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Abstract

We propose a novel framework for consistent correspon-
dence between arbitrary manifold meshes. Different from
most existing methods, our approach directly maps the con-
nectivity of the source mesh onto the target mesh without
needing to segment input meshes, thus effectively avoids
dealing with unstable extreme conditions (e.g. complex
boundaries or high genus). In this paper, firstly, a novel
mean-value Laplacian fitting scheme is proposed, which
aims at computing a shape-preserving (conformal) corre-
spondence directly in 3D-to-3D space, efficiently avoid-
ing local optimum caused by the nearest-point search, and
achieving good results even with only a few marker points.
Secondly, we introduce a vertex relocation and projection
approach, which refines the initial fitting result in the way
of local conformity. Each vertex of the initial result is grad-
ually projected onto the target model’s surface to ensure a
complete surface match. Furthermore, we provide a fast
and effective approach to automatically detect critic points
in the context of consistent correspondence. By fitting these
critic points that capture the important features of the target
mesh, the output compatible mesh matches the target mesh’s
profiles quite well. Compared with previous approaches,
our scheme is robust, fast, and convenient, thus suitable for
common applications.

1. Introduction

Establishing consistent correspondence (or mapping) be-
tween different shapes is a fundamental task in various ap-
plications such as fitting template models to multiple 3D
data sets [2], shape blending [8], statistical analysis of shape
(e.g. principal component analysis), transferring texture and
surface properties (BRDFs, normal maps, etc), surface clas-
sification [20] and recognition [19], video tracking [21], and
performance driven facial animation (PDFA) etc. As the im-
portant first step for these applications, the consistent cor-
respondence technique transforms 3D models (commonly
represented by surface meshes) with different connectivity
into compatible meshes (i.e. meshes with the same topol-
ogy) while respecting surface detail features.

Due to the non-Euclidean nature (the lack of a regular
Euclidean parameterization domain) of manifold surface, to
build a consistent correspondence between mesh surfaces is
a difficult task in itself. Existing approaches suffer from
several problems: low robustness, slow speed, hard to ob-
tain high-quality compatible mesh that preserves the shape
features of original models. All these difficulties greatly re-
duce this method’s usefulness.

In this paper, we propose a new framework to give an ele-
gant solution for establishing high-quality consistent corre-
spondence between arbitrary meshes. Different from most
existing methods, which need to segment the input meshes
and then construct intermediate parameterization domains,
our approach directly uses the connectivity of one mesh
to approximate the geometry of another, thus effectively
avoids potential difficulties when dealing with various com-
plex conditions such as intersections, blocking, cyclic or-
ders, discontinuity along partition boundaries, etc.

We show that our approach fits nicely in a unified math-
ematical framework, where the similar type of linear op-
erator is applied in all phases. Firstly, a new mean-
value Laplacian fitting scheme is proposed, which com-
putes a shape-preserving correspondence directly in 3D-to-
3D space (without partitioning and flattening 3D surfaces
onto 2D planes), efficiently avoids local optimum caused
by the nearest-point search, and achieves good results with
fewer marker points than previous methods.

Next, we provide a novel vertex relocation and projec-
tion method, which refines the initial fitting result in the
way of local conformity (angle preservation) and ensures a
complete surface match.

Furthermore, we search for the key factors that will de-
cide the quality of consistent correspondence. A fast and
effective approach is introduced to detect critic points and
then exploits these vertices to nicely match the target mesh’s
features and profiles.

1.1. Related Works

In this section, we discuss related work in the area of
consistent correspondence (one-to-one mapping) between
mesh surfaces [13, 1, 4, 12, 14, 15, 8, 6, 23, 3, 9, 20, 2].
Generally, existing consistent correspondence methods can
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Figure 1. Establishing consistent correspondence between input meshes (a) and (b). The result compatible mesh (c) has the same topology
(the same number of vertices, the same number of triangles, etc.) with the source mesh (a) while having the similar geometry with the
target mesh (b). Specifically, any point in (c) has a semantically one-to-one correspondence (both in geometry and topology) point on the
source mesh (a). Thus mesh (c) is called the source mesh’s consistent correspondence with the target mesh.

be classified into two categories: whether the consistent cor-
respondence is constructed directly or indirectly.

