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a b s t r a c t

Fisher Determination Dictionary Learning (FDDL) has shown to be effective in image classification. How-
ever, the Original FDDL (O-FDDL) method is time-consuming. To address this issue, a fast Simplified FDDL
(S-FDDL) method was proposed. But S-FDDL ignores the role of collaborative reconstruction, thus having
an unstable performance in classification tasks with unbalanced changes in different classes. This paper
focuses on developing an Efficient FDDL (E-FDDL) method, which is more suitable for such classification
problems. Precisely, instead of solving the original Fisher Discrimination based Sparse Representation
(FDSR) problem, we propose to solve an Approximate FDSR (A-FDSR) problem whose objective function is
an upper bound of that of FDSR. A-FDSR considers the role of both the discriminative reconstruction and
the collaborative reconstruction. This makes E-FDDL stable when dealing with classification tasks with
unbalanced changes in different classes. Furthermore, fast optimization strategies are applicable to A-FDSR,
thus leading to the high efficiency of E-FDDL which can be explained by analysis on convergence rate and
computational complexity. We also use E-FDDL to accelerate the Shared Domain-adapted Dictionary
Learning (SDDL) algorithm which is a FDDL based new method for domain adaptation. Experimental re-
sults on face and object recognition demonstrate the stable and fast performance of E-FDDL.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Fisher Discrimination Dictionary Learning (FDDL), which is an
interesting variant of Sparse Representation Classifier (SRC) [1,2],
was proposed recently in [3,4]. The success of FDDL can be ascribed
to three key ideas. The first one is discriminative reconstruction.
Different from those Dictionary Learning (DL) methods for learning
a shared dictionary (see, e.g., [5–14]), FDDL learns a dictionary
composed of class-specific sub-dictionaries. Each sub-dictionary is
encouraged to well reconstruct the corresponding training ex-
amples, but poorly reconstruct the others. Thus, the class-wise re-
construction errors can be used for classification. The second one is
collaborative reconstruction, which means that, the reconstruction of
each training example should be performed collaboratively over the
whole dictionary. This idea distinguishes FDDL from those DL
methods for learning a dictionary for each class independently (see,
e.g., [15–20]). And the third one is discriminative representation. This
idea implies that the representation coefficients of the training
examples should have a small within-class variance and a large
Management and Control for
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hong.qiao@ia.ac.cn (H. Qiao),
between-class scatter. Thus, the representation coefficients can be
exploited in classification. FDDL is an essentially supervised DL
method. In this category, many methods have been proposed. Here,
we review some state-of-the-art methods. Discriminative KSVD (D-
KSVD) [12] is a supervised DL method designed for face recognition.
Label Consistent KSVD (LC-KSVD) [13,14] is an extension of D-KSVD.
The Shared Domain-adapted DL (SDDL) method [21,22] is a FDDL
based supervised DL method for domain adaptation. For more in-
formation of this class of DL methods, see a recent survey [23].

The tradeoff among the three ideas indeed leads to a good
performance of FDDL. However, the original FDDL model is com-
plicated, and the derived DL method, i.e., O-FDDL, is often time-
consuming. To address this issue, a simplified FDDL model was
presented in [4], which is obtained from the original FDDL model
under the assumption that each training example can only be re-
constructed by columns in its corresponding sub-dictionary. The
simplified model has much fewer variables, so the S-FDDL method
is much faster than the O-FDDL method. Nevertheless, S-FDDL is a
class-by-class DL method, which means that, in the learning pro-
cess of S-FDDL, only the discriminative reconstruction and the
discriminative representation are considered, but the idea of col-
laborative reconstruction is ignored. In [4], the equivalence of
S-FDDL and O-FDDL is empirically investigated in various image
classification problems. Based on the experimental results, it was
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concluded in [4] that, for the image classification problems in
which data have similar variations in different classes, the classi-
fication accuracy of S-FDDL is often close to that of O-FDDL, so
S-FDDL can serve as an efficient FDDL in these tasks; however, for
the classification tasks involving data with unbalanced variations
in different classes, such as some face recognition tasks in which
the changes in illumination, accessory, expression, pose or view
are often non-uniform, the classification accuracy of S-FDDL is
always worse than that of O-FDDL due to the ignorance of the
collaborative construction. For more details about this, see Section
6.1.1 of [4].

In this paper, we develop an Efficient FDDL (E-FDDL) method,
which is particularly suitable for the classification tasks involving data
with unbalanced variations in different classes. To do this, we first
notice that the O-FDDL method is an iterative optimization process to
alternatively solve two problems until convergence: the Fisher Dis-
crimination based Sparse Representation (FDSR) problem and the
Dictionary Update (DU) problem. The DU strategy of O-FDDL used in
[3,4] is very fast, but the optimization procedure of FDSR suffers from
a great deal of execution time. Our E-FDDL addresses this issue by
solving an Approximate FDSR (A-FDSR) problem whose objective
function is an upper bound of that of the original FDSR problem in the
O-FDDL method. A-FDSR has two advantages. Firstly, A-FDSR con-
siders all the three key ideas of FDDL. In image classification tasks
involving data with unbalanced variations in different classes, this
property ensures that the E-FDDL method has a better and more
stable performance compared with the S-FDDL method. Secondly,
A-FDSR can be split into several subproblems, and the dual problem
of each subproblem is smooth, strongly convex and has fewer vari-
ables than the primal problem. This makes it possible to apply fast
optimization strategies, such as Nesterov's accelerated gradient
method [24], to the dual problems of these subproblems, thus effec-
tively accelerating O-FDDL. To explain this more clearly, we analyze
and compare the convergence rates and computational complexities
of the key steps in solving FDSR and A-FDSR, respectively. In the ex-
perimental section, the stability and efficiency of E-FDDL are verified
in face recognition tasks on two popular databases.

In addition, we evaluate the performance of the E-FDDL
method in domain adaptation applications. The SDDL method,
which is a FDDL based discriminative DL method, was proposed
recently in [21,22] and has been proved to be effective in object
recognition tasks involving data from multiple visual domains. We
use our E-FDDL algorithm to replace the O-FDDL algorithm in the
original SDDL method, thus obtaining a more efficient version of
SDDL which is called Efficient SDDL (E-SDDL) in this paper. Object
recognition experiments on two real-world databases involving
four different domains were conducted to show that E-SDDL keeps
the good recognition accuracy of SDDL but is much faster than
SDDL. Obviously, this superiority owes much to the stability and
efficiency of the proposed E-FDDL.

