Date sets
	4.1.2 Evaluation metric

	4.2 Effect of modified SAE
	4.3 Advantage of imbalance learning
	4.4 Analysis of multi-view learning
	4.5 Comparison to state-of-the-art

	5 Conclusion
	References


