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Multi-Instance Multi-Label Learning Combining
Hierarchical Context and its Application

to Image Annotation
Xinmiao Ding, Bing Li, Weihua Xiong, Wen Guo, Weiming Hu, and Bo Wang

Abstract—In image annotation, one image is often modeled
as a bag of regions (“instances”) associated with multiple labels,
which is a typical application of multi-instance multi-label
learning (MIML). Although lots of research has shown that the
interplay embedded among instances and labels can largely boost
the image annotation accuracy, most existing MIML methods
consider none or partial context cues. In this paper, we propose
a novel context-aware MIML model to integrate the instance
context and label context into a general framework. Specially, the
instance context is constructed with multiple graphs, while the
label context is built up through a linear combination of several
common latent conceptions that link low level features and high
level semantic labels. Comparison with other leading methods on
several benchmark datasets in terms of image annotation shows
that our proposed method can get better performance than the
state-of-the-art approaches.

Index Terms—Image annotation, instance context, label context,
multi-instance, multi-label.

I. INTRODUCTION

CONVENTIONAL supervised learning often assumes that
an object is represented by a single instance and asso-

ciated with one class label [1]–[5]. Although this formulation
is prevailing and successful, it does not fit many real-world
problems very well, for example, an image can include different
contents belonging to different classes (e.g. Sky/Grass/Vehicle).
To address this issue, another more general framework named
multi-instance multi-label learning (MIML) [6], [8] emerged

Manuscript received November 19, 2015; revised March 15, 2016 and May
07, 2016; accepted May 09, 2016. Date of publication May 24, 2016; date of
current version July 15, 2016. This work was supported in part by the 973 basic
research program of China under Grant 2014CB349303, in part by the Natural
Science Foundation of China under Grant 61472421, Grant 61370038, Grant
61303086, Grant 61572296, Grant 61503219, and Grant 61472227, in part by
the Strategic Priority Research Program of the CAS under Grant XDB02070003,
and in part by the Natural Science Foundation of Shandong Province under Grant
ZR2015FL020. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Jing-Ming Guo. (Corresponding
author: Bing Li.)

X. Ding and W. Guo are with the Shandong Technology and Business Uni-
versity, Yantai 264005, China (e-mail: dingxinmiao@126.com; wguo@nlpr.
ia.ac.cn).

B. Li, W. Xiong, and B. Wang are with the National Laboratory of Pat-
tern Recognition, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: bli@nlpr.ia.ac.cn; wallace.xiong@gmail.com;
bo.wang2014@nlpr.ia.ac.cn).

W. Hu is with CAS Center for Excellence in Brain Science and Intelli-
gence Technology, National Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
wmhu@nlpr.ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2016.2572000

Fig. 1. Example of image annotation with semantic words.

recently, in which an object is allowed to be represented by a
bag of instances and associated with multiple class labels si-
multaneously. Given a training dataset consisting of a collection
of bags of instances and each bag is associated with multiple
labels, MIML is to learn a classifier that can predict all labels
for an unseen bag.

A variety of different applications have been formulated as
MIML problems, such as video annotation [13], gene pattern an-
notation [14], relation extraction in natural language processing
[15], sensitive multimedia detection [63]–[65], etc. An impor-
tant emerging one comes from image annotation, in which an
image is usually viewed as a bag of instances (regions) associ-
ated with multiple semantic labels [6], [11], [22]. Fig. 1 gives
an example of image annotation with semantic words “sky”,
“plane” and “cloud”.

A. Related Work

Unlike traditional multi-class image classifications where the
annotation classes are mutually exclusive, each image is often
associated with more than one semantic label in annotation task,
which poses so-called multi-label learning (MLL). In recent
years, a dozen of effective methods have been proposed to solve
MLL including unsupervised, supervised or semi-supervised
learning [49], [50]–[57]. Barnard et al. [49] presented an unsu-
pervised scheme of probabilistic latent variable model to infer
relations between visual features of images and associated texts.
Wang et al. [50] presented a novel supervised topic model to
predict class labels and annotation terms simultaneously. Tao
et al. [53] improved image annotation based on semi-supervised
learning algorithm with Hessian regularization, which drives the
learned function varying linearly along the data manifold. Af-
ter that, Liu et al. [54], [55] expand the Hessian regularization
with multiview features and get excellent performance in image
annotation.

All of these MIL approaches always regard an image as one
indiscrete entity and neglect a fact that any individual label
from an image is more related to some segmented regions in
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it, rather than the entire image. In other words, the multiple
semantic meanings (labels) of an image arise from different
components (regions) in it. As illustrated in Fig. 1, the three la-
bels “sky”, “plane” and “cloud” are characterized by three differ-
ent regions respectively instead of the entire image. Therefore,
multi-instance multi-label learning (MIML) is more suitable for
image annotation.

Recent decades have witnessed great progress in MIML al-
gorithms [6]–[11]. They can be roughly classified into two cat-
egories, discriminative methods and generative methods. The
methods belonging to discriminative category try to model the
classification model only on the training data. The initial work
can be dated back to MIML-BOOST and MIML-SVM made
by Zhou et al. [6]. MIML-BOOST transforms training samples
into individual set of instances, each of which corresponds to a
single label, and apply a typical single label single instance so-
lution, MI-BOOSTING [16], on them. MIML-SVM transforms
MIML task into MLL problem. It first generates K medoids
in the defined instance feature space and maps each MIML
sample into a K-dimensional feature vector based on its Haus-
doff distance to these K medoids. After that, the MLL problem
was addressed by adopting MLSVM [17] that decomposes the
MLL task into a set of single label classification problems. Fol-
lowing these two methods, many other MIML algorithms have
been proposed and related applications have also been reported
[8]–[12]. Zhang et al. [18] proposed a Nearest neighbor ap-
proach for MIML; Briggs et al. [19] proposed a Rank-Loss
Support Instance Machine for MIML instance annotation, and
it optimizes a regularized rank-loss object that can be instan-
tiated with different aggregation models connecting instance-
level predictions with bag-level predictions; Jin et al. [20]
proposed an iterative metric learning algorithm for MIML;
Huang et al. [21] proposed a fast MIML approach which con-
structed a low-dimensional subspace shared by all labels and
trained specific linear models via the efficient stochastic gradi-
ent descent.