The remaining part of this paper is organized as follows. We
give a brief review of the FDDL and FDDL-based SDDL methods in
Section 2. In Section 3, we present the details of the proposed
E-FDDL and E-SDDL methods. The experimental results on face
and object recognition are presented in Sections 4.1 and 4.2, re-
spectively. The final section concludes this paper.
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2. A review of Fisher Discrimination Dictionary Learning

In this section, we first briefly review the original and simpli-
fied models of FDDL, and their corresponding DL methods. Then
we give a review on the recently proposed domain-adaptive dis-
criminative DL method called SDDL, which can be viewed as a
modification of FDDL for domain adaptation applications.
2.1. The O-FDDL model and the O-FDDL method

Given the training examples = [ … ] ∈ ×Y Y Y Y, , , C
n N

1 2 , where C
is the number of classes (known, fixed), n is the dimensionality of
these N training examples, ∈ ×Yj

n Nj is a matrix composed of Nj

training examples with class label j. Let the desired over-complete
dictionary be = [ … ] ∈ ×D D D D, , , C

n K
1 2 with <n K , where K is the

number of columns in the whole dictionary, ∈ ×Dj
n Kj is the sub-

dictionary associated with class j and Kj is the number of columns
in this sub-dictionary. We denote the sparse representation matrix
of Y over D by = [ … ] ∈ ×X X X X, , , C

K N
1 2 , where each ∈ ×Xj

K Nj

can be written as = [ ⋯ ]X X X X; ; ;j j j j
C1 2 to satisfy = ∑ =DX D Xj k

C
k j

k
1 .

Hereafter, by convention, the concatenation of two matrices (in-
cluding vectors) will be written as [ ] ≐ [ ]A A A A,1 2 1 2 and

[ ] ≐ [ ]A A; A
A1 2

1

2
. The Original FDDL (O-FDDL) model is

λ λ( ) + ( ) + ∥ ∥

∥ ∥ = ( = … ) ( )

Y D X X X

d

R f

l K

min , ,

s. t. 1 1, , , 1

X D

l

,
O 2 1 1

2

where

∑ ∑( ) = ∥ − ∥ + ∥ − ∥ + ∥ ∥
= ≠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Y D X Y DX Y D X D XR , ,

j

C

j j j j j
j

k j
k j

k
O

1
F
2

F
2

F
2

and η( ) = ( ( ) − ( )) + ∥ ∥X X X Xf S STr W B F
2. Here ( )XSW is the within-

class scatter and ( )XSB is the between-class scatter, λ1 and λ2 are
the sparsity regularization parameter and the regularization
parameter associated with f, respectively.

In (1), minimizing the term ∥ − ∥ + ∑ ∥ ∥≠Y D X D Xj j j
j

k j k j
k

F
2

F
2 em-

phasizes the principle that the learned dictionary D, which is a
concatenation of class-specific sub-dictionaries Dj with

= …j C1, 2, , , should represent Yj discriminatively. And mini-

mizing the term ∥ − ∥Y DXj j F
2 accurately reflects the idea that the

whole dictionary D should also represent Yj collaboratively. Be-
sides, the Fisher Discrimination Criterion (FDC) is applied to
strength the discriminativeness of the representation coefficients
X . Specifically, minimizing the trace difference form of FDC, i.e.,

( ( ) − ( ))X XS STr W B , is adopted. And adding the term η ∥ ∥X F
2 can

make ( )Xf convex.

Algorithm 1. The O-FDDL Method.
ut: Training set ∈ ( < )×Y n Nn N , initial over-complete dic-

tionary ∈ ( < )( ) ×D n Kn K0 , initial sparse representation

matrix ∈( ) ×X K N0 , λ > 01 , λ > 02 , η > 0, the threshold value
ε > 0 for solving problem (2), the number of iterations T for
O-FDDL.

Initialization: ≔t 0, ≔ ( )X X 0 , ≔ ( )D D 0 .
Repeat

Update X : Letting = ( )D D t and computing ( + )X t 1 by solving
the Fisher Discrimination based Sparse Representation
(FDSR) problem:
λ λ( ) + ( ) + ∥ ∥ (
( )Y D X X XR fmin , , . 2X

t
O 2 1 1
Update D: Fixing = ( + )X X t 1 and computing ( + )D t 1 by solving
the Dictionary Update (DU) problem:
( ) ∥ ∥ = ( = … ) (
( + )Y D X dR l Kmin , , s. t. 1 1, , . 3D

t
lO

1
2

≔ +t t 1.
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Quit If t¼T.

tput: ( )D t and ( )X t .
Ou

The O-FDDL model (1) is non-convex. Thus, the O-FDDL
method, proposed in [3,4], is an alternating optimization proce-
dure, as shown in Algorithm 1, to split model (1) into the two
problems (2) and (3). Though the DU problem (3) is non-convex,
an efficient DU strategy has been presented in [3,4]. In this paper,
we focus on the optimization issue of the FDSR problem (2), and
meanwhile, use the same DU strategy as in [3,4].

2.2. Current optimization strategies for the FDSR problem

In the O-FDDL method, the FDSR problem (2) is solved class by
class at each iteration, that is, each Xj is updated individually while
keeping = ⧹X X Xj j fixed. Thus, the FDSR problem (2) can be split
into C subproblems:

λ λ( ) + ( ) + ∥ ∥
( )

( )Y D X X XR fmin , , ,
4X

j
t

j j jO 2 1 1
j

where

∑( ) = ∥ − ∥ + ∥ − ∥ + ∥ ∥( ) ( ) ( )

≠

( )Y D X Y D X Y D X D XR , , ,j
t

j j
t

j j j
t

j
j

k j
k

t
j
k

O F
2

F
2

F
2

and

η( ) = [ − + ( )]∥ ∥ + [ − ( )] ( ( − ) )

+ ( )

⊤

⊤

X X X I W X

X B X

f N N N N1 / 2 / Tr

2Tr

j j j j j j j

j j j

F
2

with = ( ) ⊤W N 1 11/j j N Nj j
and = ( ) −

⊤B N 1 11/j N N Nj j
. Here, we denote by 1d

the d-dimensional column vector of all ones.

