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ABSTRACT 

Hand-foot-mouth disease (HFMD) outbreak greatly threatened 

Beijing city, the capital city of China, in 2008. The control 

prevention of HFMD has become an urgent mission for Beijing 

Center for Disease Control and Prevention and a focus problem for 

the citizens. Medical, social and environmental situations account 

for much of HFMD morbidity. The spatial driving forces of HFMD 

occurrence vary across geographical regions, whereas the factors 

that play a significant role in HFMD prevalence may be concealed 

by global statistics analysis. This study aims at the identification of 

the association between the spatial driving forces and HFMD 

morbidity across the study area and the epidemiological 

explanation of the results. HFMD spatial driving forces are 

represented by 6 factors which was obtained by Pearson 

Correlation analysis and Stepwise Regression method. Compared 

to Classical Linear Regression Model (CLRM), Geographically 

weighted regression (GWR) techniques were implemented to 

predict HFMD morbidity and examine the nonstationary of HFMD 

spatial driving forces. Informative maps of estimated HFMD 

morbidity and statistically significant spatial driving forces were 

generated and rigorously evaluated in quantitative terms. Prediction 

accuracy by GWR was higher than that by CLRM. The residual led 

to by CLRM suggested a significant degree of spatial dependence, 

while that by GWR indicated no significant spatial dependence. In 

the three regions plotted by Beijing city Ring Roads, HFMD 

morbidity was found to have significantly positive or negative 

association with the 6 kinds of spatial driving forces. GWR model 

can effectively represent the spatial heterogeneity of HFMD 

driving forces, significantly improve the prediction accuracy and 

greatly decrease the spatial dependence. The results improve 

current explanation of HFMD spread in the study area and provide 

valuable information for adequate disease intervention measures. 
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1. INTRODUCTION 
The first Hand-foot-mouth disease (HFMD) case was reported in 

Shanghai, China in 1981. Since then, HFMD epidemic has occurred 

in many provinces and cities in China. Over the past few years, 

HFMD prevalence in China kept showing an increasing trend as the 

scale gradually became larger, posing a great threat to public health 

and security. In May 2nd, 2008, HFMD was brought into infectious 

diseases management of Grade C in China [1]. Beijing city, the 

capital of China, is vastly threatened by HFMD. During the last 3 

years, the number of HFMD cases has been always holding the 

primacy among Grade C infectious diseases in Beijing city. In 2008, 

Beijing Center for Disease Control and Prevention (CDC) 

established “Beijing Hand-foot-mouth disease prevention and 

control scheme”. 

In recent years, Chinese scientists have conducted Beijing HFMD-

related research from the perspectives of molecular biology [2, 

3],clinical medicine [4,5,6], etiology [7,8] and epidemiology [9,10], 

and some progresses have been made in these areas. Although the 

epidemiological features of Beijing HFMD epidemic have been 

verified, there is still much work in the research on the driving 

forces (such as natural, social environment and human factors) of 

HFMD prevalence. In traditional linear regression framework, the 

elastic coefficients of independent variables are assumed to be 

constant over space, however, infectious diseases prevalence 

actually shows spatial heterogeneity. The estimated results by 
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traditional regression framework represent the average level 

throughout the study area, covering up the very significant 

geographic and socio-economic phenomena. Geographically 

weighted regression (GWR) technique allows local parameters to 

be estimated and assumes there is spatial nonstationary. GWR 

model can effectively explain the relationship between HFMD 

morbidity and its spatial driving forces, which plays a key role in 

the regional disease prevention and control. 

GWR was developed as a new technique which extends the 

traditional regression framework [11, 12]. GWR has been adopted 

in various fields since it was put forward. Fotheringham and 

Charlton [13] described the spatial distribution of limiting long-

term illness (LLTI) based on the data from 605 census wards in the 

northeast of England. Brunsdon and Fotheringham[14] analyzed an 

example data set based on house prices in Kent in the U.K. 

Fotheringham [15] assessed the performance of all state primary 

schools in Britain. In recent years, many researchers have examined 

GWR technique as follow:  

1. Empirical application. (1) Geography. Socioeconomic factors 

of urban heat islands and land-cover [16], regional analysis of 

wealth and the land cover in Massachusetts [17], spatially varying 

relationships between land use and water quality [18], white-tailed 

deer distribution [19], geographical factors of thief crime [20]. (2) 

Ecology and environment. The relationship between plant 

diversity and climate-environment [21], spatial patterns of species 

richness in New World coral snakes [22], estimation of LAI [23], 

spatiotemporal dynamics of forest net primary production in China 

[24]. (3) Economics. Persistent pockets of extreme American 

poverty and job growth [25], spatial variation in housing attribute 

prices [26]. (4) Public health. Geographical variations in poverty-

obesity relationships [27], local determinants of neural tube defects 

[28], spatial patterns of mortality in Atlanta metropolitan area [29], 

spatial variations in heart disease mortality [30].  