Generative methods aim at learning a model that can generate
the data behind the scenes by estimating the assumptions and
distributions of the model. Nguyen et al. [22] fused the MIL’s
feature-word distributions model and topic model to fulfill a
MIML framework and applied it into image annotation. Inspired
from Latent Dirichlet Allocation, Nguyen et al. [23] further ex-
tended the standard MIML framework to a multi-modal setting,
and presented an advanced model named multi-modal multi-
instance multi-label latent Dirichlet allocation (M3LDA). Zha
et al. [7] proposed a hidden conditional random field model for
MIML image annotation. Yang et al. [24] proposed a MIML
algorithm based on Dirichlet–Bernoulli alignment.

Although many existing MIML approaches have achieved
decent performance and validated their superiority in image
annotation applications, most of them still ignore two important
contextual cues:

1) Context Among Instances: Nearly all the existing MIML
algorithms treat the instances from a bag as indepen-
dently and identically distributed (i.i.d.). But Zhou et
al. [25] have pointed out that the instances in a bag are
rarely independent in real tasks, especially in image under-

Fig. 2. Example of different instance contexts for identical image. Red solid
line represents that the connected nodes have “strong correlation,” while red
dotted line represents “weak correlation.” (a) Example image about “ship.”
(b) Context of image (a) in which instance “ship” has strong correlation with
“sea” and “sky.” (c) Context of image (a) in which instance “ship” has strong
correlation with “ground.” (d) Context of image (a) in which instance “ship”
has strong correlation with “building,” “ground,” and “car.”

standing, better performance can be expected if the rela-
tions among instances are considered. Although miGraph
proposed in [25] models instance relations as an ε-graph
for MIL, it has not yet been extended to MIML. In addi-
tion, it is difficult to represent various instance contexts
using a single graph structure with fixed ε, as the setting
in [25]. Taking Fig. 2 as an example, image in Fig. 2(a)
will be viewed as a bag of objects (“instances”) and we
would like to annotate its conception as “ship” using MIL.
Fig. 2(b)–(d) show that the context of an identical image
bag [e.g. Fig. 2(a)] may be various under different se-
mantic environment. If the image is considered to be a
“travelling ship”, then the instance of “ship” will have
strong correlation with those of “sea” and “sky” as shown
in Fig. 2(b). If it is considered to be “manufacturing ship”,
the “ship” will consequently have strong correlation with
“ground” as shown in Fig. 2(c). If it is considered to
be a “harbor”, “ship” will have strong correlation with
“ground”, “building” and “car” as shown in Fig. 2(d).
Therefore there is vagueness in terms of which kind of
context is intuitively justifiable so that a single graph struc-
ture cannot model these various contexts very well.

2) Context Among Labels: Most existing MIML algorithms
learn an independent classifier for each label without tak-
ing the correlation among labels into account. However,
much research work on MLL [26]–[29] have showed that
semantic terms (i.e. class labels) of each object are not
mutually exclusive and such label correlations can largely
boost the image annotation accuracy.

B. Our Work

To circumvent these two limitations embedded in the exist-
ing MIML methods, we propose a novel context-aware MIML
(CMIML) algorithm for image annotation that considers both
instance context and label context simultaneously. To model the
complex instance contexts, we construct multiple graph struc-
tures for each bag to represent the varied relations among in-
stances in it; To express the context among labels, we assume
that there exist a set of common latent conceptions between low
level features and high level semantic labels, and the high level
label is a linear combination of these latent conceptions. The
contributions of this paper can be summarized as follows.

1) It introduces multiple ε-graphs to model the complex inner
relations among instances in a bag and fuses these graph
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Fig. 3. Framework of the proposed method. In Step 1, multiple graphs are
constructed to represent the context of instances. In Step 2, through mapping
graphs to RKHS, a multi-label classifier f (Gi ) = KT

i A with kernel matrix
K = [K1 , . . . , KN ] can be deduced based on representer theory. Here the
entries of K are computed by kernel function κ. Then, a latent context-aware
learning model is constructed by decomposing the regression coefficient A.
After leaning parameters P and S, a test image can be annotated in the following
Step 3. In the figure, the black line represents the process of training and the
green line represents the process of testing.

structures through a multi-kernel learning. The proposed
multiple ε-graph model enables the MIML classifier to
consider the diverse contexts among instances.

2) It uses latent conceptions to include the interplays among
the class labels. During the training procedure, the pro-
posed CMIML method can effectively learn the latent con-
ceptions and automatically select combination weights for
each label to infer the class memberships for each bag.

The remainder of this paper is organized as follows. We briefly
introduce the overview of the proposed method in Section II.
Section III gives out the construction of instance context. The
detail of the proposed context-aware of MIML is presented
in Section IV. Section V presents the process of label pre-
diction. The experimental results and analysis are reported in
Section VI. Section VII concludes this paper.

II. OVERVIEW OF CMIML

Before giving an overview of the proposed CMIML, we
briefly review the formal definition of the MIML. Let ∂ ⊆ Rd

represents the input space of instances and Y = {±1}E the set
of E class labels. We are given a training set D = {Bi , Yi}N

i=1
with N examples, where Bi = {xi,j}mi

j=1 ⊆ ∂ is a bag contain-
ing mi instances (suppose that each xi,j is normalized to have
unit �2 norm), and Yi = [yi,1 , . . . , yi,E ] ∈ Y is the label vector
of bag Bi . yi,e = +1, (e = 1, . . . , E) if bag Bi is annotated
with label e, otherwise yi,e = −1. The goal of MIML is to
predict all proper labels for any unseen bag, noticing that the
number of proper labels is unknown. Mathematically, its task is
to learn a decision function FMIML : 2∂ → 2Y based on D.

After taking into account the context cues among instances
and labels, the proposed CMIML model includes three main
stages: instance context construction, CMIML based on latent
conception, and label prediction. Fig. 3 gives an overview of the
framework.