Let ͠ ( )
D

t
be a block diagonal matrix with main diagonal square

matrices …( ) ( ) ( )D D D, , ,t t
C
t

1 2 , i.e.,

= ( … )͠ ( ) ( ) ( ) ( )D D D Ddiag , , , .
t t t

C
t

1 2

Then the objective function of the subproblem (4) is always
strongly convex with the parameter

μ λ λ η= ( ) + [ − + ( )] ( )͠ ͠( )⊤ ( )
D D N N2 2 1 / 5

t t
jmin 2

in the case when λ > 02 and η > − ( )N N1 /j , and the gradient of
λ+R fO 2 is Lipschitz continuous with the Lipschitz constant

λ λ η= ( + ) + ( + ) ( )͠ ͠( )⊤ ( ) ( )⊤ ( )
D D D DL 2 2 1 . 6t t t t

max 2

Here, the minimum eigenvalue and the maximum eigenvalue of a
square matrix A are denoted by λ ( )Amin and λ ( )Amax , respectively. In
the O-FDDL method, the Iterative Projection Method (IPM) [25] is
applied to solve the subproblem (4). Specifically, the derivatives of
RO and f w.r.t. Xj can be derived as

∇ ( ) = ( + ) − − [ ]͠ ͠( )⊤ ( ) ( )⊤ ( ) ( )⊤ ( )⊤X D D D D X D Y D YR 0 02 2 2 ; ;j
t t t t

j
t

j j
t

jO

and

η∇ ( ) = ( + ) − +⊤ ⊤X X m mf 1 12 1 4 2 ,j j j N Nj j

where mj is the mean vector of Xj, and m is the mean vector of
[ ]X X,j j . Let h be the iteration counter. IPM updates Xj by

σ
λ= − ∇ ( ) + ∇ ( )λ σ

( + ) ( ) ( ) ( )⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟X X X XR f

1
j
h

j
h

j
h

j
h1

/ O 21

with σ μ= ( + )L /2. Hereafter, we use ν to denote the component-
wise soft thresholding operator with threshold ν, i.e.,

ν( ) = ( ) {| | − }ν a a asign max , 0 .
In [4], it was also recommended to use the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [26] to solve the sub-
problem (4). Let =( )t 10 and =( ) ( )Z Xj j

0 0 . Then FISTA performs the
update rules as follows:

= + +( ) ( − )⎛
⎝⎜

⎞
⎠⎟t t1 1 4 /2,h h 1 2

= + − ( − )( ) ( )
( − )

( )
( ) ( − )Z X X X

t

t

1
,j

h
j
h

h

h j
h

j
h

1
1

λ= − [∇ ( ) + ∇ ( )]λ
( + ) ( ) ( ) ( )⎛

⎝⎜
⎞
⎠⎟X Z Z Z

L
R f

1
.j

h
L j

h
j
h

j
h1

/ O 21

In this paper, We also use Nesterov's Accelerated Proximal Gra-
dient (NAPG) method [24] to solve (4). Let =( ) ( )Z Xj j

0 0 . Then the
update steps are

μ
μ

= +
−
+

( − )( ) ( ) ( ) ( − )Z X X X
L

L
,j

h
j
h

j
h

j
h 1

λ= − [∇ ( ) + ∇ ( )]λ
( + ) ( ) ( ) ( )⎛

⎝⎜
⎞
⎠⎟X Z Z Z

L
R f

1
.j

h
L j

h
j
h

j
h1

/ O 21

When λ > 02 and η = 1, the objective function of (4) is strongly
convex. Then the subproblem (4) can be solved by IPM with a
linear convergence rate μ μ( (( − ) ( + )))h Lexp 4 / [24]. NAPG has
been proved to further accelerate IPM with a linear convergence
rate μ( (( − ) ))h Lexp / [24]. From the update rules of FISTA, we
can see that FISTA does not rely on the strongly convex parameter
μ and its convergence rate is ( [ ( + ) ])L h/ 2 1 2 [26]. The complexity
of computing L and μ are ( ) + ( )K n K2 3 and ∑ ( ( ) + ( ))= K n Kj

C
j j1
2 3 ,

respectively, and the complexity of each update step of IPM, FISTA
and NAPG for (4) is ( )K Nj

2 .

2.3. The S-FDDL model and the S-FDDL method

FDSR has NK variables, so its optimization procedure is time-
consuming. By assuming that each training example can only be
reconstructed by columns in its corresponding sub-dictionary, i.e.,

=X 0j
k when ≠k j, the O-FDDL model (1) can be reduced into a

much simpler problem:

λ λ( ) + ( ) + ∥ ∥

∥ ∥ = ( = … ) ( )

Y D X X X

d

R f

l K

min , ,

s. t. 1 1, , , 7

X D

l

,
S 2 S 1 1

2

where

∑( ) = ∥ − ∥
=

Y D X Y D XR , , 2
j

C

j j j
j

S
1

F
2

and

∑( ) = [ − ( )] ( ( − ) )
=

⊤X X I W Xf N N2 / Tr .
j

C

j j
j

j j
j

S
1

Obviously, this assumption helps reduce the number of vari-
ables of the FDSR problem (2) from NK to ∑ = N Kj

C
j j1 , which makes

the S-FDDL method very fast. However, from the formulations of
( )Y D XR , ,S and ( )XfS , it is seen that the S-FDDL model (8) can be

further reduced to C independent class-specific sub-dictionary
learning models, which means that, only the discriminative re-
construction and the discriminative representation are considered
in the S-FDDL method, but the collaborative reconstruction is ig-
nored. In [4], the experimental results for various image classifi-
cation tasks show that this ignorance will affect the classification
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accuracy of S-FDDL for tasks involving data with non-uniform
variations in different classes.

2.4. The SDDL model and the SDDL method

In [21,22], the O-FDDL model (1) has been modified to solve
domain shift problem in which the test examples from the target
domain have a different distribution with most of the training
examples from the source domain. The derived DL model is re-
ferred to as the Shared Domain-adapted Dictionary Leaning
(SDDL) model. Here, we only consider a simple case. In this case,
only one source domain is considered, that is, we have the training
data from two domains, ¯ ∈ ×Y n N

S
S S from the source domain and

¯ ∈ ×Y n N
T

T T from the target domain. The SDDL model aims at
jointly learning two projectors ∈ ×P n n

S
S, ∈ ×P n n

T
T and a common

discriminative dictionary = [ … ] = [ … ]D D D D d d d, , , , , ,C K1 2 1 2 ∈ ×n K

. Let ˜ = [ ]P P P,S T , ˜ = ( ¯ ¯ ) = [ ˜ ˜ … ˜ ]( + )Y Y Y y y ydiag , , , , N NS T 1 2 S T
and the re-

presentation matrix ˜ = [ ]X X X,S T . The SDDL model can be cast as
the following optimization problem:

