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a b s t r a c t 

In this paper, the robust optimal control of continuous-time affine nonlinear systems with 

matched uncertainties is investigated by using a data-based integral policy iteration ap- 

proach. It is a natural extension of the traditional optimal control design, under the frame- 

work of adaptive dynamic programming (ADP) method, to robust optimal control of non- 

linear systems with matched uncertainties. In theoretical aspect, by increasing a feedback 

gain to the optimal controller of the nominal system, the robust controller of the matched 

uncertain system is obtained, which also achieves optimality with a newly well-defined 

cost function. When regarding the implementation, the data-based integral policy itera- 

tion algorithm is used to solve the Hamilton–Jacobi–Bellman equation corresponding to 

the nominal system with completely unknown dynamics information. Then, the actor-critic 

technique based on neural networks and least squares implementation method are em- 

ployed to facilitate deriving the optimal control law iteratively, so that the closed-form 

expression of the robust optimal controller is available. Additionally, two simulation ex- 

amples with application backgrounds are presented to illustrate the effectiveness of the 

established robust optimal control scheme. In summary, it is important to note that the 

result developed in this paper broadens the application scope of ADP-based optimal con- 

trol approach to more general nonlinear systems possessing dynamical uncertainties. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

The phenomenon of dynamical uncertainties is common in practical control systems. From the literature of modern non-

linear control, it is known that the presence of dynamical uncertainties makes the feedback control problem extremely

challenging in the context of nonlinear systems. As a result, the problem of designing adaptive and robust controller for

nonlinear systems with uncertainties has attained considerable attention [5,10,13,16,24,33–35,38,45,51–53,57] . Among them,

Mu et al. [35] proposed a general design scheme of finite-time switching mode manifolds and corresponding nonsingular
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controllers. Yang et al. [57] proposed a networked-predictive-control scheme to compensate for the network-induced delay,

so that the problem of output feedback controller design for networked control systems with mixed communication de-

lays can be addressed. These results are beneficial to the development of the modern control theory. Additionally, Lin et al.

[24] showed that the robust control problem can be solved by means of studying the optimal control problem of the related

nominal system, but the detailed procedure was not presented in that paper. Wang et al. [45] constructed a novel strategy to

achieve robust stabilization for a class of uncertain nonlinear systems based on the online policy iteration algorithm. How-

ever, the optimality of robust controller with respective to a newly defined cost function was not taken into consideration.

Moreover, the complete system dynamics, which were usually difficult to obtain for practical systems, were required during

the algorithm implementation. To the best of our knowledge, there are no results on designing robust optimal control for

uncertain nonlinear systems by using a data-based policy iteration approach. This is the motivation of our research. Actually,

it is the first time to establish the robust optimal control method for a class of nonlinear systems possessing uncertainties

via a data-based integral policy iteration learning technique with completely unknown dynamics. 

Nowadays, the data-based control design has become a hot topic in the field of control theory and control engineering

[12,29] . In this paper, the starting point of the obtained strategy is the data-based optimal control design. Note that studying

the nonlinear optimal control problem always requires to solve the Hamilton–Jacobi–Bellman (HJB) equation. Though dy-

namic programming has been a classical method in solving optimization and optimal control problems, it often encounters

the phenomenon of “curse of dimensionality” [2] . For avoiding this difficulty, adaptive/approximate dynamic programming

(ADP) was introduced by Werbos [50] and Prokhorov and Wunsch [39] as an effective method to solve the optimal control

problem forward-in-time, based on function approximation structures [7,8,21,25,32,42,46] , such as neural networks, support

vector machine, fuzzy logic, etc. Reinforcement learning is another computational method which can interactively find an

optimal policy from the learning process between the agent and the environment. Remarkably, Lewis and Liu [20] , and Lewis

and Vrabie [21] have given some opinions that the idea of ADP is very closely related to the framework of reinforcement

learning. Recently, the researches on ADP and reinforcement learning have gained much attention from scholars of numer-