2. Parameter estimation. Statistical tests for spatial nonstationary 

and mixed GWR. GWR-SEM model measuring the value of air 

quality [31], GWR Logistic model for urban growth [32], 

assessment of coefficient accuracy [33], testing the importance of 

the explanatory variables [34], GWPR model for disease 

association mapping [35]. 

The aim of this study was to assess the spatial driving forces of 

Beijing 2008 HFMD prevalence in China. The exploration was 

necessary for the adoption of the treatment to the infected 

individuals and provided the important clues for the measures to 

safeguard the residents in Beijing and other regions where there is 

HFMD outbreak. 

2. METHODS 
Study area. Beijing is situated at the northern tip of North China 

Plain (Figure 1), which opens to the south and east of the city, with 

mountains to the north, northwest and west shielding the city and 

northern China’s agricultural heartland from the encroaching desert 

steppes. The northwestern part of the municipality, especially 

Yanqing County and Huaiou District, are dominated by the Jundu 

Mountains, while the western part of the municipality is framed by 

Xishan Mountains. Beijing is also the northern terminus of the 

Grand Canal of China and Miyun Reservoir is crucial to its water 

supply. The urban area of Beijing is situated in the south-central 

part of the municipality and occupies a small but expanding part of 

the municipality’s area. It spreads out in bands of concentric ring 

roads. The city’s climate is a monsoon-influenced humid 

continental climate, characterized by hot, humid summers due to 

the East Asian monsoon, and generally cold, windy, dry winters 

that reflect the influence of the vast Siberian anticyclone. Majority 

of precipitation falls in the summer months.  It is divided into 16 

districts consisting of 309 towns and villages with a total area of 

16,801.25 km2. It is a major transportation hub with dozens of 

railways, roads and motorways passing through the city. It is the 

destination of many international flights, and the political, 

educational, cultural center of China.   

 

Figure 1. Location of Beijing in China. 

HFMD morbidity. Beijing CDC received 18,446 observed HFMD 

cases in 2008 covering 309 towns and villages in 16 administrative 

districts through epidemiology survey. 

Potential Risk factors. There are many risk factors influencing 

HFMD epidemic, such as urbanization (agricultural land, cultured 

land, constructive land, unused land), environmental (greenspace), 

demographic (kindergarten, population density), socioeconomic 

(GDP per capita, Unit GDP energy consumption, disposable 

income of urban residents), health service (healthcare organizations, 

medical practitioners, registered nurses, beds in hospital), and 

climate (annual average temperature, annual average relative 

humidity). The preceding study has indicated that health service 

play an important role in HFMD prevalence [9]. Therefore, we 

selected the following indexes which could directly reflect regional 

health service such as the number of healthcare organizations per 

10,000 people, the number of doctors/nurses/hospital beds per 

1,000 people as risk factors. 

Risk factors selection. The relativity between HFMD morbidity 

and potential risk factors referred to above was denoted by Pearson 

correlation. Factor ‘agricultural land’ and ‘registered nurses’ was 

eliminated because of being not significantly associated with 

HFMD morbidity. Factor ‘healthcare organizations’ exhibited the 

strongest association with HFMD morbidity (-0.436**). In order to 

solve the multicollinearity problem, Stepwise Regression method 

was adopted to remove the redundant variables. Finally, 6 risk 

factors significantly associated with HFMD morbidity were 

founded, being disposable income of urban residents (noted as DIS 

INC), healthcare organizations (noted as HEA ORG), beds in 

hospital (noted as HOS BEDS), population density (noted as POP 

DEN), annual average temperature (noted as TEMP) and annual 

average relative humidity (noted as REL HUM). Figure 2 shows 

the spatial distribution of the above 6 risk factors which was 

selected as spatial driving forces in this study. 



 

(a)                                            (b) 

 

(c)                                            (d) 

 

(e)                                            (f) 

Figure 2. The spatial distribution of 6 selected risk factors of 

HFMD morbidity (a) POP DEN (b) DIS INC (c) HEA ORG (d) 

HOS BEDS (e) REL HUM (f) TEMP. 

