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Representative Vector Machines: A Unified
Framework for Classical Classifiers
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Abstract—Classifier design is a fundamental problem in pat-
tern recognition. A variety of pattern classification methods
such as the nearest neighbor (NN) classifier, support vector
machine (SVM), and sparse representation-based classifica-
tion (SRC) have been proposed in the literature. These typical and
widely used classifiers were originally developed from different
theory or application motivations and they are conventionally
treated as independent and specific solutions for pattern clas-
sification. This paper proposes a novel pattern classification
framework, namely, representative vector machines (or RVMs
for short). The basic idea of RVMs is to assign the class label
of a test example according to its nearest representative vec-
tor. The contributions of RVMs are twofold. On one hand, the
proposed RVMs establish a unified framework of classical clas-
sifiers because NN, SVM, and SRC can be interpreted as the
special cases of RVMs with different definitions of representa-
tive vectors. Thus, the underlying relationship among a number
of classical classifiers is revealed for better understanding of
pattern classification. On the other hand, novel and advanced
classifiers are inspired in the framework of RVMs. For example,
a robust pattern classification method called discriminant vector
machine (DVM) is motivated from RVMs. Given a test example,
DVM first finds its k-NNs and then performs classification based
on the robust M-estimator and manifold regularization. Extensive
experimental evaluations on a variety of visual recognition tasks
such as face recognition (Yale and face recognition grand chal-
lenge databases), object categorization (Caltech-101 dataset), and
action recognition (Action Similarity LAbeliNg) demonstrate the
advantages of DVM over other classifiers.
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I. INTRODUCTION

CLASSIFICATION [1]–[6] is one of the most fundamen-
tal problems in pattern recognition, machine learning and

statistics, and numerous classification algorithms have been
proposed for different computer vision and pattern recogni-
tion tasks. The most widely used classifiers include neural
network [7]–[10], support vector machines (SVMs) [11]–
[14], k-nearest neighbor (NN) [15]–[18], Gaussian mixture
model [7], naive Bayes [19], [20], and decision tree [21].

Among the classifiers, NN [15], [22] is a simple yet popular
method for classification, but it is a lazy algorithm without
training. Given a new example, NN classifies the example as
the class of the nearest training example to the observation.
Therefore, NN is sensitive to noise.

Nearest feature line (NFL) [23], [24], nearest feature
plane (NFP) [25], and nearest feature space (NFS) [25], [26]
are representative variants of NN. Any two examples in the
same class form a feature line in NFL, while any three exam-
ples in the same class form a feature plane (FP) in NFP. All
the examples in the same class form a feature space in NFS.
NFL, NFP, and NFS classify a test example as the class whose
respective feature line, feature plane, and feature space are the
nearest to the test example, respectively. NFL and NFP are sen-
sitive to noise, and NFS does not perform well when classes
are highly correlated with each other [27].

SVMs [11] construct a hyperplane for binary classifica-
tion (or a set of hyperplanes for multiclass classification),
which maximizes the margin between classes. SVMs have
been widely applied in real-world computer vision problems,
such as object recognition, pedestrian detection, and pose
estimation, due to the good generalization performance.

Recently, sparse learning and compressive sensing [28]–[31]
which have been used in classifier design, have performed
particularly well in computer vision tasks. A typical example is
sparse representation-based classification (SRC) [27]. In [27],
a test example is first sparsely encoded over training examples
based on lasso [32], and then classified by finding the class that
yields the minimum reconstruction error. SRC demonstrates
impressive face recognition performance, and is a successful
application of lasso for face analysis. Related works can be
found in [33]–[39].
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These classification algorithms (NN and its variants, SVM
and SRC) are conventionally regarded as individually specific
and uncorrelated solutions to pattern recognition because they
were proposed under significantly different theoretic motiva-
tions or application backgrounds. The underlying relationship
among these pattern classification methods have not been well
addressed in the literature. Therefore, it is desirable to pro-
vide a unified perspective to understand the most widely used
pattern classification methods such as NN, SVM, and SRC.
More importantly advanced ideas on pattern classification can
be motivated from the insight of general classification frame-
work. This paper attempts to find a unified representation of
classical classifiers, so a novel scheme of pattern classification
termed representative vector machines (or RVMs for short) is
proposed for this purpose. The core idea of RVMs is to find a
representative vector of each class for a test example so that
the test example is then classified into the class with the near-
est representative vector. It is interesting to find that classical
classifiers such as NN, NFL, NFS, SRC, and SVMs can all be
interpreted as specific implementations of RVMs. In this way,
the underlying pros and cons of different classification algo-
rithms can be directly compared by analyzing the differences
in the design of the representative vectors.