Most existing consistent correspondence methods be-
long to indirect schemes. In these methods, an interme-
diate parameterization domain, which actually consists of
a set of 2D convex planar sub-domains (for disk-like sur-
faces) or a spheral domain (limited to genus zero surfaces),
is first constructed. Then, the sub-mapping between each
model and the common parameterization domain is built
separately. Finally, mapping between models is constructed
through sub-mappings’ composition. After obtaining the
cross-parameterization, the consistent correspondence be-
tween meshes can be straightforwardly obtained by inter-
polating vertices’ barycentric coordinates. The difference
of various algorithms lies in the type of intermediate do-
main to be chosen, such as plane [4], sphere [12], cylinder
[15], triangle patch [8] etc. Despite the diversity, in fact, the
parameterization process of all these domains is eventually
carried on the 2D convex planar sub-domains or a spheral
domain, due to excellent shape-preservation [4] or confor-
mal property [6] in mathematics. However, for indirect
schemes, the difficulty to compatibly construct well-shaped
patch layouts makes these methods hard to keep balance
between efficiency and robustness, especially in complex-
topology and long-and-narrow regions. Moreover, the error
of sub-mappings can be amplified through mapping com-
position, so the final inter-surface mapping may have huge
error somewhere. Another downside of indirect schemes
is that though continuous within each patch, the mapping
may be discontinuous when transiting inter-patch bound-
aries. As a result, some post-processes, such as smoothing
[8], are necessary for the final results.

Except building intermediate domains, consistent corre-
spondence can also be constructed directly, i.e. using the
target mesh as the common domain, thus avoids explicit
cross-parameterization. In [2], by smoothing local affine
transformations, Allen et al. use the template fitting tech-
nique to directly construct consistent correspondence for a

set of human models. Sumner et al. [17] propose a simi-
lar iterated closest algorithm to build correspondence map
between meshes. However, direct schemes so far don’t ex-
plicitly take shape preservation property into account, thus
will introduce large approximation errors when the input
models have significantly different geometry. Furthermore,
these methods adopt Euclidean nearest distance as the iter-
ated fitting metric, which is prone to trap into local optimum
when input meshes have complex shapes.

To overcome the drawbacks above, our method con-
structs the shape-preserving correspondence directly in 3D-
to-3D space without partitioning and flattening 3D surfaces
onto 2D plane (i.e. the common 3D-2D-2D-3D proce-
dure), thus effectively avoids error amplification, disconti-
nuity along partition boundaries, and various tricky condi-
tions. Instead of Euclidean nearest distance, our approach
uses gradual approximating metric as the fitting metric to
avoid trapping into local optimum. Furthermore, our crit-
ical points scheme significantly reduces approximation er-
rors even when the input models have very different geo-
metric features and sample rates.

1.2. Notations and Definitions

Definition 1.2.1 Manifold surface: A manifold of di-
mension n is a connected Hausdorff space M for which
any point p ∈ M has a neighborhood U ⊂ M which is
homeomorphic to an open subset of �n Euclidean space.
Specifically, a triangle mesh is manifold surface if:

� There are exactly two faces adjacent to each edge (not
including the boundaries).

� The vertices vi adjacent to p can be ordered v0,...,vn−1

such that the triangles vi, p, v(i+1) mod n all exist.
Definition 1.2.2 Consistent Correspondence: As shown

in Figure 1, the compatible mesh MC has the same topology
with the source mesh MS while having the similar geometry
with the target mesh MT . Specifically, any point pc ∈ Mc

has a semantically (both in geometry and topology) one-
to-one correspondence point ps on the source mesh MS .



Thus mesh MC is called the source mesh MS’s consistent
correspondence with the target mesh MT .