Step 1: Instance Context Construction. We first introduce the
ε-graph [31] to construct the contextual relationships among
instances in each bag. We define Gi = {Bi ,Mi} as an undi-
rected graph structure for bag Bi , where the instances are
represented as the vertices of the graph and Mi ∈ Rmi ×mi is
an adjacency matrix. If the instances xi,a and xi,b are adjacent,
there is an edge between them and Mi(a, b) = Mi(b, a) = 1;
otherwise Mi(a, b) = Mi(b, a) = 0. Furthermore, to model
the various relations among instances, we construct multiple
graphs for each bag. To this end, we generate Θ graphs to
compose a graph set Gi = {Gθ

i }Θ
θ=1 with different values of

ε for the bag Bi .
Step 2: CMIML Based on Latent Conception. After instance

context construction, the MIML can be re-defined as: given
a training set Γ = {Gi , Yi}N

i=1 , the goal of MIML is to learn
a function to map the graph set to its label vector. Since
the ε-graph structure cannot be used in classifier learning di-
rectly, we map the graphs to the Reproducing Kernel Hilbert
Space (RKHS) [32] and further define classifier functions
Yi = [q1(Gi), . . . qE (Gi)] on it. However, it is difficult to
define the classifier functions qe(·), e = 1, . . . , E explicitly.
Fortunately, based on the representer theory [30], the func-
tion qe(Gi), e = 1, . . . , E is equivalent to f(Gi) = Ki

TA
where A is a regression coefficient matrix and Ki ∈ RN is
the kernel vector that can be computed via a graph kernel
function between Gi and N graph set G1 ,G2 , . . . ,GN in
the training set. All the kernel vectors are then stacked to
compose a kernel matrix K = [K1 ,K2 , . . . ,KN ] ∈ RN ×N

of the training set. The details about the computation of the
kernel will be discussed in Section IV.
To consider the interplay among labels, we assume that all
class labels share a common set of latent conceptions, and
each label is a linear combination of these latent conceptions.
Consequently, we divide the coefficient matrix A into two
part P and S, where Ki

TP denotes the latent conceptions
and S denotes the linear combination weights, as shown in
Fig. 3. Through such kind of definition, both the correlation
among class labels and context cues among instances can be
considered simultaneously in the proposed CMIML.

Step 3: Label Prediction. After learning the parameters of the
CMIML, given a new unknown bag Btest , we can firstly con-
struct its graph set Gtest , and then calculate the kernel vector
Ktest ∈ RN between the test sample and all the N training
samples. Finally, we get its label values through f(Gtest) =
KT

testPS.

III. INSTANCE CONTEXT CONSTRUCTION

As Zhou et al. [25] indicated, the relations among the in-
stances convey important structure information, e.g. instance
context, for many MIL applications. Treating the regions in an
image as inter-correlated samples is evidently more meaningful
than treating them as independent ones. The case is also true for
MIML. In this section, we propose to model the instance context
in MIML using multiple graphs and discuss how to construct
the graph set Gi = {Gθ

i }Θ
θ=1 for each bag.
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In [25], the ε-graph has been successfully used to represent
the instance context in MIL. In the ε-graph, every instance in a
bag Bi is regarded as a node. Then, the distance of every pair
of nodes, denoted by xi,o and xi,l , is computed. If the distance
between xi,o and xi,l is smaller than a pre-set threshold ε, an
edge is established between them, and the weight value Mi(o, l)
in adjacency matrix Mi is set as 1, otherwise 0. Finally, a bag of
feature vectors of Bi are reconstructed as an ε-graph Gi which
implied the context of instances in each bag.

In the ε-graph, the parameter ε is an important parameter
which determines the structure of instance context. In [25], ε is
fixed as the average distance in the bag. However, as discussed in
Fig. 2, a single ε-graph with any ε value has its own limitations,
and cannot represent the complex contexts well in different
bags. Therefore we use a graph set Gi = {Gθ

i }Θ
θ=1 to represent

different contexts among instances in the bag Bi , and learn to
fuse them through linear weighting. To obtain the graph set
Gi = {Gθ

i }Θ
θ=1 , we generate different graphs with different ε

values. Thus three typical values of ε are selected to generate
three kinds of typical graphs, as follows.

1) Set ε = 0, meaning that there’s not any edge between
every two instances and all instances are treated to be
independent, shown in Fig 2(a). This is can be viewed as
a special context.

2) Set ε value as the average distance in the bag as[25]. The
graph with this adaptive parameter setting takes the local
manifold in each bag into account.

3) Set ε to be a selected value through the cross validation
on each training set. The parameter selection using this
strategy can achieve better overall performance on the
training set. The graph structure with the selected ε value
is suitable for most samples, and is an optimal value on
the training set.

For convenience, we depict the ε value of above three cases as
ε = 0, ε = avg, and ε = opt respectively. Denote the ε-graphs
for the bag Bi corresponds to the three parameter selections as
G1

i , G
2
i , G

3
i and a graph set Gi is defined as Gi ={G1

i , G
2
i , G

3
i }.

IV. CMIML BASED ON LATENT CONCEPTION

In this section, we design a CMIML framework that can
consider the instance context and label context simultaneously.

A. ε-Graph Embedded MIML Based on Representer Theory

1) Multi-Label Classifier on the RKHS: After graph con-
struction for each bag, the bags can be rewritten as {Gi , Yi}N

i=1
in which Gi is the multiple ε-graphs containing the instance
context cue of a bag. Since the graph structure cannot be di-
rectly used for learning a classifier, we introduce the RKHS
[32] to solve this issue in the kernel form.