ν λ˜ ( ˜ ˜ ) + ˜( ˜ ) + ∥ ∥

= = ∥ ∥ = ( = … ) ( )

˜ ˜

⊤ ⊤

D P X P X

P P I P P I d

R r

l K

min , ,

s. t. , , 1 1, , , 8

D P X

l

, ,
O 1 1

S S T T 2

where

τ τ˜ ( ˜ ˜ ) = ∥ ˜ ˜ − ˜ ∥ + ∥ ˜ ˜ − ˜ ∥ + ∥ ˜ ˜

− ˜ ∥ ( )

D P X PY DX PY DX PY

DX

R , ,

9

O F
2

1 in F
2

2

out F
2

with

˜ [ ] =
˜ [ ] ˜

⎪

⎪⎧⎨
⎩

X
X d y

i j
i j

,
, , are in the same class

0 otherwise

i j
in

and

˜ [ ] =
˜ [ ] ˜

⎪

⎪⎧⎨
⎩

X
X d y

i j
i j

,
, , are in different classes

0 otherwise,

i j
out

and the second term ˜( ˜ ) = − (( ˜ ˜ )( ˜ ˜ ) )⊤P PY PYr Tr is a regularization term
on P̃ to preserve the information from the original domains. From
the formulations of R̃O and r̃ , it can be observed that, when P̃ is
fixed, after ordering ˜ ˜PY and X̃ as = [ … ]Y Y Y Y, , , C1 2 and

= [ … ] = [ ⋯ ]X X X X X X X, , , ; ; ;C j j j
C

1 2
1 2 , R̃O actually becomes similar

with the RO term of the O-FDDL model, r̃ becomes a constant that
can be ignored, so we have obtained the modified O-FDDL model

∑ ∑

( )

τ τ λ∥ − ∥ + ∥ − ∥ + ∥ ∥ + ∥ ∥

∥ ∥ = ( = … )

= ≠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

10

Y DX Y D X D X X

d l K

min

s. t. 1 1, , .

D X j

C

j j j j j
j

k j
k j

k

l

, 1
F
2

1 F
2

2 F
2

1 1

2

Based on this observation, in [21,22], the SDDL method is de-
signed as an optimization procedure with following two alter-
nating steps:

� first fix D and X and update the projectors P̃ by using the Stiefel
manifold optimization technique [27],

� then fix P̃ and update the dictionary D and the representation
matrix X by using the O-FDDL method.

The kernelized version of SDDL was also proposed in [21,22]. In
each version of SDDL, the O-FDDL method serves as an important
component. This means that a stable and fast version of O-FDDL
can definitively improve the computational efficiency of the SDDL
method.
3. Efficient Fisher Discrimination Dictionary Learning

In this section, we propose an Efficient FDDL (E-FDDL) method
which is much faster than O-FDDL, and meanwhile, gives more
accurate and stable classification results than S-FDDL for data with
non-uniform variations in different classes. In our E-FDDL method,
instead of solving the original FDSR problem (2), we consider an
approximate FDSR problem which can be solved by an efficient
optimization strategy. Further, by replacing O-FDDL in the original
SDDL procedure with E-FDDL, we obtain an efficient SDDL method
called E-SDDL.

3.1. The approximate problem of FDSR (A-FDSR)

In the objective function of the original FDSR problem (2),
( )( )Y D XR , ,t

O accurately reflects the principle of collaborative and
discriminative reconstructions. Noting that

∥ ∥ ≤ ∥ ∥ ∥ ∥ ( )( ) ( )D X D X , 11k
t

j
k

k
t

j
k

F
2

2
2

F
2

where = …k C1, , , we see that an upper bound of ( )( )Y D XR , ,t
O is

∑

∑

( )

= ∥ − ∥ + ∥ ∥ − ( ) + ∥ ∥ ∥ ∥

+ ∥ ∥ ∥ ∥

( )

=

( ) ⊤ ( ) ( )

≠

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Y D X

Y D X Y Y D X D X

D X

R , ,

2Tr

,

t

j

C

j
t

j j j j
t

j
j

j
t

j
j

k j
k
t

j
k

E

1
F
2

F
2

2
2

F
2

2
2

F
2

which also reflects the principle of collaborative and dis-
criminative reconstructions. We now rewrite RE as
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where yi is a training example with class label ci, and xi is its
representation coefficients. From the minimization of (12) w.r.t. X ,
it can be seen that minimizing the term ∥ − ∥( )y D xi

t
i 2

2 reflects the

idea of collaborative reconstruction, and ∥ ∥yi 2
2 is a constant that

can be ignored. Minimizing the third term of the right-hand side
of (12) means that ( )D xc

t
i
c

i
i is enforced to be as close to yi as possible

and minimizing the fourth term ∥ ∥ ∥ ∥( )D xc
t

i
c

2
2

2
2

i
i is used to bound

the increment of its length. Similarly, minimizing the fifth term
∥ ∥ ∥ ∥( )D xj

t
i
j

2
2

2
2 is used to restrict the ability of each ( ≠ )( )D j cj

t
i in

reconstructing yi. Thus RE also takes the discriminative re-
construction into consideration. This ensures the E-FDDL method
to perform well in classification tasks with unbalanced variations
in different classes.

Using RE to replace RO in the objective function of the original
FDSR problem (2) leads to the following problem:

λ λ( ) + ( ) + ∥ ∥ ( )
( )Y D X X XR fmin , , . 13X

t
E 2 1 1

This problem is referred to as the Approximate FDSR (A-FDSR)
problem. Our E-FDDL method, presented in Algorithm 2, will be
based on solving (13) instead of (2).
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Algorithm 2. The E-FDDL Method.
Inp

1:
2:

3:

4:

5:
6:
ut: Training set ∈ ( < )×Y n Nn N , initial over-complete dic-

tionary ∈ ( < )( ) ×D n Kn K0 , initial sparse representation

matrix ∈( ) ×X K N0 , λ > 01 , λ > 02 , η > 0, the threshold value
ε > 0 for solving problem (13), the number of iterations T for
E-FDDL.

Initialization: ≔t 0, ≔ ( )X X 0 , ≔ ( )D D 0 .
Repeat

Update X : Letting = ( )D D t and computing ( + )X t 1 by solving
the A-FDSR problem (13).