Furthermore, a novel and advanced solution for robust pat-
tern classification, named discriminant vector machine (DVM)
is motivated from the general framework of RVMs. To sup-
press the effect of outliers, DVM first finds the k-NNs of a test
example, and then classifies it based on the robust M-estimator
and manifold regularization. Comprehensive experimental
evaluations of DVM in comparison with other classification
algorithms demonstrate the effectiveness of DVM for various
recognition tasks.

II. REPRESENTATIVE VECTOR MACHINES

Consider a dataset X, which consists of n exam-
ples in a high-dimensional space Rd. Denote by Xi =
[xi1, . . . , xij, . . . , xini ] ∈ Rd×ni the training examples of the
ith object class, where xij(1 ≤ j ≤ ni) is the jth example
in the ith class. Suppose we have c classes of examples,
and let X = [X1, X2, . . . , Xc] be the concatenation of all
training examples. Given a test example y, the objective of
classification is to predict the label of y.

A number of different approaches have been proposed for
robust classification, usually for different purposes. Here, we
reformulate them within the unified framework of RVMs as
follows:

i∗ = arg mini‖y − ai‖ (1)

where ai is the representative vector to represent the ith class
for y, and i∗ is the predicted class label for y. The repre-
sentative vectors of classical classifiers are summarized in
Table I.

A. Interpretation of NN, NFL, NFP, NFS, and NC
Using RVMs

The NN classifier classifies a test example y according to
the label of its NN. Based on this, the decision function of

TABLE I
REPRESENTATIVE VECTORS OF CLASSICAL CLASSIFIERS

class i is

di(y) = min
j=1,...,ni

∥
∥y − xij

∥
∥, i = 1, 2, . . . , c. (2)

The decision rule of NN is to assign y to class m if
dm(y) = mini=1,...,c di(y). For NN, the representative vector for
class i is arg minxij‖y − xij‖ s.t. j = 1, . . . , ni.

For the NFL classifier, any two examples of the same
class are generalized by the feature line (FL) passing through
the two examples. The classification is based on the short-
est distance from a query example to each FL. The straight
line passing through xij and xik of the class i, denoted
as xijxik( j, k = 1, . . . , ni; j �= k), is called an FL of class i.
The query example y is projected onto the FL xijxik as
point qi

jk [Fig. 1(a)]. The FL distance between y and xijxik

is defined as d(y, xijxik) = d(y, qi
jk). The decision function of

class i is

di(y) = min
j,k=1,...,ni

j �=k

d
(

y, qi
jk

)

, i = 1, 2, . . . , c. (3)

NFL assigns y to class m if dm(y) is the mini-
mum. For NFL, the representative vector for class i is
arg minqi

jk
d(y, qi

jk) s.t. j, k = 1, . . . , ni; j �= k.
For the NFP classifier, any three examples of the same

class are generalized by the FP passing through the three
examples. The classification is based on the shortest dis-
tance from a query example to each FP. The plane pass-
ing through xij, xik, and xil of the class i, denoted as
xijxikxil( j, k, l = 1, . . . , ni; j �= k �= l), is called an FP of
class i. The query example y is projected onto the FP xijxikxil

as point pi
jkl [Fig. 1(b)]. The distance between y and xijxikxil

is defined as d(y, xijxikxil) = d(y, pi
jkl). The decision function

of class i is

di(y) = min
j,k,l=1,...,ni

j �=k �=l

d
(

y, pi
jkl

)

, i = 1, 2, . . . , c. (4)

NFP assigns y to class m if dm(y) yields the mini-
mum. For NFP, the representative vector for class i is
arg minpi

jkl
d(y, pi

jkl) s.t. j, k, l = 1, . . . , ni; j �= k �= l.
For the NFS classifier, NFS assigns a test example y to

class i if the distance from y to the subspace spanned by all
examples Xi = [xi1, . . . , xij, . . . , xini ] of class i

di(y) = min
βi

‖y − Xiβi‖ (5)
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(a) (b) (c)

Fig. 1. Illustration of the basic ideas of pattern classifiers NFL, NFP, and SVM. (a) NFL classifier. The feature line xijxik is generalized by the two examples
xij and xik . The example y is projected onto the line as point qi

jk . (b) NFP classifier. The FP xijxikxil is generalized by the three examples xij, xik , and xil.