2. Consistent Correspondence Framework

Our consistent correspondence framework consists of
three steps. Firstly, a novel mean-value Laplacian fitting
scheme is proposed, which aims at computing a shape-
preserving correspondence directly in 3D space, efficiently
avoiding local optimum caused by the nearest-point search,
and achieving good results even with only a few marker
points (Section 2.1). Then, in order to more accurately
match the output compatible mesh to the target mesh’s im-
portant features, we introduce a fast and effective approach
to detect critic points and then exploits these vertices to
nicely match the target mesh’s features and profiles (Sec-
tion 2.2). Finally, the fitting result is further refined by our
vertex relocation and projection approach in the way of lo-
cal conformity. Each vertex of the initial result is gradu-
ally projected onto the target model’s surface to ensure a
complete surface match (Section 2.3). We show that our
approach fits nicely in a unified linear framework in a least
squares sense, which can be efficiently minimized by fast
solving a sparse linear system.

2.1. Mean-value Laplacian Fitting Scheme

We now describe our mean-value Laplacian fitting tech-
nique that builds an initial consistent correspondence be-
tween the source mesh MS (e.g. a template surface) and
the target mesh MT (e.g. a scanned example surface). The
initial correspondence result M init

C will have the identical
topology (i.e. identical number of vertices and triangles)
with the source mesh MS and the similar geometry with the
target mesh MT .

Our fitting scheme is based on the energy minimization
framework. Different from the framework of [2, 17], our
scheme aims at obtaining a shape-preserving (conformal)
correspondence, and avoiding local optimum in the case of
only a few marker points.

Our energy-minimization framework contains three
terms: mean-value Laplacian energy item El, gradual fitting
term Eg , and global constraint item Ec. In the following, we
formulate the three items, respectively.

The first one is the mean-value Laplacian energy item
El. Laplacian linear operator [16] provides an effective dif-
ferential representation of the mesh. Let M = (T, G) be a
manifold triangular mesh. T = (V, E, F ) is a graph where
V denotes the set of vertices, E denotes the set of edges and
F denotes the set of facets. G is the geometry associated
with each vertex in V . The ordinary Laplacian differential
coordinates ζi of vertex vi are represented by the difference
between vi and the average of its neighbors (see Figure 2):

ζi = (ζ
(x)
i , ζ

(y)
i , ζ

(z)
i ) = vi −

1

di

∑
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vj (1)
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Figure 2. Laplacian differential coordinates (ζi), and the angles
(αij and βij) used in the definition of the mean-value weights.

where N(i) = {j|(i, j) ∈ E} are the edge neighbors, di =
|N(i)| is the valence of a vertex, i.e. the number of edges
which emanate from this vertex.

The Laplacian coordinate is the average difference vec-
tor of its adjacent vertices to the vertex vi. If setting the
vector to zero at each vertex, we build a smoothness energy,
i.e. smoothly distributing each vertex as close as possible to
the barycenter of its immediate neighbors. In matrix form,
the formulations for all the vertices can be rewritten as:

El =
∥∥LVinit

∥∥2
(2)

where Vinit = [vinit
1 , vinit

2 , ..., vinit
N(VS)]

T , L is the Laplacian
coefficient matrix of MS , i.e. Lmn = −δ{m=n} + 1/di ·
δ{(m,n)∈ES}, δ is the Dirac function.

However, as shown in Figure 3(b), this uniform repre-
sentation cannot reflect geometric properties of the source
mesh MS. In the following, we try to incorporate infor-
mation about the original shape, for instance encoding the
information about the size, angle and orientation of local
surface shape. Here, we consider mean value coordinates
[4] for its excellent properties such as shape preservation
and low angular distortion.

ζi = vi −
1∑

(i,j)∈E

wij

∑
(i,j)∈E

wijvj (3)

wij =
tan(αij/2) + tan(βij/2)

||vj − vi||
(4)

where wij is mean-value coefficient, αij and βij are the
angles shown in Figure 2.

From Figure 3(c), it can be seen that our mean-value
Laplacian representation successfully captures the shape in-
formation of the source mesh, such as the threadlike stripes
on the legs and belly.

The second term is gradual fitting term Eg . According
to the definition of consistent correspondence, we wish that
mesh MC has the same geometry with the target mesh MT ,
i.e., MC should be as close as possible to the target sur-
face MT . However, if only a few of initial markers are
provided, existing iterated closest point algorithms may fall
into local optimum and introduce large errors (see Figure
4(a)). To overcome this drawback (see Figure 4(b)), instead
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Figure 3. The example of mapping a lion model (a) to a cat. Compared with the uniform representation (b), the mean-value Laplacian
representation can obtain a shape-preserving correspondence (c).