Update D: Fixing = ( + )X X t 1 and computing ( + )D t 1 by solving
the DU problem (3).
≔ +t t 1.
Quit If t¼T.

tput ( )D t and ( )X t .
Ou

3.2. An efficient optimization strategy for A-FDSR

The A-FDSR problem (13) can be split into N subproblems, that
is, updating each xi individually while holding ( ≠ )x k ik fixed. Let
γ λ= [( ) ∑ − ( ) ∑ ]≠ ≠ ≠x xN N4/ 2/i c k i c c k k i k2 ,i k i

. We have the formulation

of each subproblem
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j
i
j for ≠j ci. To facilitate the analysis,

we drop the subscript i and obtain that
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We now derive a dual problem of the subproblem (15). To this end,
(a) Extended Yale F

(b) CMU PIE Fac
Fig. 1. Part of training exam
let ( ) = ∥ − ∥z y zR 2
2 and βα λ( ) = ∥ ∥ − + ∥ ∥⊤x x x xrj

j j j j j j
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1 1. Then
the dual problem of (15) is given as
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where μ μ μ μ( − ) = ( ) −⁎ ⊤ ⊤yR 1/4 is the conjugate function of R,
μ= ( )⊤u D t , and
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is the conjugate function of rj. When α > 0j , rj is strongly convex
[28]. This implies the differentiability of ⁎r j and that

βα∇ ( ) = [ ( )] ( + )λ
⁎ u ur 1/ 2j

j j j j
1

is Lipschitz continuous with the Lip-

schitz constant α(∇ ) = ( )⁎L r 1/ 2j
j . The derivation method in [28] can

be easily generalized to derive the formulations of μ( − )⁎R , ( )⁎ ur j
j

and ∇ ( )⁎ ur j
j .

The dual problem (16) has some good properties. First, the
number of variables is n which is less than K, the number of the
primal variables. Second, FD is strongly convex with the constant
μ( ) =F 0.5D . Third, the gradient of FD, i.e.,

μ μ∇ ( ) = − + [∇ ( ) ∇ ( ) ⋯ ∇ ( )]⁎ ⁎ ⁎y D u u uF r r r0.5 ; ; ; C
C

D 1
1

2
2

is Lipschitz continuous with the Lipschitz constant

(∇ ) = + { (∇ ( )) … (∇ ( ))}∥ ∥⁎ ⁎ ( )u u DL F L r L r0.5 max , , .C
C t

D 1
1

2
2

In view of these properties, we can employ Nesterov's Accelerated
Gradient method to solve the problem (16). This strategy starts at
ζ μ=( ) ( )0 0 and iterates as follows:

ζ μ μ

μ ζ ζ ζ
μ
μ

= −
(∇ )
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This strategy is called NADGA in our previous work [28]. Actually,
when λ > 02 , NADGA can also be used to solve the FDSR problem
ace Database B

e Database
ples from (a) and (b).



Table 2
Recognition results on CMU PIE Face Database (Pose c27) (The best accuracy is
marked in boldface.)

DL method (Opt. strat-
egy for FDSR or A-FDSR)

= =K N 10j j for

O-FDDL and E-FDDL

= =K N 15j j for

O-FDDL and E-FDDL

Accuracy
(%)

CPU
time
(s)

Accuracy
(%)

CPU
time
(s)

O-FDDL 96.1270.42 1882 94.3370.79 4607
(TwIST)

O-FDDL 95.8870.66 1839 94.3170.58 5869
(FISTA)

O-FDDL 96.2970.38 1295 94.9470.39 4064
(NAPG)

S-FDDL 94.5670.63 6 95.0270.48 7
(IPM)

E-FDDL 97.1570.42 389 97.6970.39 1414
(NADGA)

D-KSVD 95.7770.76 528 96.4370.39 701

LC-KSVD 95.5370.80 22 96.4970.61 22
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(2). For the reason why we did not do this, see Appendix A.

3.3. Convergence rate and computational complexity

The subproblem (16) can be solved by NADGA with a linear
convergence rate μ( ( − ( ) ( − ) (∇ ) ))F h L Fexp 1 /D D which is better

than that of NAPG for solving (4), i.e., μ( ( − ( − ) ))h Lexp 1 / .
This follows easily from Proposition 3.1 which is proved in Ap-
pendix B.

Propostion 3.1. L/μ is always larger than μ(∇ ) ( )L F F/D D .

Further, the complexity of computing (∇ )L FD is
( ) + ( ) + ∑ ( ( ) + ( ))Kn O n K n Kj j j

2 3 2 3 , and the complexity of each
update step of NADGA for (16) is ( )Kn . Due to the fact that >K n,
compared with the computational complexity of the key steps in
NAPG for (4) (see Section 2.2), the complexity of the key steps in
NADGA for (16) is much lower. This demonstrates that E-FDDL is
more efficient than O-FDDL, as also illustrated in the experimental
results.

3.4. The E-SDDL method

Since E-FDDL is much more efficient than O-FDDL, it is natural
to use E-FDDL to replace O-FDDL in the SDDL algorithm. This leads
to a more efficient SDDL method called E-SDDL. From the modified
O-FDDL model (10), it is seen that E-SDDL involves repeatedly
solving the modified A-FDSR problem
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t
E 1 1

where

∑

∑
( )

τ τ τ

τ

˜ ( ) = ∥ − ∥ + ∥ ∥ − + ∥ ∥ ∥ ∥

+ ∥ ∥ ∥ ∥

( )

=

( ) ( ) ( )

≠

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

18

Y D X y D x y y D x D x

D x

R , , 2

.

t

i

N

i
t

i i i ci
t

i
ci

ci
t

i
ci

j ci
j
t

i
j

E
1

2
2

1 2
2

1
T

1 2
2

2
2

2 2
2

2
2

Accordingly, in the subproblem (14), we have α τ= ∥ ∥( )Di
c

c
t

1 2
2i

i
,

β τ= ( )D y2i
c

c
t

i1
Ti

i
, and for ≠j ci, α τ= ∥ ∥( )Di

j
j
t

2 2
2, β = 0i

j . Thus, we have
a special case of the subproblem (14), so NADGA is applicable.
Table 1
Recognition results on Extended Yale Face Database B (The best accuracy is marked
in boldface.)