The example y is projected onto the plane as point pi
jkl. (c) SVMs. The example y is projected onto the plane wT x + b = 1 as point p and projected onto the

plane wT x + b = −1 as point q.

is the minimum among all classes. The closed-form solution
of (5) can be easily and directly derived as

βi = (

XT
i Xi

)−1
XT

i y. (6)

LRC [26] solves (5) by (6), while the nearest linear combi-
nation (NLC) [40] solves (5) by means of the pseudo-inverse
matrix technique. Based on (6), (5) can be reduced as

di(y) = min
i

∥
∥
∥y − Xi

(

XT
i Xi

)−1
XT

i y
∥
∥
∥. (7)

The nearest subspace algorithm [41] assumes that the columns
of Xi are orthonormal and thus solves

di(y) = min
i

∥
∥y − XiX

T
i y

∥
∥. (8)

For all NFS related algorithms, the representative vector for
class i is Xiβi in (5).

The nearest centroid classifier (NC) classifies a test example
y according to the label of its nearest centroid (mean vector of
each class in the training set). First, the mean vector of each
class in the training set is computed mi = (

∑ni
j=1 xij)/ni. The

distance to each centroid is then given by

di(y) = ‖y − mi‖. (9)

NC assigns y to class m if dm(y) yields the minimum. For NC,
the representative vector for class i is mi.

B. Interpretation of SRC Using RVMs

SRC encodes a test example y over the basis X such that
y = Xα+e and e is the error (noise) vector. The sparsity can be
measured by l1-norm: min ‖α‖1+‖e‖1 s.t. ‖y − Xα − e‖ < ε,
where ε is a small constant. SRC assigns y to class i if

di(y) = min
∥
∥y − Xiα̂i

∥
∥ (10)

is the minimum among all classes where α̂i is the cod-
ing coefficient vector associated with class i. For SRC, the
representative vector for class i is Xiα̂i in (10).

C. Interpretation of SVMs Using RVMs

For binary classification using SVMs, a query example y is
projected onto wTx + b = 1 as point p [Fig. 1(c)]. Therefore,
we have p − y = αw, i.e., p = y + αw. Since wTp + b = 1
and p = y + αw, we have

wT(y + αw) + b = 1. (11)

Thus

α = (

1 − b − wTy
)/(

wTw
)

. (12)

The representative vector for class i = 1 is y +
((1 − b − wTy)/wTw)w. Similarly, the representative vec-
tor for class i = −1 is y + ((−1 − b − wTy)/wTw)w.
For SVMs, the representative vector for class i is y +
((i − b − wTy)/wTw)w.

D. Analysis of Different Classifiers

We have demonstrated that a number of traditional classi-
fiers can be explained as the special cases of RVMs. Although
these classifiers are unified into a general framework of pat-
tern classification, they have some specific features and an
in-depth analysis of their differences is beneficial to practical
applications of these classifiers.

NN is a simple yet popular method for classification due to
easy implementation and efficiency. In some practical applica-
tions such as face recognition, there are only a small number
of examples available per class. It is desirable to have a suf-
ficiently large number of examples stored to cover variations
of pose, illumination, and expression for each class. In order
to solve this problem, NFL and NFP are proposed to general-
ize the representation capacity of available prototype images.
NFL and NFP were shown to achieve lower classification
error than NN in [25]. However, when there are a large num-
ber of training examples for each class, NFL and NFP are
costly and time-consuming. For example, the Action Similarity
LAbeliNg (ASLAN) dataset [42] consists of 6000 examples
from two classes. For each class, there are 3000 examples.
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TABLE II
COMPARISON OF NUMBER OF CLASSIFIERS

According to [42], 2700 examples of each class are used for
training. For each test example, NFL has to compute 2C2

2700
times of point to line distance while NFP has to compute
2C3

2700 times of point to plane distance. Therefore, NFL and
NFP are not suitable for the dataset which consists of a large
number of training examples for each class. NC may be a bet-
ter choice according to computational efficiency in this case.
Since there are a large number of training examples for each
class, the mean vector is a good representative vector of each
class and NC may work well. Furthermore, NC is obviously
more efficient than NFL and NFP in this situation.

Since the representative vectors of each class for NN, NFL,
and NFP are related to only one example, two examples, and
three examples, respectively, all three are sensitive to noise.

NFS is easy to implement and efficient in learning.
However, NFS does not perform well when classes are highly
correlated. The reason is that there is no significant differ-
ence among the representative vectors for different classes
in this case. This is consistent with the description in [27].
If all elements of βi in (5) are equal to 1/ni, NFS is
equivalent to NC.