(a) (b)

Figure 4. (a) When only a few markers are provided, the iterated
closest point algorithm may fall into local optimum. (b) Our fitting
scheme effectively overcomes this drawback.

of Euclidean nearest distance, our method adopts gradual
approximating metric as the fitting measurement.

Now, we introduce the definition of gradual approximat-
ing metric. A vertex vi’s gradual approximating metric �i

is defined as:

�i=
1

dn
i + α

·

area(F (vi))

area(F (MS))
=

1

dn
i + α

·

N(vi)∑
k=1

area(fk)

N(MS )∑
k=1

area(fk)/N(MS)

(5)

where dn
i is the normal distance from vi to the intersec-

tion position with the target mesh along vi’s normal ni (if
dn

i → ∞, we reverse the normal direction); α = 0.01 is the
laxation factor to avoid ∞ when dn

i approaches 0; F (vi) is
the 1-ring facets set of vi, N(vi) is the number of 1-ring
facets; F (MS) is the facets set of MS , N(MS) is the num-
ber of facets; MS’s average area area(F (M

S
)) is used for

normalizing vi’s 1-ring area area(F (vi)).
It can be seen that the gradual approximating metric is

inversely proportional to dn
i while directly proportional to

area(F (vi)). This form has the clear physical meaning:
to push an ”elastic” mesh onto the target mesh, first, some
marker points act as initial global constraints. Then, in or-
der to avoid large distortion, we need to keep imposing a
certain tension (mean-value Laplacian quadratic energy) on
the whole surface all the time. To obtain a natural map-
ping, we first spread the regions near the global constraints
(with a small dn

i value), and then gradually extend to dis-

tant regions. Furthermore, similar to the coarse-to-fine strat-
egy, we also first spread the large regions (with large areas
area(F (vi))) and then deal with small regions, which can
achieve better results in our tests.

Thus, gradual fitting term Eg is formulated as:

Eg =
∑
i∈G

�i

∣∣vinit
i − gi

∣∣2 (6)

where G is the index set of vertices in MS except global
constraint vertices, �i is vi’s gradual approximating metric,
gi is the intersection position with the target mesh along vi’s
normal ni.

The third term focuses on global constraint vertices. Us-
ing the El and Eg would be sufficient if the source and target
meshes were initially very close to each other. However, in
the common situation, two input models are not close or
aligned well, the optimization can become stuck in local
minima. To avoid undesirable minima, we need to identify
some marker points on both input meshes, which serve as
the global constraints, i.e. a priori. So we can make use of
these markers to initialize the correspondence, although we
show that once enough shapes have been matched, we do
not require these markers any more.

The global constraint term Ec is defined as:

Ec =
∑
i∈C

∣∣vinit
i − ci

∣∣2 (7)

where C is the index set of global constraint vertices, ci is
the position of correspondent marker on the target mesh.

Our complete objective function E is the weighted sum
of the three error functions:

min E(Vinit) = wlEl + wgEg + wcEc (8)

where wl, wg, wc are weights. The quadratic optimiza-
tion formulation can be minimized by efficiently solving a
sparse linear system. And the system is separable in the
three coordinates of the vertices, thus reduces linear sys-
tem’s scale to 1/3. We solve the minimization problem in
two phases. First, we ignore the gradual fitting term Eg

by using weights wl = 1, wc = 0.3, wg = 0, and we ob-
tain an initial mapping result. Then, we increase wg each
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Figure 5. (b) is the discrete Gaussian curvature contour of the cow model (a). The red color indicates the convex regions, the green color
indicates the concave regions, and the blue color indicates the flat regions. (c) shows the salient points obtained by using the method in [5].
(d) shows the salient points obtained by our method. It can be seen that our method not only successfully captures the salient features, but
also avoids producing over-dense points, thus is more suitable in the context of consistent correspondence.

time and update M init
C ’s vertices. In our experiments, in-

creasing wg step by step from 0.001 to 0.01 generated good
results. Although the marker data is useful for global opti-
mization, we found that the placement of the markers was
sometimes unreliable. So we gradually reduce the weight of
the global constraints from 0.3 to 0. Each time the optimiza-
tion problem is solved, M init

C is updated from its original
position and more closely approximates MT . Note that our
optimizing system is actually designed to deform the source
mesh MS into the target mesh MT to produce the compat-
ible mesh M init

C , thus implicitly guarantees that M init
C has

the identical connectivity with MS .