CLRM and GWR model techniques. Both Classical Linear 

Regression Model (CLRM) and Geographically weighted 

regression (GWR) models were performed by using HFMD 

morbidity as a dependent variable and driving forces as 

independent variables. CLRM method is a type of global statistics, 

which assumes the relationship under study is constant over space, 

so the estimated parameters are the same for all the parts in the 

study area. CLRM model in this study is stated as: 

Y = α + β
1

X1 + β
2

X2 + β
3

X3 + β
4

X4 + β
5

X5 + β
6

X6 + ε  (1) 

where Y  is the HFMD morbidity,  α  is the 

intercept,  {β
1

, β
2,

β
3

, β
4

, β
5

, β
6

}  respectively represents the 

parameter estimate for independent variables 

{X1, X2, X3, X4, X5, X6},  𝜀 is the error term,  𝑋1 is POP DEN,  X2 is 

DIS INC,  𝑋3 is HEA ORG,  𝑋4 is HOS BEDS,  𝑋5 is REL HUM, 

𝑋6 is TEMP. The unknown parameters are estimated via Ordinary 

Least Squares (OLS) technique. 

GWR is an extension of the traditional standard regression 

framework by allowing local rather than global parameters to be 

estimated. It can produce a set of local parameter estimates showing 

how a relationship varies over space and then to examine the spatial 

pattern of the local estimates to get some understanding of hidden 

possible driving forces of this pattern [15]. GWR model can be 

written as [11]: 

Y(si) = β
0

(si) + ∑ β
kk (si)𝑋𝑘𝑖 + ε(si)                  (2) 

where 𝑘 is the sample size, 𝑠𝑖  is the geographical coordinate for 

location 𝑖 ,  𝛽0  is the intercept for location 𝑖 ,  𝛽𝑘(𝑠𝑖)  is the local 

parameter estimate for independent variable 𝑋𝑖 at location 𝑖, 𝑌(𝑠𝑖) 

is the estimation for dependent variable at location 𝑖, 𝜀(𝑠𝑖) is the 

random error item for location 𝑖 (satisfy the Assumption of zero 

mean, homoscedastic and independent). If 𝛽
𝑘
(𝑠𝑖) keeps constant, 

GWR will be degenerated to CLRM.The estimation for 𝛽  is 

calculated by the equation as follow: 

𝛽(𝑠𝑖) = (𝑋𝑇𝑊(𝑠𝑖)𝑋)−1𝑋𝑇𝑊(𝑠𝑖)𝑌                     (3) 

where 𝑊(𝑠𝑖) represents the weight of observation at point 𝑖  for 

observation at another point in the study area, which can be 

represented as distance decay function and suggest the importance 

of the observation location for parameters estimate. The essence of 

GWR is Locally Weighted Least Squares technique in which the 

weight is a continuous function of the distance between any two 

observations in the study area. In this study, GWR technique was 

implemented to explore the spatial driving forces of HFMD 

epidemic. 

3. RESULTS 

3.1 CLRM Estimation 
The global performance of CLRM is shown in Table 1. It reports 

that intercept, DIS INC and Temp were positively associated with 

HFMD morbidity, while POP DEN, HEA ORG, HOS BEDS and 

REL HUM were negatively associated with HFMD morbidity. The 

R2 value by CLRM was 0.50. Moran’s I index is often used to test 

for global autocorrelation [38], of which the value of 0.4787 

(p<0.05) suggested that the residual led to by CLRM still remained 

significant autocorrelation. 

Table 1. Classical Linear Regression Model Outcome 

Variables Coefficient T value P value 

α 642.6701 3.1452 0.0018 

X1 -0.0052 -7.5209 0.0000 

X2 0.0108 3.2315 0.0014 

X3 -28.7730 -4.0036 0.0001 

X4 -17.3783 -5.0093 0.0000 

X5 -14.8308 -5.2638 0.0000 

X6 20.5377 3.6371 0.0003 

 

3.2 GWR Performance 
Figure 3 presents the maps of GWR local regression, local R2 

ranging from 0.42 to 0.76 and the average R2 reaching 0.68. The 

Moran’s I value by GWR was 0.0412 (p>0.05), representing that 

residual spatial autocorrelation by GWR was greatly eliminated. 

Figure 4 illustrates the spatial distribution of HFMD morbidity in 

three forms. Figure 5 plots the local coefficients for every variable 

together with significance levels, in which the shadowed regions 

represented the parameters estimate of these areas was not 

significant. Table 2 summarizes the associations between spatial 

driving forces and HFMD morbidity in different regions throughout 

Beijing city. 



 

Figure 3. Spatial distribution of Local R2 of GWR Model. 

 

(a)                                             (b) 

             

(c)                                             (d) 

Figure 4. Comparison of Spatial distribution of HFMD 

morbidity (a) 2008 observation (b) predicted by CLRM (c) 

predicted by GWR (d) legend. 

 

(a)                                             (b) 

 

(c)                                             (d) 

 

(e)                                             (f) 

Figure 5. Local GWR parameters for every variable with 

significance levels (a) POP DEN (b) DIS INC (c) HEA ORG (d) 

HOS BEDS (e) REL HUM (f) TEMP. 