NC is computationally efficient and easy in implementation.
When there are a large number of examples for each class, the
mean vector mi is a good representative vector to represent the
ith class. However, mi is not a good choice when the number
of the examples for class i is small.

SRC has been studied extensively and has demonstrated
impressive results for face recognition. However, it requires
solving a time consuming l1-norm minimization before com-
puting the representative vectors [33].

SVMs have the best generalization ability on the unseen
data in comparison with other methods. Before computing the
representative vectors, SVMs have to find the optimal separat-
ing hyper plane. Thus, SVMs are computationally expensive
in some cases where large training set are involved.

The merits of RVMs are at least twofolds. First, given the
flexibility of RVMs, the underlying pros and cons of dif-
ferent classification algorithms can be directly compared by

analyzing the differences in the design of the representative
vectors. Table II briefly summarizes the important advan-
tages and disadvantages of different classifiers. However, not
all classifiers can be included in the framework of RVMs
such as the Naive Bayes classifier, which remains an open
problem. Second, RVMs can be used as a general platform
for developing new classification algorithms. A novel and
advanced solution for robust pattern classification, named
DVM is motivated from the general framework of RVMs.

III. DISCRIMINATIVE VECTOR MACHINE

RVMs not only provide a new perspective to understand
the characteristics of classical classifiers, but also identify the
possibilities to improve the performance of existing classi-
fiers. In this section, a novel robust classification algorithm,
called DVM, is developed as an application of the proposed
RVMs framework. We first present the model of DVM, and
then derive the statistical analysis of DVM.

A. Model

For each query example y, DVM first finds the k-NNs of y
to suppress the effect of outliers. The k-NNs are denoted as
a matrix Ak = [a1, a2, . . . , ak]. We also denote Ak as Ak =
[Ak1, Ak2, . . . , Akc] for derivation convenience, where Akj are
the examples from class j. It is possible that some matrixes
Akj may be empty, but this has no influence on the following
procedures. Then DVM uses the following criterion:

min
αk

∑d

i=1
φ
(

(y − Akαk)i

) + βϕ(αk)

+ γ

k
∑

p=1

k
∑

q=1

wpq
(

α
p
k − α

q
k

)2
(13)

to find αk, where (y − Akαk)i is the ith element of y − Akαk,
α

p
k is the pth element of αk, αk can be represented as

αk = [α1
k , α2

k , . . . , αk
k ] or αk = [αk1, αk2, . . . , αkc] where

αkj is the coefficient with class j and φ() in the first term
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of (13) is the robust M-estimator aiming to enhance robust-
ness [43]. There are a number of possible functions of
robust estimators such as Cauchy M-estimator and Welsch
M-estimator. We only consider the Welsch M-estimator
φ(x) = (σ 2/2)(1 − exp(−(x2/σ 2))) in this paper where σ is
the kernel size and ϕ() in the second term of (13) is the vector
norm such as l1-norm and l2-norm. In this paper, l2-norm is
used to obtain a closed form solution. The third term of (13) is
the manifold regularization where wpq is the similarity between
the pth and the qth NN of y. The wpq can be defined by
Gaussian kernel or unweighed graph [44], [45]. In this paper,
wpq is defined as the cosine distance between the pth and the
qth NN of y due to simplicity. It is reasonable to require α

p
k

and α
q
k close to each other if the pth and the qth NN of y are

close to each other, which is the objective of the third term
of (13). Denote W as the similarity matrix constructed by all
wpq and D as the diagonal matrix where the ith element of D is
the sum of the ith row of W. Thus, we can get the Laplacian
matrix L = D − W [45] and the third term of (13) can be
represented as γαT

k Lαk by simple algebra.
According to the multiplicative form of half-quadratic opti-

mization [46], the problem (13) can be solved as follows in
an alternate minimization way:

pi = exp

(

−
(

(y − Akαk)i

)2/

σ 2

)

(14)

αk = arg min
αk

(y − Akαk)
Tdiag(p)(y − Akαk)

+ β‖αk‖2
2 + γαT

k Lαk (15)

where diag(p) is a diagonal matrix and the ith element is pi.
Fortunately, (15) has a closed form solution as follows:

αk = (

AT
k diag(p)Ak + βI + γ L

)−1
AT

k diag(p)y. (16)

The kernel parameter σ in (14) can be updated [35] as follows:

σ =
√

(

θ ∗ (y − Akαk)
T ∗ (y − Akαk)