2.2. Critical Vertices

After mean-value Laplacian fitting, the compatible mesh
M init

C can approximate MT quite well in many cases. How-
ever, if MT has complex features not available in MS ,
M init

C may miss these high-frequency features, which will
cause profile’s collapse, as shown in Figure 6(c). In this
case, we should improve the initial correspondence result.
Previous approaches, such as [8], update it using adaptive-
smoothing procedures. This scheme has two disadvantages.
(1) The smoothing procedure needs to check errors of all
input meshes’ vertices and edge midpoints, so it is slow and
its parameter is hard to set. (2) The scheme cannot accu-
rately locate the key vertices onto the profiles, and thus has
to introduce extra vertices much more than necessary.

These disadvantages of previous methods root from the
fact that they do not distinguish vertices’ different impor-
tance, but treat all vertices with the same importance. In
our setting, we detect vertices that are important for feature
capturing and error reducing, and give them special atten-
tion. Furthermore, to reduce local distortion, these points
should be proper both in the number and space distribution.

We provide a fast and effective method to detect these
critical points. These points’ number and space distribution
can also be well controlled. In our method, we adopt Gaus-
sian curvature, the important intrinsic property of a surface,
as the critical measurement. As shown in Figure 5(b), fol-
lowing human visual perception, high Gaussian curvature

(absolute value) obviously reflects important regions of the
surface, while the smooth regions (curvature tends to zero)
are relatively trivial.

2.2.1 Detect Critical Vertices

According to the Gauss-Bonnet theorem, the total Gaussian
curvature of an embedded triangle is expressed in terms of
the total geodesic curvature (kg) of the boundary and the
jump angles (αi) at the corners.∫∫

T

KdA = 2π −
∑

αi −

∫
∂T

kgds (9)

[10] provides an approach to compute Gaussian curva-
ture for the discrete surface (e.g. triangle meshes):

K(vi) = (2π −
∑

j∈F (vi)

θj)/Amixed (10)

where F (vi) are vertex vi’s facet neighbors; θj is the angle
of neighbor triangle at the vertex vi; Amixed is the mixed
area used to account for obtuse triangulations.

To compute critical vertices, we first sort MT ’s vertices
and build a queue according to vertices’ discrete Gaussian
curvatures in descending order. Then, for each vertex vi,
we grow the ”local region” that can approximate its neigh-
borhood. All the vertices included in the region are re-
moved from the queue. The same procedure is repeated un-
til the sorted queue is empty or the number of critical points

reaches a given threshold (e.g. 0.08 ∗ N2(VT )
N(VS) ). To judge

whether vertices nearby vi are in the local region, a scale
independent threshold, e.g. 10−2 bounding box diagonal
length, is used. As shown in Figure 5(d), our region grow-
ing algorithm, though simple, is more effective and robust
in the context of consistent correspondence.

2.2.2 Establish Critical Vertices Constraints

After the critical vertices on MT are detected, we need to
map them onto MS to ensure exact matches. Thanks to



our unified linear framework, this procedure is also straight-
forward. First, for each critical vertex on MT , we choose
the closest vertex on MS as its counterpart. Then, simi-
lar to foregoing constraint items, we formulate the critical
(salient) constraint term Es as a quadratic energy function:

Es =
∑
i∈S

∣∣vinit
i − si

∣∣2 (11)

where S is the index set of critical constraint vertices.
After several iterated optimization steps, M init

C can ap-
proximate MT exactly at the critical vertices, thus the pro-
files of M init

C will not collapse. Figure 6(d) shows the up-
dated compatible mesh.

2.3. Vertex Relocation and Projection Scheme

Due to the global energy optimizing, the initial fitting
result cannot guarantee that all the vertices of compatible
mesh just lie on the surface of the target mesh. And the
critical vertex constraints may introduce shape distortion as
well. Therefore, we provide a novel vertex relocation and
projection scheme, which refines the initial fitting result in
the way of conformity (angle preservation). Specifically,
for a vertex vi of the initial result M init

C , we want to find a
new location satisfying some condition, e.g. improving the
shapes (angle, size, orientation) of the triangles incident on
vi. This procedure is also called remeshing [11].