Let ℘ be the bag graph space. We define a map from ℘
into a RKHS H which is a space of functions mapping ℘
into R, denoted as R℘ , via ϕ : ℘ → R℘ [58]. Suppose there
exist E classification functions Q = {qe}E

e=1 on H for E la-
bels, where qe : ℘ → R corresponds to the classification func-
tion for the label e, we can get the predicted annotation Y ∗

i

of bag {Bi ,Gi} as

Y ∗
i = [q1(Gi), . . . qE (Gi)]. (1)

To learn the functions Q = {qe}E
e=1 , the objective function

based on E independent label classifiers can be written as

min
Q

1
E

E∑

e=1

{
1
N

N∑

i=1

(qe(Gi) − yi,e)
2 + γ ‖qe‖2

H

}
(2)

where ‖ · ‖H is a norm in the RKHS H and γ‖qe‖2
H is an regu-

larization term to confirm robustness.
2) Learning Model Deducing Based on Representer Theo-

rem: Since (2) cannot be solved through numerical method due
to the infinite-dimensional property of RKHS, we use the rep-
resenter theory [30] to reduce the optimization problem from
a possibly infinite-dimensional space to a finite-dimensional
space. In this section we firstly construct the requirements for
representer theorem, then an equivalent optimization solution
for (2) is given out.

i) Valid kernel definition for representer theorem
Given an arbitrary bag Bi and its instance context Gi which

is composed of multiple ε-graphs {G1
i , G

2
i , G

3
i }, we define a

mapping function ϕθ : ℘ → R℘ , θ = 1, 2, 3, to map each ε-
graph Gθ

i to RKHS H. Then we can get a kernel κθ
graph on the

θth ε -graph between any two bags Bi and Bj [25]

κθ
graph(Gθ

i ,G
θ
j ) = < ϕθ (Gθ

i ), ϕθ (Gθ
j ) >

=

mi∑
a=1

mj∑
b=1

ωθ
i,aωθ

j,bκins(xi,a , xj,b)

mi∑
a=1

ωθ
i,a

mj∑
b=1

ωθ
j,b

(3)

where ωθ
i,a = 1/

∑mi

u=1 Mθ
i (a, u), ωθ

j,b = 1/
∑mj

u=1 Mθ
j (b, u),

Mθ
i and Mθ

j are the adjacency weights matrixes for bag Bi

and Bj with the θth graph structure discussed in Section III. In
addition, κins(xi,a , xj,b) is defined using Gaussian radial basis
function kernel: κins(xi,a , xj,b) = exp(−γ‖xi,a − xj,b‖2).

To fuse these three instance context structures {G1
i , G

2
i , G

3
i },

we introduce a parameter δ = [δ1 , δ1 , δ3 ]T and define a new
multiple graph kernel between bag Bi and Bj based on multi-
kernel learning [59]

κgraph (Gi ,Gj )

= δ1 < ϕ1 (G1
i ), ϕ1 (G1

j ) > +δ2 < ϕ2 (G2
i ), ϕ2 (G2

j ) >

+ δ3 < ϕ3 (G3
i ), ϕ3 (G3

j ) >

= δ1κ1
graph (G1

i , G
1
j ) + δ2κ2

graph (G2
i , G

2
j ) + δ3κ3

graph (G3
i , G

3
j )

s.t.
3∑

θ=1

δθ = 1, δθ ≥ 0, θ = 1, 2, 3. (4)

Definition 1 (Kernel matrix) [30]: Given a kernel κ and pat-
terns x1 , . . . , xm ∈ ℵ, the m × m matrix

K := (κ(xi, xj ))m
i,j=1 (5)

is the Kernel matrix of κ with respect to x1 , . . . , xm . We can
get two corresponding Lemmas:
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Lemma 1 (The proof is in Appendix A): If κ is a valid real-
valued kernel, then its corresponding kernel matrix is symmet-
ric, positive semidefinite.

Lemma 2 (The proof is in Appendix B): κgraph is a valid
positive definite real-valued kernel on ℘ × ℘.

ii) Representer theorem
Lemma 3 (Nonparametric Representer Theorem) [30]:

Suppose we are given a nonempty set χ, a positive def-
inite real-valued kernel k on χ × χ, a training sample
(x1 , y1), . . . , (xm , ym ) ∈ χ ×R, a strictly monotonically
increasing real-valued function g on [0,∞], an arbitrary cost
function L: (χ ×R2)m → R ∪ {∞}, and a class of functions

F ={f ∈Rχ |f (·)=
∞∑

i=1

βik(·, zi ), βi ∈ R, zi ∈ χ, ‖f‖< ∞}. (6)

Here, ‖ · ‖ is the norm in the RKHS H associated with k, i.e.
for any zi ∈ χ, βi ∈ R (i ∈ N)

∥∥∥∥∥

∞∑

i=1

βik(·, zi)

∥∥∥∥∥

2

=
∞∑

i=1

∞∑

j=1

βiβjk(zi, zj ). (7)

f ∈ F aims at minimizing the regularized risk functional

L((x1 , y1 , f(x1)), . . . , (xm , ym , f(xm ))) + g(‖f‖) (8)

with the form

f(·) =
m∑

i=1

αik(·, xi). (9)

iii) Deducing of the equivalent form of (2)
According to the Lemmas 2 and 3, the function qe(Gi) in

(2) has the representation

qe(·) =
N∑

i=1

αe,iκgraph(·,Gi), e = 1, . . . , E. (10)

Let αe = [αe,1 , . . . , αe,N ]T ∈ RN , Ki = [κgraph(Gi ,G1),
. . . , κgraph(Gi ,GN )]T ∈ RN , then a kernel matrix K =
[K1 , . . . ,KN ] will include all mappings of training bags. We
substitute (10) into (2) and obtain the following objective
function:

min
αe

1
E

E∑

e=1

{
1
N

N∑

i=1

(KT
i αe − yi,e)

2
+ γ ‖αe‖2

H

}
(11)

where γ‖αe‖2
H is the regularization term, Ki =

∑3
θ=1 δθKθ

i ,
Kθ

i is the ith column of the θth kernel matrix Kθ . Based on
Lemma 3, ‖αe‖2

H can be denoted as ‖αe‖2
H=αT

e Kαe . With
slack of triangle inequality, we can get the equivalent form of
(11) as following:

min
αe

1
E

E∑

e=1

{
1
N

N∑

i=1

(KT
i αe − yi,e)

2
+ γ ‖αe‖2

2

}
. (12)

If we set A = [α1 , . . . , αe , . . . , αE ] and Y = [Y 1 , . . . ,
Y e , . . . , Y E ] (Y e = [y1,e , . . . , yN ,e ]T) as the label matrix con-
taining labels of all bags, the (12) can be rewritten as

min
A

1
EN

∥∥KT A − Y
∥∥2

F + γ′ ‖A‖2
F (13)

where γ′ = γ/N and ‖ · ‖F is the Frobenius norm of matrix
avoiding the overfitting. Now the optimization of (13) is equiv-
alent to (2).