)/

d. (17)

where d is the dimension of y, θ is the free parameter and
is set to be 1 as in [35]. By using only the coefficients
associated with class i, the given query example y can be
approximated for each class i as Akiαki. We then classify y
based on these approximations by assigning it to the object
class that minimizes the residual between y and Akiαki

min
i

ri(y) = ‖y − Akiαki‖, i = 1, 2, . . . c. (18)

For relatively large training sets such as Texas Instruments,
Inc. and Massachusetts Institute of Technology [47], it is time-
consuming to find the k-NNs, so multidimensional indexing
methods, such as the k-d tree [38], [39], can be used to speed
up exact search. In (14), Gaussian kernel is used, which is
also used in discriminant kernel-based SVM (DKSVM) [48].
In DKSVM, the discriminant kernel functions (DKF) including
Gaussian-DKF are used. The experimental results show that
the discriminant kernel gives the same levels of the classifica-
tion performance as the linear or radial basis function (RBF)
kernels. Furthermore, the visualization results of the kernel
matrices show that DKSVMs have more clear kernel matri-
ces than linear or RBF kernel. We note that both DVM and
DKSVM are special cases of RVM.

Algorithm 1 DVM
Inputs: training examples and a query example y
Output: identity of y

Find the k-nearest neighbors of y to form Ak =
[Ak1, Ak2, . . . , Akc].
Solve
minαk

∑d
i=1 φ

(

(y − Akαk)i

) + βϕ(αk)

+γ
k∑

p=1

k∑

q=1
wpq

(

α
p
k − α

q
k

)2

to get αk as follows:
repeat

σ =
√

(

θ ∗ (y − Akαk)
T ∗ (y − Akαk)

)/

d

pi = exp

(

−
(

(y − Akαk)i

)2/

σ 2

)

αk = (

AT
k diag(p)Ak + βI + γ L

)−1
AT

k diag(p)y
until convergence
Compute the residuals, ri(y) = ‖y − Akiαki‖.
Decision is made in favor of the class with the minimum
distance ri(y).

Algorithm 1 summarizes the complete recognition proce-
dure. The statistical analysis of DVM is given in the next
section.

B. Statistical Analysis of DVM

First, we provide a generalization-error-like bound for the
DVM algorithm by using the distribution-free inequalities
obtained for k-local rules. Then, we prove that DVM algorithm
is a probably approximately correct (PAC)-learning algorithm
for classification, which means that DVM will be able to learn
the target concept if sufficient training examples are provided.

1) Problem Setup: We use the k-local rules setting in
Deveroye and Wagner [49]. Let Zn = {(x1, c1), . . . , (xn, cn)}
be n independent identically distributed training examples
drawn from c different classes, cn(y, Zn) be the class label
learned for the query example y using training examples Zn.
Without considering ties in determining the k nearest obser-
vations for any y,1 a k-local rule is any rule for which

Cn
(

y, Zn) = g
(

Zn)

where g is an any measurable function. Note that the DVM
algorithm is an example of a k-local rule. Define the expected
error of the k-local rule as

R = P
{

cn
(

y, Zn) �= c
∣
∣Zn} (19)

where c is the true class label of y. We also define the resub-
stitution estimate error RR

n and the deleted estimation error RD
n

as follows:

RR
n = 1

n

n
∑

i=1

1
[

cn
(

xi, Zn) �= ci
]

(20)

RD
n = 1

n

n
∑

i=1

1
[

cn
(

xi, Zn,i) �= ci
]

(21)

1There have been many ways to avoid ties, for example, the fuzzy k-NN
classifier [50].
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where 1[·] is the indicator function and Zn,i denotes the
training examples with the ith one deleted.

We notice that for DVM algorithm, the resubstitution esti-
mation error RR

n is very small. If we further assume that the
following Assumption 1 holds, then RR

n = 0.
Assumption 1: DVM will always allocate the correct class

label to the query example y when the minimum distance ri(y)
is not unique and the distance to the true class is also in the
minimum distance set.

The DVM algorithm does not assume any generative mod-
els. However, we can analyze the generalization error-like
bound for the error distance |R − RR

n |.
PAC learning framework is developed to see if a concept

class is learnable. It is also frequently used to seek for efficient
algorithms. A PAC-learning algorithm will learn as well as the
best model if there are sufficient training examples.