DL Method (Opt. strat-
egy for FDSR or
A-FDSR)

= =K N 15j j for

O-FDDL and E-FDDL

= =K N 20j j for

O-FDDL and E-FDDL

Accuracy
(%)

CPU
time
(s)

Accuracy
(%)

CPU
time
(s)

O-FDDL 94.6070.60 805 95.8770.97 1513
(TwIST)
O-FDDL 94.6370.75 660 95.9071.04 1232
(FISTA)

O-FDDL 94.8470.79 435 95.8270.94 853
(NAPG)

S-FDDL 90.8871.49 6 92.1171.53 6
(IPM)

E-FDDL 95.4470.71 221 96.7170.57 519
(NADGA)

D-KSVD 88.6071.14 453 90.7670.78 581
LC-KSVD 89.0570.93 18 91.0370.61 24
4. Experiments

We now conduct face and object recognition experiments to
verify the performance of the proposed E-FDDL method. All ex-
periments are performed in Matlab R2013b on a Lenovo Windows
7 PC with Intel Core i3-2120 CPU (3.30 GHz) and 12 GB RAM.
4.1. Face recognition

We first present experimental results on face recognition to
evaluate the effectiveness of E-FDDL for classification tasks with
unbalanced variations in different classes.
Table 3
Recognition results on CMU PIE Face Database (Pose c27) with Nj¼20 (The best
accuracy is marked in boldface.)

DL method (Opt. strat-
egy for FDSR or A-FDSR)

= =K N 20j j for

O-FDDL and E-FDDL

Kj¼15 for O-FDDL
and E-FDDL

Accuracy
(%)

CPU
time
(s)

Accuracy
(%)

CPU
time
(s)

O-FDDL 88.9070.54 9114 95.3770.62 6712
(TwIST)

O-FDDL 91.8770.63 14,830 95.1870.63 6528
(FISTA)

O-FDDL 93.1271.21 9586 95.4970.60 5810
(NAPG)

S-FDDL 95.6270.47 8 – –

(IPM)

E-FDDL 97.6670.42 3583 97.6970.41 2292
(NADGA)

D-KSVD 97.1970.15 1031 – –

LC-KSVD 97.2770.43 45 – –
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Fig. 2. The performance of O-FDDL and E-FDDL on (a) and (b) versus the number of classes C. Left: Recognition accuracy versus C. Right: CPU time versus C.
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4.1.1. Data sets
The following two face databases are used in the experiments.

� The first data set is Extended Yale Face Database B [29] with
C¼38 objects and 64 near frontal images for each object. We
use the cropped images and resize them into 32�32. All the 64
images are taken under different illuminations.

� The second data set is CMU PIE Face Database [30] with C¼68
classes. There are 49 near frontal images of size 64�64 for each
object. In addition to illumination changes, the expression varia-
tions and the accessory variations make the task more challenging.

For the two datasets, we randomly select Nj images from each
class for training and other different Nj images for test. In this way,
the variations in the C classes are very likely to be different. Part of
training examples used are shown in Fig. 1 from which we can see
the unbalanced changes in different classes. Note that the lighting
and expression variations in the five classes shown in Fig. 1(a) are
not very similar, and in Fig. 1(b), not only the non-uniform lighting
and expression variations but also the unbalanced accessory (e.g.,
glasses) variations can be observed. In all experiments, we use the
Eigenface feature [31] with dimension 300, i.e., n¼300.

4.1.2. Compared DL methods
We compare E-FDDL with O-FDDL and S-FDDL. For O-FDDL,

three optimization strategies are used for FDSR, i.e., TwIST1 [32],
FISTA [26] and NAPG [24]. We apply IPM [25] to minimize FDSR in
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Fig. 3. Visualization of sparse representation matrices X learned by (a) O-FDDL, (b) S-FDDL and (c) E-FDDL on Extended Yale Face Database B. (d)–(f) are the corresponding
sign matrices. For space limitations, here we only visualize sub-matrices extracted from the first 150 rows and the first 150 columns of the original matrices.
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S-FDDL and employ NADGA [28] to optimize A-FDSR in E-FDDL.
The DU strategy presented in [3,4] is used in all the three DL
methods. We set the maximum number of iteration as 200 for the
optimization of each subproblem, i.e., (4) and (16), and T¼15 for
each DL method. We use the relative change in the objective
function as the stopping criterion for IPM, TwIST, FISTA and NAPG,
and choose the relative dual gap as the stopping criterion for
NADGA. For all stopping criteria, we set the threshold value ε to be
10�6. In each DL stage, there are three parameters to be tuned.
They are the number Kj of the sub-dictionary columns, the sparsity
regularization parameter λ1 and the FDC regularization parameter
λ2. For E-FDDL and O-FDDL, we set Kj as the number of the training
examples in class j, i.e., Kj¼Nj, unless otherwise stated. For S-FDDL,
Kj is selected by cross validation with the search range
{ … }N1, 2, , j . For all the three DL methods, we use cross validation
to choose λ1 and λ2, and set the search range to be {0.001, 0.005,
0.01, 0.05, 0.1}. And η is fixed to 1. After the dictionary D and the
sparse representation matrix X are learned, in the classification
stage, we employ the global classifier presented in [3,4]. There are
two parameters γ and ω to be tuned. We set γ λ= 1 and ω = 0.5.

We also compare E-FDDL with D-KSVD [12] and LC-KSVD [14].
D-KSVD formulates DL and classifier learning as a unified frame-
work, and employs the KSVD algorithm to solve the optimization
problem. LC-KSVD introduces an explicit correspondence between
the dictionary columns and the label information, thus formulat-
ing a discriminative sparse code error term which is incorporated
into the objective function of D-KSVD as a regularization term. We
use the D-KSVD and LC-KSVD codes provided by their authors and
1 In the demo of FDDL provided by the authors, they employ TwIST, instead of
IPM, as the optimization strategy for FDSR.
select the parameter K by cross validation. The search range of K is
× { }38 3, 4, 5, 6, 7, 8 for Extended Yale Face Database B, and
× { }68 3, 4, 5, 6, 7, 8 for CMU PIE Face Database. For the D-KSVD

model, we set γ¼255 and β¼1, while, for the LC-KSVD model, we
use α¼16 and β¼4. For these two methods, the sparsity para-
meter T is set as 16 and the iteration number is set as 100. In the
classification stage, we employ the corresponding classifiers pre-
sented in [12,14].