Since K =
∑3

θ=1 δθKθ , we can learn optimal kernel weights
δ = [δ1 , δ2 , δ3 ]T , from training set by adding a regularization
term ‖δ‖2

2 to avoid overfitting

min
A ,δ

1
EN

∥∥KT A − Y
∥∥2

F + γ′ ‖A‖2
F + ζ ‖δ‖2

2

s.t.
3∑

θ=1

δθ = 1, δθ ≥ 0, θ = 1, 2, 3. (14)

B. CMIML Based on Latent Conceptions

Although the objective function in (14) can now learn the
multiple labels, it ignores their relations that will degrade the
performance of label learning [21], [28], [33]. Thus we propose
a set of latent conceptions to solve it [66], [67].

Assuming that there are c latent conceptions and each
observed label can be represented as linear combination of a
subset of these latent conceptions, we can obtain the weight
matrix A as

A = PS (15)

where P is a matrix of size N × c with each column pi

representing the learning parameter vector of a latent concep-
tion KTpi, i = 1, . . . , c . S = [s1 , . . . , sE ] is a matrix of size
c × E containing the weights of linear combination for each
conception. Now, we will learn the latent conception learning
matrix P and the combination weight matrix S, rather than
weight matrix A. Such decomposition enables different labels
to share similar visual patterns which are represented by latent
conception, and related labels are expected to help each other.

However, considering that not all labels are actually related
to each other, we further enforce latent conception to be
selectively shared by different observed labels. Formally, we
apply the �1 norm regularization on combination weight se of
each label e = 1, . . . , E. As a result, each classification model
is reconstructed by a small number of latent conceptions, which
equivalently forces latent conceptions to be shared only among
those related labels. The CMIML classification model is now
formulated as follows:

min
P ,S ,δ

1
E

E∑

e=1

{
1
N

∥∥KT Pse − Y e
∥∥2

2 + μ‖se‖1

}
+ λ ‖P‖2

F + ζ ‖δ‖2
2

s.t.
3∑

θ=1

δθ = 1, δθ ≥ 0, θ = 1, 2, 3 (16)

where ‖P‖2
F = trace(PPT) is Frobenius norm that targets

at avoiding the overfitting and ‖se‖1 enables the model to
learn a sparse linear combination of latent conception for each
observed label. μ, λ and ζ are regularization parameters.

C. Model Learning

In the proposed model, three parameters need to be deter-
mined: δ, S and P. We notice that, although the cost function
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in (16) is not jointly convex in these three parameters, it is
convex in one parameter if the other two are fixed. Hence we
adopt alternating optimization strategy that converges to a local
minimum.

Our optimization procedure can be outlined as three steps:
Step 1: For fixed P and δ, we learn the combination weight

matrix S by solving the following optimization problem that
will be decomposed into individual problems for se

se =
1
N

arg min
s

∥∥KTPs − Y e
∥∥2

2 + μ‖s‖1 . (17)

Since this optimization problem is non-smooth due to the �1
norm regularization of s, we use two-metric projection method
that has superlinear convergence [34], [35].

Step 2: For fixed S and δ, we obtain the optimal P from
(16) by solving the following optimization problem:

min
P

1
E

E∑

e=1

{
1
N

∥∥KTPse − Y e
∥∥2

2

}
+ λ ‖P‖2

F . (18)

Since this problem is convex in P and has a closed form
solution for squared loss function, we can easily solve it through
derivation.

Step 3: For fixed P and S, (16) is actually equivalent to

min
δ

1
EN

∥∥∥∥∥

3∑

θ=1

δθ (Kθ )
T
PS − Y

∥∥∥∥∥

2

F

+ ζ ‖δ‖2
2

s.t.
3∑

θ=1

δθ = 1, δθ ≥ 0, θ = 1, 2, 3. (19)

(19) is a non-linear programming (NLP) problem.
The alternating optimization procedure is terminated when

there is little change in P, S or δ between two consecutive
iterations. Algorithm 1 outlines several major steps as well as
initialization procedure. And we will detail the optimization
procedure in the following.

Model Initialization: The first step of our optimization al-
gorithm is to initialize δ and the latent conception matrix P. δ
can be initialized with [1/3, 1/3, 1/3]. Since P corresponds to
the latent conception in which the relations among the column
vectors from it are required to be as far as possible, we learn
all independent classification models on the training data sepa-
rately, pack all trained weight vector column by column into a
single one A0 and set the selected top-c left singular vectors of
A0 as P.

Optimizing S With Fixed P and δ: For a fixed P and δ,
we need the gradient and Hessian of the squared loss function
f(s) = 1

N ‖KTPs − Y e‖2
2 to optimize se using two-metric pro-

jection method

∇se
f(s) =

2
N

PTK(KTPse − Y e) (20)

∇2
se

f(s) =
2
N

PTKKTP. (21)

Algorithm1: Context-aware MIML.
Input:
K: Kernel matrix of training data
c: Number of latent conception
μ, λ, ζ: Regularization parameters
Output: Observed label predictor matrix A, P and S.
1: Learn individual predictors for each observed label

without any label sharing.
2: Let A0 be the matrix that contains these initial predictors

as columns.
3: Compute top-c singular vectors: A0 = UΣVT

4: Initialize P to first c columns of U.
5: Initialize δ= [1/3, 1/3, 1/3].
while not converged do

for e = 1 to E do
6: Solve (17) to obtain se .
end for
7: Construct matrix S = [s1 , · · · , sE ].
8: Fix S and δ solve (18) to obtain P.
9: Fix S and P to learning δ through Reduced Gradient.
end while
10: Return outputs: P, S and A = PS.