Definition 1 (PAC Learning [51]): A concept class C is
said to be PAC-learnable if there exists an algorithm L and a
polynomial function poly(·, ·) such that for any target concept
c ∈ C, any ε ∈ (0, 1) and any δ ∈ (0, 1), if n ≥ poly(1/ε, 1/δ),
for all distribution Pn with probability at least 1 − δ, the
following holds:

R < ε. (22)

When such an algorithm L exists, it is called a PAC-learning
algorithm for C.

Besides providing a generalization-error like bound, we also
prove that DVM is a PAC-learning algorithm for classification.

2) Main Results: Our first result is a generalization-error-
like bound for DVM.

Theorem 1: For DVM algorithm with k ≤ n − 1, we have

P
{∣
∣R − RR

n

∣
∣ ≥ ε

} ≤ 2 exp

(

−nε2

18

)

+ 6 exp

(

− nε3

108k(2 + γd)

)

where γd is the maximum number of distinct points in R
d

(a d-dimensional Euclidean space) which can share the same
NN and γd ≤ 3d − 1.

The proof method of Theorem 1 is the same as that of
Theorem 1 in [49]. We also prove that DVM is a PAC-learning
algorithm.

Theorem 2: Under Assumption 1, DVM algorithm is a
PAC-learning algorithm for classification.

3) Proof: The following lemma [49], [52] will play a
central role in proving Theorem 2.

Lemma 1: For DVM algorithm with k ≤ n − 1, we have
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n
.

Remark 1: Deveroye and Wagner [49] proved a faster
convergence rate (R → RD

n ) for c = 2.
Proof of Theorem 2: Under Assumption 1, using (a+b)2 ≤
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The last inequality holds because of Lemma 1.
Using Chebyshev’s inequality P{|x| ≥ ε} ≤ (Ex2/ε2),

we have

P{|R| ≥ ε} ≤ ER2

ε2
≤ 2 + 14k

nε2
. (23)

Let (2 + 14k)/(nε2) = δ, we have ε = √
(2 + 14k)/(nδ) [and

n = (2 + 14k)/(δε2)]. Thus, the following holds with proba-
bility at least 1 − δ:

R ≤
√

2 + 14k

nδ
. (24)

We have that for any ε ∈ (0, 1) and any δ ∈ (0, 1), when
n ≥ (2 + 14k)/(δε2), with probability at least 1 − δ, R ≤ ε.
This concludes the proof. �

IV. EXPERIMENTS

The proposed DVM is a generic pattern classification
method, so a variety of visual recognition tasks including face
recognition, object categorization and action recognition are
used to evaluate the effectiveness of DVM.

In the face recognition and object categorization tasks,
each dataset was partitioned into a training set and a test set
containing different numbers. For ease of representation, the
experiments were named “p-train,” which means that p images
per class were selected for training, and the remaining images
were used for testing. To robustly evaluate the performance of
different algorithms in different training and testing conditions
of the Yale face database, we selected p images randomly and
ran all possible combinations for each condition. That is to say,
there are Cp

11 runs for p-train. For the remaining three rela-
tively large datasets, we do not run all possible combinations.
For the large-scale face recognition grand challenge (FRGC)
face dataset, there are 20 random splittings. For the Caltech
101, there are five partitions as did in the “spatial pyramid
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Fig. 2. Eleven cropped and resized examples of one person in the Yale face
database.

matching based on sparse coding (ScSPM) MATLAB codes
for image classification.”2 For the dataset ASLAN [42], the
original partitions are used and there are ten partitions of the
training and test datasets. Thus, there are 20, 5, and 10 runs
for FRGC, Caltech 101, and ASLAN, respectively. We pre-
sented the results in the form of the mean recognition rate
with standard deviation.

We compared our algorithm with classical algorithms,
including NN, NC, NFL, NFP, NFS, SRC, SVM with lin-
ear kernel (LSVM), and SVM with Gaussian kernel (GSVM).
The LibSVM [53] is used for both LSVM and GSVM.
For SRC, LSVM (GSVM) and DVM, the results depend on
the choice of the parameter ε, C, and k, respectively. We
choose the best parameter through fivefold cross-validation.3

The regularization parameter C of LSVM and GSVM is
set by fivefold cross-validation from {100, 200, 300, 400,
500, 600, 700, 800, 900, 1000}. For GSVM, the Gaussian
kernel between xi and xj is defined as exp{−λ‖xi − xj‖2

2}.
We set dm = n2/

∑n
i,j=1 ‖xi − xj‖2

2 [54], [55]. The
parameter λ is set by fivefold cross-validation from
{dm/8, dm/4, dm/2, dm, 2dm, 4dm, 8dm}. The parameters
β, γ and θ of DVM are empirically set as 0.01, 0.001, and 1,
respectively.