Table 2. Associations between spatial driving forces and 

HFMD morbidity 

Driving 

Forces 

Central 

District 

Urban-Rural 

Transition Area 
Suburban Area 

POP 

DEN 
weak - strong - 

strong - in the 

south 

DIS 

INC 
strong - 

strong - in the 

northeast and 

strong + in the 

west and south 

strong - in the 

north, strong + 

in other parts 

HEA 

ORG 
weak - 

strong - in the 

northeast and 

weak -in the west 

and southeast 

strong - in the 

east, weak - in 

the the north and 

south, weak + in 

the west 

HOS 

BEDS 
weak - 

strong -in the 

west and + in the 

northeast 

strong - in the 

west, weak - in 

the north and 

south, and 

strong + in the 

east 

REL 

HUM 

weak - in 

the north 

and + in the 

core part 

strong -in the 

northeast and 

weak – in the 

southwest 

weak - in the 

south and strong 

- in other parts 

TEMP 
weak - in 

the south 

weak - in 

northwest, strong 

- in southeast and 

northeast 

Weak - in the 

south and strong 

- in the east 

Notes: ‘+’ stands for ‘positive association’, ‘-’ stands for negative 

association. Central District represented the area within Beijing’s 

the 4th Ring Road. Urban-rural transition Area represented the area 

from Beijing’s the 4th Ring Road to the 6th Ring Road. Suburban 

Area represented the area beyond Beijing’s the 6th Ring Road. 

4. DISCUSSION 
As Figure 4 shows, Beijing 2008 HFMD cases were mostly 

aggregated in urban-rural transition zone and relatively less 

distributed in central area and suburban area. It would be possibly 

caused by the following reasons: 1) There was higher population 

density, better housing conditions and medical infrastructures in 

central area. 2) There was lower population density and much more 

excellent natural- original-ecological environment although its 

Morbidity (1/100,000)

< 17

18 - 66

67 - 103

104 - 133

134 - 160

161 - 180

181 - 220

221 - 256

257 - 280

281 - 650



relatively poor public health conditions in suburban area. 3) While 

in urban-rural transition area, although population density ranged 

between the other two regions, there was more population 

migration and poorer public health conditions. As a result, a higher 

prevalence of HFMD would probably occur in the transition area. 

According to the above CLRM estimation and GWR performance, 

it suggests that GWR model effectively demonstrates the spatial 

heterogeneity and local driving forces of HFMD prevalence: 1) It 

is clear that in central area, with high population density, relative 

humidity, temperature and disposable income, better medical and 

health conditions and stronger consciousness of diseases 

prevention and health promotion, HFMD morbidity is low. 2) In 

Suburban Area, although relative humidity is high and public health 

conditions are poor, with lower population density and excellent 

natural ventilation, low HFMD morbidity displays in the region. 3) 

There are probably many driving forces of HFMD epidemic 

representing in urban-rural transition area, such as frequent contact 

among crowds of people, high-density residential zones, 

inadequate medical cares, low disposable income, high relative 

humidity and temperature and poor natural ventilation, therefore 

HFMD morbidity exhibits higher. 

5. CONCLUSIONS 
This study has been carried out based on 18,446 HFMD cases 

covering 309 township units in Beijing during the year 2008. 

Results shows that the relationship between HFMD morbidity and 

driving forces presents spatial heterogeneity, which is overlooked 

by CLRM while solved by GWR. As a result of neglecting the 

spatial dependence among the disease cases, CLRM clearly shows 

two drawbacks: 1) Low prediction accuracy. 2) Estimation bias in 

prediction, which would mislead management, decision, 

understanding, simulation and prevention of infectious diseases. 

Aiming at these defects, GWR technique performs better than 

CLRM in solving non-stationary spatial problems, removing 

residual spatial dependence and exploring the local variation in 

parameters estimate and HFMD spread. Although the conclusions 

could be partially limited, the significant spatial driving forces of 

HFMD prevalence provides important clues for local infectious 

diseases prevention and control. 

To sum up, the local statistics approach GWR can identify the 

townships where the HFMD morbidity is significantly associated 

with spatial driving forces. In the three regions plotted by the city 

ring roads, HFMD morbidity was found to have significantly 

positive or negative association with the 6 kinds of driving forces. 

In Beijing, it is urgent to adopt an appropriate assessment for spatial 

driving forces of infectious diseases, to permit the adoption of 

precautions and measures and to emphasize the fundamentals of 

basic hygiene in order to safeguard the public health of the city. 

Detecting and improving the knowledge of spatial patterns of 

epidemic transmission will help the prevention and management of 

infectious hazard. 
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