Optimizing P With Fixed S and δ: For a fixed S and δ,
equating the gradient of (18) to zero can produce

1
EN

E∑

e=1

KY esT
e =

1
EN

E∑

e=1

KKTPses
T
e + λP. (22)

Now we can simply apply a vectorization operator on both
sides to solve the linear equation in which all columns of a
matrix are stacked one by one to form a long vector

1
EN

E∑

e=1

vec(KY esT
e ) = vec

(
1

EN

E∑

e=1

KKT Pse s
T
e + λP

)
,

=

[
1

EN

E∑

e=1

(se s
T
e ) ⊗ (KKT ) + λI

]
vec(P). (23)

Here we use vec(·) to represent the vectorization operator
and can get vec(ODF) = (FT ⊗ O)vec(D) after Kronecker
product. (23) is obviously a standard form of system of linear
equations that is full rank and has a unique solution. It can
be easily solved using LU decomposition [36] or by iterative
methods, both of which are much faster and numerically more
stable than matrix inversion operation.

Optimizing δ With Fixed S and P: If we write down ma-
trix Π = diag((K1)TPS, (K2)TPS, (K3)TPS), (19) can be
simplified as

min
δ

1
EN

∥∥δT Π − Y
∥∥2

F + ζ ‖δ‖2
2 ,

s.t. [1, 1, 1]

⎡

⎢⎣
δ1

δ2

δ3

⎤

⎥⎦ = 1,

⎡

⎢⎣
δ1

δ2

δ3

⎤

⎥⎦ ≥

⎡

⎢⎣
0
0
0

⎤

⎥⎦ . (24)
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Obviously, (24) has the standard form of NLP with linear
constrain as following:

min
δ

f(δ)

s.t. Aδ = b δ ≥ 0 (25)

and (25) can be solved by Reduced Gradient[61].

V. LABEL PREDICTION

After learning the latent conception learning matrix P and the
combination weight matrix S, we can obtain a linear regression
function for all labels as following:

f(Gi) = KT
i PS (26)

where Gi is the multiple graph structure of bag Bi and Ki =∑3
θ=1 δθKθ

i is the multi-graph kernel of Gi with all training
bag graphs.

For a new test sample Btest , we firstly construct the multiple
bag graph Gtest and compute its kernel with all training bag
graphs Ktest , then we can calculate regression values for all
labels using (26). If a label has positive regression value, it is
considered to be proper for bag Btest , otherwise the label is
abandoned.

VI. EXPERIMENTS

In this section, we compare our method with several state-
of-the-art MIML methods on the image annotation task, in-
cluding DBA [24], KISAR [37], MIMLBoost [6], MIMLkNN
[18], MIMLSVM [6], RankLoss-SIM [19] and Fast MIML [21].
All experiments were conducted on five benchmark image sets
(Scenes [6], [8], MSRCv2 [41], Corel5k [42], MSRA_MM [44]
and IAPS [45]).

A. Evaluation Criteria

We evaluate the performance of all the compared MIML ap-
proaches using five commonly used criteria: hamming loss, one-
error, coverage, ranking loss and average precision [38], [39].

1) The hamming loss evaluates how many times an object-
label pair is misclassified, i.e., a proper label is missed or
a wrong label is predicted.

2) The one-error evaluates how many times the top-ranked
label is not a proper label of the object.

3) The coverage evaluates how far it is needed, on the aver-
age, to go down the list of labels in order to cover all the
proper labels of the object. It is loosely related to precision
at the level of perfect recall.

4) The ranking loss evaluates the average fraction of label
pairs that are mis-ordered for the object.

5) The average precision evaluates the average fraction of
proper labels ranked above a particular label.

For the first four metrics, smaller value means better perfor-
mance; on the contrary, the larger the value of average precision
indicates the better performance of the technique.

B. Data Set Descriptions and Preprocessing

Five image sets, Scenes, MSRC v2, Corel5k, MSRA-MM
and IAPS, are used in the following experiments.

1) Scenes: This dataset consists of 2000 natural scene im-
ages belonging to several classes: desert, mountains, sea,
sunset and trees. Over 22% of these images belong to
multiple classes simultaneously. Each image has already
been represented as a bag of nine instances generated by
the SBN method [40], the method uses a Gaussian filter
to smooth the image and then subsamples the image to an
8 × 8 matrix of color blobs in which each blob is a 2 × 2
set of pixels. An instance corresponding to the combina-
tion of a single blob with its four neighboring blobs (up,
down, left, right) is described with 15 features.

2) MSRC v2: This dataset, named ‘v2’ [41], is a subset of the
Microsoft Research Cambridge (MSRC) image dataset.
It contains 591 images and 23 classes. Around 80% im-
ages are associated with more than one label and there
are around three labels per image on average. These la-
bels often arise from respective regions in the images.
MSRC data set also provides pixel level ground truth,
where each pixel is labeled as one of 23 classes or “void”.
“horse” and “mountain” are also treated as “void” since
they have few positive samples. Thus there are 21 labels
in total. Each image is treated as a bag and each contigu-
ous region in the ground-truth segmentation as an instance
[19]. Each instance is described by a 16-dimensional his-
togram of gradients, and a 32-dimensional histogram of
colors.

3) Corel5k: This dataset has become the benchmark for im-
age annotation recently [42]. The dataset contains 5000
images collected from the larger Corel CD set. The whole
set consists of 50 groups. There are 100 similar images
in each group, such as beach, aircraft and tiger. The set
is annotated from a dictionary of 260 keywords(labels),
with each image having been annotated by an average of
3.5 keywords(labels). In our experiments, each image is
segmented by Normalized Cuts [62] and each region in
the image is regarded as an instance described by nine
features [43]. There are typically 5–10 regions for each
image.