A. Experimental Results on the Yale Database

The Yale face database4 was constructed at the Center for
Computational Vision and Control at Yale University. There
are 165 grayscale images of 15 subjects (each individual
having 11 different images). The images include variations
in lighting conditions (right-light, center-light, and left-light),
facial expression (normal, sleepy, surprised, happy, sad, and
wink), and with/without glasses. All images were cropped and
resized to 32×32 pixels. We preprocessed the data by normal-
izing each face vector to the unit. Fig. 2 shows sample images
of one person.

Table III shows the average recognition rates of each method
and their corresponding standard deviations (std), where the
best results are highlighted in bold. There is no result for
“2 Train” of NFP since NFP requires that the number of the
training examples per class should be at least three. These
experimental results are also shown in Fig. 3. Due to space
limitations, we only present the NN, NC, NFS, linear SVM,
and DVM curves in Fig. 3. As can be seen, DVM outperforms
all other methods in all cases, while the NN method has the
poorest performance except “9 Train” and “10 Train.”

2http://www.ifp.illinois.edu/∼jyang29/
3The process of fivefold cross-validation is described here. We first split

the whole dataset into a training set and a testing set, and then we take the
training set and split it into fivefolds. During the cross-validation, we take
fourfolds for training and the left fold for testing, and repeat the process five
times and choose the parameter settings with the highest average accuracy.
Then the parameter will be used to learn the whole training set and classify
the testing set.

4http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Fig. 3. Average recognition rates (percent) as functions of the number of
training examples per class on Yale.

Fig. 4. Ten cropped and resized examples of one person in the FRGC face
database.

B. Experimental Results on Large-Scale Face
Database FRGC

The FRGC version two face database [56] is a large-scale
and challenging benchmark face database. There are 8014
grayscale images from 466 individuals in the query set for
FRGC experiment 4. These uncontrolled images demonstrate
variations in expression, illumination, blurring, and time. In
our experiment, we only selected the individuals which have
over ten images in the database, then had 3160 images from
316 individuals. The size of each cropped image in all the
experiments is 32 × 32 pixels by fixing the positions of two
eyes, with 256 gray levels per pixel. For each selected person,
seven images were randomly selected for training and the rest
were used for testing. Fig. 4 shows some images in the FRGC
database.

Four features are used on FRGC, including the origi-
nal 32 × 32 pixels representation (OR), local binary pat-
tern (LBP), linear discriminant analysis (LDA), and LBP
plus LDA (LBPLDA). The experimental results are shown in
Table IV. DVM performs the best using LDA and LBPLDA
while SRC performs the best using OR and LBP.

C. Experiments Using the Image Categorization
Dataset Caltech-101

The Caltech-101 dataset [57] contains 9144 images from
101 classes, including objects such as airplanes, chairs,
elephants. Fig. 5 shows the sample images of Caltech-
101 (randomly selected 20 classes). We followed the com-
mon experimental setup for this dataset, training on 15
and 30 images per class and testing on the remainder. In
our analysis, we used the ScSPM feature on the scale-
invariant feature transform descriptors of the images, as
proposed by Yang et al. [58]. Principal component anal-
ysis is used to preserve 98% energy. NN, NC, NFL,
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TABLE III
AVERAGE RECOGNITION RATES (PERCENT) ACROSS ALL POSSIBLE PARTITIONS ON THE

YALE DATABASE AND THE CORRESPONDING STANDARD DEVIATIONS (STD)

TABLE IV
AVERAGE RECOGNITION RATE (PERCENT) COMPARISON ON THE FRGC DATASET

TABLE V
AVERAGE RECOGNITION RATES (PERCENT) COMPARISON ON

THE CALTECH-101 DATASET

NFP, NFS, SRC, and DVM were used for classification.
In Table V, we compare the performance of DVM with that of
other approaches. The results of the first four methods shown
in Table V use linear SVM for classification in their work. As
shown in Table V, DVM outperforms other algorithms with
similar pipelines for “15 Train.”

D. Experiment Using the Action Recognition Dataset ASLAN

The ASLAN dataset [42] includes 1571 videos collected
from the Web, in 432 complex action classes, including
walking, running, and swimming. The benchmark protocols
focus on action similarity (same/not-same), rather than action
classification. Thus, it is a binary classification problem.

Table VI compares DVM with other methods and shows
that DVM outperforms all the other methods. The results of
SVM are reported in [42].