4.1.3. Face recognition results
In the first and second experiments, we use Extended Yale Face

Database B. In the first experiment, we set Nj¼15, while, in the
second experiment, we increase the sample size Nj to 20. Ac-
cordingly, the size of the test set from each class is also increasing.
With this setting, we compare these DL methods in terms of ac-
curacy, efficiency and stability. For E-FDDL and O-FDDL, the result
of cross-validation is λ = 0.0051 and λ = 0.0012 , while, for S-FDDL,
Kj¼7, λ = 0.0051 and λ = 0.052 . For D-KSVD and LC-KSVD,
K¼38�7¼266 in the first experiment, and K¼38�8¼304 in the
second experiment. In each experiment, 10 tests are conducted.
The average performance, evaluated by the accuracy and the CPU
time, is reported in Table 1. From Table 1, we can see that the
results support our analysis. First, FISTA indeed accelerate O-FDDL
with TwIST in this case, and NAPG can make O-FDDL faster. The
optimization strategy for FDSR has little effect on the recognition
accuracy of O-FDDL. Second, S-FDDL is extremely fast, but its re-
cognition accuracy is obviously lower than that of O-FDDL and
E-FDDL. This suggests that, in this case, the role of the collabora-
tive reconstruction is indispensable. Thirdly, E-FDDL is much faster
than O-FDDL. It is also observed that, in the two experiments,
E-FDDL is much better than D-KSVD in both accuracy and
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Fig. 4. Visualization of sparse representation matrices X learned by (a) O-FDDL, (b) S-FDDL and (c) E-FDDL on CMU PIE Face Database. (d)–(f) are the corresponding sign
matrices. For space limitations, here we only visualize sub-matrices extracted from the first 100 rows and the first 100 columns of the original matrices.

R. Jiang et al. / Signal Processing 128 (2016) 28–3936
efficiency. LC-KSVD is faster than E-FDDL, but its recognition ac-
curacy is much lower than that of E-FDDL. When Nj increases, the
accuracy of all the comparing methods are increasing, but E-FDDL
has the best performance.

In the third and fourth experiments, we use CMU PIE Face
Database. For E-FDDL and O-FDDL, the value of the parameters
selected by cross validation are λ = 0.0051 and λ = 0.0052 . For
S-FDDL, Kj¼3, λ = 0.0051 and λ = 0.12 . For D-KSVD and LC-KSVD, K
is set to be 68�4¼272 and 68�3¼204, respectively. We choose
Nj¼10 in the third experiment and then increase the number Nj to
15 in the fourth experiment. 10 tests are conducted, and the
average performance of each DL method is reported in Table 2. We
can see that, in both experiments, E-FDDL still outperforms
S-FDDL in accuracy and is faster than O-FDDL. In addition, in the
two experiments, the accuracy performance of E-FDDL is still
better than that of D-KSVD and LC-KSVD, though its efficiency
performance is not the best. From Table 2 it is seen that, when Nj

increases, O-FDDL using FISTA becomes the slowest algorithm, and
the accuracy of the O-FDDL methods is decreasing. It is further
seen that the accuracy of S-FDDL method is increasing and getting
similar with that of the O-FDDL methods; however, the recogni-
tion performances of other comparing methods is better and more
stable, and in particular, E-FDDL gives the most stable recognition
performance.

We further conduct the fifth and sixth experiments on CMU PIE
Face Database. In these two experiments, we increase Nj to 20, and
select Kj¼20 and Kj¼15, respectively. For D-KSVD and LC-KSVD, K
is set as 68�5¼340. For other experimental settings, we follow
that used in the third and fourth experiments. 10 tests are con-
ducted, and the average performance of each DL method is re-
corded in Table 3. From Table 3 it is noted that, under the setting
Kj¼Nj, compared with other DL methods, the O-FDDL methods
give worse result in term of accuracy and CPU time. It is founded
that the setting Kj¼15 is more appropriate for the case with a
larger size of examples. Specifically, as Nj increases, the un-
balanced variations are getting reduced, so, under the setting
Kj¼15, the recognition performance of O-FDDL and S-FDDL is al-
most the same. In both experiments, E-FDDL performs stably.
Though E-FDDL is much slower than D-KSVD and LC-KSVD, but its
recognition accuracy is better than that of the two state-of-the-art
algorithms.

We now investigate how O-FDDL and E-FDDL behave as we
vary the number C of classes in the first and the third experiments.
For the first experiment, we set the values of C as 22, 26, 30, 34, 38.
And for the second experiment, the values of C are set to be 36, 44,
52, 60, 68. For each value of C, 10 tests are conducted. And all the
average results are shown in Fig. 2. From Fig. 2 it is observed that
E-FDDL stably outperforms O-FDDL in both accuracy and CPU time,
and meanwhile, its stability performance is also good.

4.1.4. The role of collaborative reconstruction
From all the experimental results, we can empirically observe

that, for these face recognition tasks involving data with un-
balanced variations in different classes, the recognition accuracy of
E-FDDL is much better than that of S-FDDL, and is also better even
than that of O-FDDL. We now investigate the reason for this.

Figs. 3 and 4 show the sparse representation matrices X leaned
by O-FDDL, S-FDDL and E-FDDL on the two databases and their
sign matrices. From visualization of X generated by O-FDDL, it is
clear that X learned by O-FDDL is an almost block diagonal matrix,
the sign matrix of which reveals the idea of discriminative re-
construction and collaborative reconstruction, that is, each
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Fig. 5. Convergence curves of O-FDDL using NAPG and E-FDDL. Left: Objective value of the original O-FDDL model versus alternating step number. Right: Objective value of
the original O-FDDL versus CPU time.
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training example is mainly reconstructed by columns from its
corresponding sub-dictionary, and a few columns from other sub-
dictionaries with coefficients very close to zero are also helpful in
the reconstruction. In contrast to O-FDDL, due to the assumption
that each training example can only be reconstructed by columns
in its corresponding sub-dictionary, X learned by S-FDDL is an
exact block diagonal matrix, which implies the ignorance of the
collaborative reconstruction. For E-FDDL, the learned “sparse” re-
presentation matrix X in which coefficients with large absolute
values sparsely distributed is also an almost block diagonal matrix.
Different from that of O-FDDL, the sign matrix shows that much
more columns from other sub-dictionaries with very small coef-
ficients are used in the reconstruction of each training example,
which can lead to much more complementary information. This
indicates that E-FDDL considers both the discriminative re-
construction and collaborative reconstruction, and meanwhile,
emphasizes the role of the latter, thus giving more accurate and
stable performance in such image classification tasks, where non-
uniform variations exist in different classes in the data.