4) MSRA-MM: This dataset [44] is collected by Microsoft
Research Asia. There are around 1 million web images
acquired by Live Image Search using different predefined
queries. The queries are manually classified into eight
categories, i.e., “Animal”, “Cartoon”, “Event”, “Object”,
“Scene”, “PeopleRelated”, “NamedPerson”, and “Misc”.
Among these 1 million images, there are 50 000 images
that are manually annotated with ground-truth labels. Each
image from the MSRA-MM database is labeled as positive
or negative with respect to each concept. There are 100
concepts in total. Detailed information of this database
can be found in [44]. Each image is segmented and rep-
resented with the same method as that for Corel5K. 2000
annotated images are randomly selected from this data set
for comparison in our experiment.
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TABLE I
ANNOTATION RESULTS ON FIVE MIML DATA SETS

Compared Algorithms

Criteria CMIML MIMLfast KISAR DBA MIMLBoost MIMLkNN MIMLSVM RankL.SIM

Scene

h.l.↓ .009 ± .008 .188 ± .009 .194 ± .005 .269 ± .009 N/A .196 ± .007 .200 ± .008 .204 ± .007
o.e.↓ .175 ± .019 .351 ± .023 .351 ± .020 .386 ± .025 N/A .370 ± .018 .380 ± .021 .392 ± .019
Co.↓ .143 ± .010 .207 ± .012 .204 ± .008 .334 ± .011 N/A .222 ± .009 .225 ± .010 .237 ± .010
r.l.↓ .100 ± 0.14 .189 ± .014 .185 ± .010 .348 ± .012 N/A .207 ± .011 .212 ± .011 .222 ± .010
a.p.↑ .841 ± 0.13 .770 ± .015 .772 ± .012 .600 ± .013 N/A .757 ± .011 .750 ± .012 .738 ± .011

MSRCv2

h.l.↓ .071 ± .011 .100 ± .007 .086 ± .004 .140 ± .006 N/A .131 ± .007 .084 ± .003 .110 ± .004
o.e.↓ .251 ± 0.28 .295 ± .025 .341 ± .031 .415 ± .026 N/A .440 ± .031 .320 ± .029 .302 ± .028
Co.↓ .188 ± .013 .238 ± .014 .254 ± .015 .837 ± .018 N/A .312 ± .020 .256 ± .018 .239 ± .013
r.l.↓ .071 ± 0.14 .108 ± .009 .131 ±.010 .675 ± .017 N/A .165 ± .013 .125 ± .011 .107 ± .007
a.p.↑ .750 ± .014 .688 ± .017 .666 ±.018 .326 ± .016 N/A .591 ± .018 .685 ± .018 .687 ± .013

Corel5k

h.l.↓ .009 ± .021 .015 ± .020 .017 ± .025 .024 ± .020 N/A .015 ± .018 .020 ± .019 N/A
o.e.↓ .319 ± .008 .624 ± .006 .657 ± .009 .801 ± .005 N/A .656 ± .007 .802 ± .007 N/A
Co.↓ .268 ± .011 .312 ± .012 .781 ± .010 .991 ± .011 N/A .551 ± .009 .501 ± .011 N/A
r.l.↓ .109 ± .013 .183 ± .014 .512 ± .008 .911 ± .012 N/A .281 ± .011 .280 ± .010 N/A
a.p.↑ .531 ± .012 .352 ± .015 .198 ± .014 .051 ± .011 N/A .301 ± .012 .199 ± .011 N/A

MSRA-MM

h.l.↓ .031 ± 0.21 .029 ± .018 .031 ± .007 .032 ± .006 N/A .034 ± .017 .031 ± .015 N/A
o.e.↓ .519 ± .014 .576 ± .145 .611 ± .027 .945 ± .016 N/A .601 ± .006 .645 ± .084 N/A
Co.↓ .228 ± .020 .221 ± .027 .301 ± .115 .998 ± .031 N/A .344 ± .024 .256 ± .011 N/A
r.l.↓ .135 ± .013 .121 ± .017 .159 ± .018 .954 ± .034 N/A .185 ± .081 .137 ± .014 N/A
a.p.↑ .452 ± .017 .441 ± .035 .398 ± .012 .042 ± .016 N/A .391 ± .014 .401 ± .006 N/A

IAPS

h.l.↓ .172 ± 0.08 .370 ± .035 .222 ± .006 — .204 ± .002 .303 ± .007 .258 ± .006 —
o.e.↓ .371 ± .021 .770 ± .027 .859 ± .027 — .653 ± .040 .719 ± .017 .733 ± .024 —
Co.↓ .252 ± .008 .449 ± .144 .489 ± .115 — .492 ± .094 .555 ± .084 .472 ± .081 —
r.l.↓ .203 ± .010 .449 ± .019 .502 ± .018 — .418 ± .015 .447 ± .011 .375 ± .014 —
a.p.↑ .698 ± .011 .528 ± .017 .472 ± .012 — .470 ± .024 .461 ± .010 .473 ± .015 —

(‘↓’ indicates ‘the smaller the better’; ‘↑’ indicates ‘the larger the better’; ‘—’ indicates that the results cannot be got for no opening code and published
results; h.l.: hamming loss, o.e.: one-error, Co.: coverage, r.l.: ranking loss and a.p.: average precision). N/A indicates that no result was obtained in 24
hours.

5) IAPS: The IAPS set [45] is a common stimulus set fre-
quently used in emotion research. It consists of 716 natu-
ral colored pictures taken by professional photographers.
They depict complex scenes containing objects, people,
and landscapes. All pictures are categorized in emotional
valence (positive, negative, no emotion) [45]. A subset
of 396 IAPS images are used in our experiment, each
of which is labeled either as one specific emotion or as
a mixture of several emotions: anger, awe, disgust, fear,
sadness, excitement, contentment, and amusement [46].
Note that any single picture can belong to different emo-
tion. The images are segmented using waterfall segmenta-
tion and represented with composition features including
color, texture and others [47].

C. Experimental Results

In this section, we compare our method CMIML with
the state-of-the-art MIML methods on the Scene, MSRCv2,
MSRM_MM, Corel5k and IAPS datasets.

In the experiments, for each data set, 2/3 of the data are ran-
domly sampled to compose the training set, while the remaining

examples are used as the test set. We repeat the procedure 30
times and report the average results. The parameters are selected
by 3-fold cross validation on the training data with regard to the
average precision. Table I shows the performance of our method
and other 7 MIML methods. From Table I, the following points
were revealed.