E. Parameter Selection for DVM

In the proposed DVM, there are three parameters, i.e., β, γ ,
and θ . It is time-consuming to select these parameters using
the grid search. Fortunately, these parameters affect the perfor-
mance slightly if they are set in feasible ranges. Figs. 6–8 show
accuracy versus β with γ and θ fixed, γ with β and θ fixed,

Fig. 5. Sample images of Caltech-101 (randomly selected 20 classes).
(a) Airplanes. (b) Ant. (c) Brain. (d) Butterfly. (e) Camera. (f) Cellphone.
(g) Chair. (h) Cup. (i) Electric_guitar. (j) Elephant. (k) Faces. (l) Headphone.
(m) Helicopter. (n) Lamp. (o) Motorbikes. (p) Panda. (q) Pizza. (r) Pyramid.
(s) Scissors. (t) Stop_sign.

TABLE VI
AVERAGE RECOGNITION RATES (PERCENT) ON THE

ASLAN DATABASE AND THE CORRESPONDING

STANDARD DEVIATIONS (STD)

θ with β and γ fixed, respectively. The proposed DVM
model is stable with varying β and γ within (10−4, 10−1)

and (10−4, 10−3), respectively. In all the above experiments,
we set β = 0.01 and γ = 0.001. The parameter θ is set to
be 1 as in [35].
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TABLE VII
RESULTS OF TWO-TAILED PAIRED t-TEST ON THE “>” RELATIONSHIP BETWEEN THE TWO ACCURACIES (MEANS) REPORTED IN TABLES III–VI

Fig. 6. Accuracy versus β with γ and θ fixed on Yale, FRGC, Caltech 101,
and ASLAN. The proposed DVM model is stable with varying β within
(10−4, 10−1).

Fig. 7. Accuracy versus γ with β and θ fixed on Yale, FRGC, Caltech
101, and ASLAN. The proposed DVM model is stable with varying γ within
(10−4, 10−3).

F. Analysis of the Experimental Results

On Yale, DVM performs the best in all experiments
according to average classification accuracy while the

Fig. 8. Accuracy versus θ with β and γ fixed on Yale, FRGC, Caltech 101,
and ASLAN.

performance of NFL, NFP, NFS, LSVM, and GSVM is equal
to that of DVM for “10 Train.” On FRGC, DVM performs the
best in two experiments while SRC performs the best in two
experiments. On Caltech-101 (15 Train) and ASLAN, DVM
performs better than all other methods. In summary, DVM
performs the best in 13 experiments out of all the 16 experi-
ments according to average classification accuracy while SRC
performs the best in three experiments and the performance
of NFL, NFP, NFS LSVM, and GSVM is equal to that of
DVM in one experiment. Furthermore, two-tailed paired t-test
is adopted to statistically measure the difference between these
methods. Here, the hypothesis is “the mean accuracy of DVM
is larger than that of the other (given) method.” The results of
the statistical tests are reported in Table VII. We find that the
performance of DVM is statistically better than that of other
algorithms on the specific metric (based on two-tailed paired
t-test at 5% significance level) in most cases. In summary, the
overall performance of DVM is better than that of all other
methods.

V. CONCLUSION

In this paper, we propose a framework RVMs to explain
several classification algorithms. To the best of our knowledge,
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it is the first study to summarize the commonalities of various
classifiers as RVM, allowing different algorithms to be ana-
lyzed and comprehensively compared. The study shows that
the core idea of different classification algorithms is almost
based on the same rule, but varies with respect to different
representative vectors.

Based on this framework, we developed a new classifica-
tion method called DVM, which can be viewed as a special
case of the framework. Experimental evaluations demonstrated
the effectiveness of DVM by comparing with other popular
classification methods, such as SVMs, nearest NN, and SRC.

It should be noted that RVMs currently cannot be used
to interpret all classifiers such as Naive Bayes, random
forest [62], and the classifier fusion approach based on upper
integral [63]. This deserves further study.

The employment of kernel [64] and tensor [65] techniques
in SRC enables the introduction of the kernel and tensor trick
in DVM. Developing the kernelized and tensorized form of
DVM is an issue well worth studying.

In the framework of RVMs, effective and efficient clas-
sification methods can be developed for specific requests.
Additional case studies will be valuable.

Note that the representative vector framework is a flexi-
ble framework. We can use l2 distance, l1 distance, Gaussian
kernel, and any other arbitrary similarity measures, such as
Mahalanobis distance. However, the selection of an appro-
priate similarity measure for different applications is still an
unsolved problem. This is also a thought-provoking direc-
tion for future study.
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