For this task, we define a shape preserving operator. To
our knowledge, this is the first time that shape preserving
operator has been used for remeshing. And our scheme can
be implemented quite efficiently, such that we can refine the
initial compatible mesh in a few seconds.

Based on the umbrella operator [7], our shape preserv-
ing operator � is designed to optimize the interior vertices.
The umbrella operator minimizes the membrane energy EM

of a mesh M . It shifts a vertex vi depending on a convex
combination of its direct neighbors vij . The choice of the
weights wij determines the energy to be minimized in the
optimization process. Uniform weights will provide a uni-
form distribution of triangles in the local domains. How-
ever, some surface features of mesh M might be lost during
the uniform remeshing.

We found that by choosing the weights wij of the um-
brella operator to be proportional to mean value coordinates
covering the 1-ring of vi, our shape preserving operator can
successfully capture mesh’s local shape features. Specifi-
cally, in case of the membrane energy EM our shape pre-
serving operator leads to a local update rule:

� : vi → ṽi = vi + λ
−→
U (vi)

= vi + λ
1∑n

j=0 wij

∑n

j=0
wij(vij − vi), wij � 0

(12)

where λ = α/d(vi, Mt,
−→
U ), d(vi, Mt,

−→
U ) is the distance

from vi to MT along the direction
−→
U , α is the gradual con-

vergence factor used to avoid oscillations, and wij is the
mean-value coefficient.

With this operator, each vertex of the initial result is
gradually projected onto the target model’s surface to ensure
a complete surface match. The shape preserving operator is
applied iteratively. With the vertices moving in the local
domain the size of triangles (including the norm) needs to
be recomputed after every iteration of the operator �. The
iterations stop when the change of the vertex positions falls
below a certain threshold. Usually very few (< 10) iter-
ations suffice to reduce the total distortion, resulting in a
mesh that preserves (almost) equal shape features with the
source mesh MS .

3. Results and Discussion

We tested our algorithm on various surfaces, including
human face surfaces, animal models and complex geomet-
rical objects.

From Figure 3, it can be seen that our mean-value
Laplacian fitting scheme successfully establishes a shape-
preserving correspondence between the input surfaces, such
as the threadlike stripes on lion’s legs and belly. Moreover,
instead of Euclidean nearest distance, our scheme adopts
gradual approximating metric as the fitting measurement,
thus effectively avoids trapping into local optimum suffered
by the closest point fitting techniques when only a few of
initial markers are provided (see Figure 4).

As shown in Figure 5, our critical points algorithm not
only successfully captures the salient features of the surface,
but also effectively avoids producing over-dense points that
can cause large local distortions, thus is more suitable in the
context of consistent correspondence than previous methods
(such as [5]).

It is worthwhile to point out that it is rather difficult to
build consistent correspondence between the two meshes
shown in Figure 6 using previous methods (such as [2]) as
the bumpy sphere model has lots of complex features not
available in the cube model. Therefore, when only 8 mark-
ers are provided (lying on the eight corners of the cube),
these features will be lost. Our critical point algorithm suc-
cessfully makes MC approximate MT exactly at the critical
vertices. Thus the profiles of MC will not collapse.

As shown in Figure 6(e), our vertex relocation and pro-
jection method refines the initial fitting result in the way
of local conformity, thus achieves more accurate correspon-
dence results and ensures a complete surface match.

Figure 8 demonstrates a few snapshots from the morph-
ing (shape interpolation) series of two models (a women
face and a man face). Thanks to the well established consis-
tent correspondence, it can be seen that the gradual changes
are natural and visual appealing result is obtained. In an-
other example (Figure 7), the three-sided blends of a lion,
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Figure 6. Another example of our method. It also shows the flow chart of our method. The bumpy sphere model (b) has a large amount of
complex features not available in the cube model (a). (c) Therefore, when only 8 markers are provided (just lying on the eight corners of
the cube), the initial fitting result will miss these features. (d) To overcome this drawback, we exploit discrete Gaussian curvature to detect
critical points and map them onto the cube model. (e) Finally, the result is further refined by our remeshing method to ensure a complete
surface match in the way of conformity (angle preservation).