4.1.5. Convergence study
In this part, we show numerically that the E-FDDL method is

convergent. We further investigate how fast E-FDDL can converge.
Fig. 5 displays the convergence curves of both O-FDDL and

E-FDDL on the two face databases. For the two figures shown on
the left, the y-axis is the objective value of the original FDDL
model, and the x-axis is the alternative step number. We can see
that, compared with O-FDDL, E-FDDL always converges to a point



Table 4
Recognition results on single source four domains benchmark (The best results are
marked in boldface.)

Source Target Accuracy (%) CPU time (s)

SDDL E-SDDL SDDL E-SDDL

Amazon Caltech-256 32.9672.59 33.5672.44 63 30
Amazon DSLR 85.3673.36 86.9173.22 61 31
Amazon Webcam 80.5573.73 81.7973.36 62 31
DSLR Amazon 55.6472.49 56.3072.30 37 14
DSLR Caltech-256 32.2272.75 32.6572.53 37 14
DSLR Webcam 82.2573.85 82.3474.24 36 14
Webcam Amazon 56.3572.57 55.6072.80 36 13
Webcam Caltech-256 32.5871.58 32.6371.51 37 14
Webcam DSLR 84.9574.69 82.8974.21 36 14
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with a larger objective value. This is due to the fact that the ob-
jective function of A-FDSR problem in the E-FDDL method is an
upper bound of that of the FDSR problem in the O-FDDL method.
However, this has no negative effect on the classification accuracy
of E-FDDL in our experiments. Furthermore, the two figures shown
on the right, whose x-axis is the CPU time, suggest that E-FDDL
always consumes much less CPU time than O-FDDL using the
NAPG method for solving the FDSR problem.

4.2. Object recognition

In this subsection, we present object recognition experiments
on two real-world databases involving four different visual do-
mains to evaluate the performance of the E-FDDL based E-SDDL
method in domain adaptation applications.

4.2.1. Data sets
The following two real-world object databases are used in the

experiments.

� The first one is the benchmark database for domain adaptation
contributed by [33]. This database contains three domains:
images downloaded from Amazon, high quality images cap-
tured by a Digital Single-Lens Reflex (DSLR) camera and low
quality images from a webcam. For simplicity, we use Amazon,
DSLR and Webcam to represent the three domains, respectively.

� The second one is the Caltech-256 database [34] which is used
as the fourth domain but only as one of the target domains.

In all the four datasets, there are 10 common classes: Backpack,
Bike, Calculator, Headphone, Keyboard, Laptop Computer, Monitor,
Mouse, Mug and Projector. We restrict to the 10 classes. We use
Amazon, DSLR or Webcam as the source domain and then choose
one of the remaining two datasets and the Caltech-256 dataset as
the target domain, so we have 9 source-target pairs. We randomly
select 20 training examples per class from Amazon, 8 training
examples per class from DSLR and Webcam when used as source,
while 6 training examples from all the datasets when used as
target. All the remaining images from the target domain are set as
examples for test. We use the 800 dimensional SURF [33] features
in all the experiments. For more details of the feature extraction,
see experimental sections of [21,22].

4.2.2. Compared DL methods
We compare the O-FDDL based SDDL method and the E-FDDL

based E-SDDL method. For these two DL methods, we use their
kernelized versions, and the used kernel is the non-parametric
histogram intersection kernel. We set τ = 41 , τ = 302 , λ = 0.0431 ,
Ki¼8, n¼60. For O-FDDL and E-FDDL, the number of iterations is
set as 10. We apply TwIST to solve the FDSR problem in O-FDDL
and NADGA to solve the A-FDSR problem in E-FDDL. For the set-
ting of other relevant parameters, see Section 4.1.2. For SDDL and
E-SDDL, the number of iterations is also set as 10. After the SDDL
and E-SDDL procedures are ended completely, classification
scheme proposed in [21,22] is used to do recognition. For the in-
volved OMP algorithm [35], T0 is set as 15.

4.2.3. Object recognition results
For each experiment, 10 tests are conducted, and the average

results evaluated by the accuracy and the CPU time are shown in
Table 4. From these results, we can see that the proposed E-SDDL
method gives a similar recognition accuracy with the original
SDDL method. However, in almost every case, the CPU time of
E-SDDL is less than or equal to half of that of SDDL based on
O-FDDL. These observations indirectly support the stable and ef-
ficient performance of E-FDDL.
5. Conclusion

In this paper, we proposed an efficient FDDL algorithm called
E-FDDL. In addition to the role of the discriminative representa-
tion, E-FDDL considers the role of the discriminative reconstruc-
tion and collaborative reconstruction. This makes E-FDDL more
effective than S-FDDL when dealing with classification problems
involving data with unbalanced variations in different classes.
Furthermore, based on the analysis on the convergence rate and
the computational complexity, we conclude that E-FDDL is much
faster than O-FDDL. We also employed E-FDDL to accelerate the
SDDL method for domain adaptation applications. Face and object
recognition experiments on real-world databases have been con-
ducted to verify the effectiveness of E-FDDL.
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Appendix A

In this appendix, we explain the reason why NADGA is not
suggested to use in solving the FDSR problem (2). By fixing

( ≠ )x k ik first and then updating each xi individually, the FDSR
problem (2) can be split into N problems
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Our NADGA [28] aims at deriving a dual problem of the original
problem, say (A.2) here, and then using Nesterov's Accelerated
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Gradient (NAG) method to solve this dual problem. When λ > 02 ,
i.e., α > 0j , let ( ) = ∥ − ∥z y zR 2
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is the conjugate function of rj. For the case λ > 02 , the NAG method
can also be applicable to the problem (A.3) whose objective
function is strongly convex and smooth. However, this problem
has × ( + )n C 1 unknown variables, where C is the number of
classes and n is the dimension of the training examples. This
means that, if the number of classes C is big then the number of
unknown variables of the problem (A.3) is very large. So, com-
pared with using NAG method to solve problem (16) which has
only n variables, using NAG method to solve problem (A.3) will
lead to a higher computational complexity.

When λ = 02 , i.e., α = 0j , the objective function of the problem
(A.2) may not be strongly convex. In this case, we cannot derive a
dual problem of the problem (A.2) to which NAG method is ap-
plicable. Thus, in this case, NADGA cannot be used to solve the
problem (A.2).
Appendix B. Proof of Proposition 3.1

In this appendix, we prove Proposition 3.1 in Section 3.3. From
the formulations of L and μ, i.e., (6) and (5), we obtain that
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proof is complete.
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