1) Our method based on hierarchical context can achieve the
best performance on almost overall evaluation criteria,
about max 7%, 6% and 17% improvement of the average
precision on four datasets and max 0.4 decrease on other
evaluations. It indicates that the fusion of two context cues
is effective in improving the performance of MIML on the
image annotation.

2) Our method, as well as MIMLfast, outperforms other
MIML methods since these two methods model relation-
ship among labels. It shows the effectiveness of the label
context, while the best performance of CMIML shows the
further promotion caused by instance context.

3) The experiment results on Corel5k show that the perfor-
mance of our method is also satisfactory with the larger
number of labels. Although this dataset is challenging for
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Fig. 4. Compare results on all datasets between different graph structures
(“↓” indicates “the smaller the better;” “↑” indicates “the larger the better”).
(a) Compare results of dataset Scene. (b) Compare results of dataset MSRC v2.
(c) Compare results of dataset IAPS. (d) Compare results of dataset MSRA_MM.
(e) Compare results of dataset Corel5k.

most MIML methods, some of which only obtain less than
20% on average precision, our proposed CMIML can still
achieve more than 50% on average precision and max 0.3
decreases on other evaluations.

4) Our method outperforms all other methods on IAPS data
set. It shows that affection is a type of high level semantics,
the instance context and latent conception in CMIML can
provide two middle semantic layers to link the lower level
representation with high level affection semantics.

D. Further Analysis and Discussion

1) Evaluating Instance Context: To show the effect of in-
stance context based on multiple ε-graphs, we compare our
method with those methods taking single ε-graph as instance
context in case of ε = 0, ε = avg or ε = opt on five criteri-
ons. Fig. 4 (a)–(e) show the results of five MIML datasets be-
tween CMIML with multiple ε-graphs and CMIML with single
ε-graph, which are represented as CMIML and CMIML-SG re-
spectively. The performance of CMIML, CMIML-SG: ε = avg
and CMIML-SG: ε = opt are all better than that of CMIML-
SG: ε = 0. This is due to the fact that ε = 0 is the extreme
case in the graph structure and cannot bring in obvious perfor-
mance improvement. If we compare CMIML-SG: ε = avg and
CMIML-SG: ε = opt, we find that no one is always better than
the other one on all database in that each of them has its own
advantage and limitation. Therefore the better way is to fuse
multiple graphs which can produce best performance shown in
Fig 4.

2) Evaluating Latent Conception Learning: If latent con-
ception is not included, we learn the decision function through
(14) by treating the labels in an independent manner and
solve it through iteration optimization with A and δ. The
process is the same as (22) and (24). The results of all
datasets are shown in Fig. 5 (a)–(e) with legend named
“CMIML-noconcept”. The Fig. 5 shows the better perfor-
mance of CMIML, indicating that label context is an impor-
tant cue for MIML. The CMIML-noconcept learns a classifier

Fig. 5. Compare results on all datasets between CMIML and CMIML-
noconcept (“↓” indicates “the smaller the better;” “↑” indicates “the larger
the better”). (a) Compare result of dataset Scene. (b) Compare result of data set
MSRC v2. (c) Compare result of dataset IAPS. (d) Compare result of dataset
MSRA-MM. (e) Compare result of dataset Corel5k.

for each label independently and neglects their correlation. How-
ever, in practical applications, the labels are impossibly inde-
pendent. For example, the label “ship” nearly always associates
with the label “water”. The latent conception embedded in the
proposed CMIML can model such kind of concurrence context
well so as to improve the performance of annotation.

VII. CONCLUSION

Context cues existing in instances and labels have been shown
to play an important role in MIML, especially in the application
of image annotation. But most state-of-art approaches often ig-
nore them. In this paper, we proposed a novel CMIML model
that considers these two cues simultaneously. To construct the
instance context cue, we build multiple ε-graphs in each bag so
as to discover the underlying manifold structure of instances; to
construct the label context cue, we assume that the labels can be
combined linearly by a set of latent conceptions. Based on repre-
senter theory, these two context cues are integrated into a united
framework. Through applying the CMIML to image annotation,
experiments on benchmark data sets show the superiority of the
proposed method over other MIML methods.

APPENDIX A
PROOF OF LEMMA 1

Proof: Given a kernel κ and patterns x1 , . . . , xm ∈ ℵ, if κ
is real-valued, then Definition 1 confirm that its kernel ma-
trix K is symmetric. Given a mapping function φ : ℵ → Rℵ,
for any arbitrary vector z ∈ Rm , the following is always
established:

zTKz =
m∑

i=1

m∑

j=1

ziKij zj =
m∑

i=1

m∑

j=1

zi < φ(xi), φ(xj ) >zj

=
m∑

i=1

m∑

j=1

∞∑

l=1

zi(φ(xi))l(φ(xj ))lzj
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=
∞∑

l=1

m∑

i=1

zi(φ(xi))l

m∑

j=1

zj (φ(xi))l

=
∞∑

l=1

(
m∑

i=1

zi(φ(xi))l

)2

≥ 0.

So, K is positive semidefinite.

APPENDIX B
PROOF OF LEMMA 2

Proof: κθ
graph , θ = 1, 2, 3 is a valid positive definite kernel

[25]. Lemma 1 tells us that its corresponding kernel matrix Kθ

is symmetric, positive semidefinite. Denoting K as the kernel
matrix of κgraph , then for any arbitrary vector z ∈ Rm , K =
δ1K1 + δ2K2 + δ3K3 satisfies

zTKz = zT

(
3∑

θ=1

δθKθ

)
z =

3∑

θ=1

δθzTKθ z ≥ 0

s.t.
3∑

θ=1

δθ = 1, δθ ≥ 0, θ = 1, 2, 3.

So, K is positive semidefinite. Based on Mercer theorem
[60]: κ is valid kernel if and only if its kernel matrix is positive
semidefinite, we can get that κgraph is a valid kernel. Further-
more, κgraph is a positive kernel due to its positive semidefinite
kernel matrix which can be derived from definition 1 to def-
inition 3 in [30]. In addition, (4) and (3) confirms κgraph is
a real value. In conclusion, κgraph is a valid positive definite
real-valued kernel on ℘ × ℘.
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