+ =+

0.5 0.3 0.2
Figure 7. Having established consistent correspondence between input meshes, some originally difficult tasks (e.g. shape blending or
statistical analysis) become quite easy. This example shows the blending of three models. The numbers in the blends are the affine
combination weights of each model.

cat, and camel highlight our method’s ability to establish
consistent correspondence among multiple surfaces.

Since our method efficiently avoids falling into local
optimum, fewer marker points than previous methods are
needed. For the lion and cat examples in Figure 3, only
18 markers are enough for a good correspondent result, in
comparison with 77 markers in [17] and 68 markers in [22]
for this pair.

Our method builds the shape-preserving correspondence
directly in 3D-to-3D space without needing to partition and
flatten 3D surfaces onto 2D plane, i.e., directly exploits the
3D topology information of the whole source mesh. So the
intrinsic difficulties suffered by indirect methods, such as
preventing intersections and blocking, preserving cyclic or-
ders, smoothing discontinuous boundaries, are effectively
avoided. Therefore, our method doesn’t need to pay par-
ticular attention to many extreme conditions, such as com-
plex boundaries and high genus. In Figure 1, the man face
model has one more boundary in the mouth than the woman
face model. However, our method obtains satisfactory result
without needing to carefully deal with this region.

Our framework is numerically efficient, as the solution
to the optimization problem can be obtained by fast solv-
ing a sparse linear system. With a sparse LU solver [18],

for example, 5.5K vertices require 0.6 seconds for factor-
ization and 0.03 seconds for back-substitution on a 3.0GHz
Pentium IV computer. Our critical points algorithm is also
very fast. For the bumpy sphere model (11444 facets), the
detection procedure only took 0.25 seconds.

4. Conclusions and Future Work

In this paper, we have introduced a novel framework
for robustly computing consistent correspondence between
meshes of arbitrary topology. Our mean-value Laplacian
fitting method holds shape preserving property directly in
3D-to-3D space without segmenting the meshes. By de-
tecting the critical vertices, our scheme accurately approx-
imates the profiles and important features of the target ge-
ometry. Our vertex relocation and projection approach not
only remeshes the global fitting result in the way of local
conformity, but also ensures a complete surface match.

To automatically construct a high-quality consistent
correspondence for two arbitrary shapes is still an open
problem. One feasible way is to statistically analyze the
whole surface and then compute out some candidate (i.e.
not very accurate) marker pairs. In our framework, since
the markers are only used for the initial correspondence
(these constraints are gradually removed during optimiza-



Figure 8. With a high-quality consistent correspondence between meshes, a women’s face surface is being gradually transformed into a
man’s face surface just by linear interpolation.

tion), it is likely for these automatically detected markers
to achieve desired correspondence results. We plan to carry
on this work in the future.
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man body shapes: Reconstruction and parameterization from
range scans. SIGGRAPH, pages 587–594, 2003.

[3] Z. Fan, X. Jin, J. Feng, and H. Sun. 3d mesh morphing using
polycube-based cross-parameterization. Computer Anima-
tion and Virtual Worlds, 16(3-4):499–508, 2005.

[4] M. S. Floater. Mean value coordinates. Computer Aided
Geometric Design, 20(1):19–27, 2003.

[5] R. Gal and D. Cohen-Or. Salient geometric features for par-
tial shape matching and similarity. ACM Transactions on
Graphics, 25(1):130–150, 2006.

[6] X. Gu and S.-T. Yau. Global conformal parameterization. In
Eurographics/SIGGRAPH SGP, pages 127–137, 2003.

[7] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Inter-
active multi-resolution modeling on arbitrary meshes. ACM
SIGGRAPH, pages 105–114, 1998.

[8] V. Kraevoy and A. Sheffer. Cross-parameterization and com-
patible remeshing of 3D models. SIGGRAPH, pages 861–
869, 2004.

[9] N. Litke, M. Droske, M. Rumpf, and P. Schröder. An image
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