ous fields [3,6,11,23,25–28,30,32,36,37,41,42,44,46–49,54–56,58–62] . Among the various results, robust ADP was developed 

for the design of robust optimal controllers for linear and nonlinear systems subject to both parametric and dynamic un-

certainties by Jiang and Jiang [16] , in order to broaden the application scope of ADP theory in the presence of dynamic

uncertainties. In addition, Jiang and Jiang [13] also extended the robust ADP approach to decentralized optimal control of a

class of large-scale systems with uncertainties. Note that in [16] , the control signal of the nonlinear system was only one-

dimensional and the optimization issue with regard to the original uncertain nonlinear system was not presented, while in

[13] , the robust decentralized control approach was only suitable for a class of linear systems. These inevitably restrict the

effect of the proposed methods to some extent. 

In the existing literature of ADP-based optimal control, either policy iteration or value iteration is employed to solve

the Bellman equation or the HJB equation. The information of control matrix is necessary when employing the traditional

policy iteration algorithms. However, in many situations, it is difficult to acquire the accurate model of controlled plant. The

ADP and reinforcement learning schemes, which have the learning and optimization capabilities, can relax the requirement

for a complete and accurate model of the controlled plant, by virtue of considering compact parameterized function repre-

sentations whose parameters can be adjusted through learning and adaption. Jiang and Jiang [15] presented a novel policy

iteration approach for continuous-time linear systems with completely unknown dynamics. Vrabie and Lewis [43] derived

an integral reinforcement learning method to obtain direct adaptive optimal control for nonlinear input-affine continuous-

time systems with partially unknown dynamics. Lee et al. [18,19] presented an integral reinforcement learning algorithm for

continuous-time systems without the exact knowledge of the system dynamics. Liu et al. [25] developed a neural-network-

based decentralized control strategy of a class of continuous-time nonlinear interconnected systems without requirement

of dynamical information. Bian et al. [4] proposed a novel optimal control design approach for continuous-time nonaffine

nonlinear systems with unknown dynamics by the idea of ADP. However, the system uncertainties were not considered in

the above results. 

With this background, how to further extend the application scope of ADP approach to more general nonlinear systems

with dynamic uncertainties arouses our wide concern. In this paper, we investigate the data-based robust optimal control

of continuous-time nonlinear systems with matched uncertainties. To begin with, the problem statement and some prelimi-

naries are provided. It is proved that the improvement of the optimal control law is nothing but the robust controller of the

original uncertain system, which also attains the property of optimality with a newly defined cost function. This serves as

the main theoretical result of the paper. Then, the optimal controller of the nominal system is obtained by the data-based

integral policy iteration algorithm and the neural network technique with completely unknown system dynamics, which is

regarded as the primary implementation procedure. At last, two simulation examples are given to show the good response

performance of the present robust optimal control scheme. 

2. Problem statement and preliminaries 

In this paper, we study a class of continuous-time nonlinear systems with input-affine structure and matched uncertain-

ties described as 

˙ x (t) = f (x (t)) + g(x (t )) 
(
ū (t ) + d̄ (x (t)) 

)
, (1) 
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where x (t) ∈ R 

n is the state vector and ū (t) ∈ R 

m is the control input, f ( ·) and g ( ·) are differentiable in their arguments

with f (0) = 0 , and d̄ (x ) is the unknown nonlinear perturbation. In this paper, we let x (0) = x 0 be the initial state and also

assume that d̄ (0) = 0 so that x = 0 is an equilibrium of the system (1) . In addition, as in many other literature, for the

nominal system 

˙ x (t) = f (x (t)) + g(x (t )) u (t ) , (2)

we assume that f (x ) + g(x ) u is Lipschitz continuous on a set � ⊂ R 

n containing the origin and that the system (2) is

controllable. 

For the purpose of designing the robust control of system (1) , we should find a feedback control function ū (x ) , such that

the closed-loop system attains globally asymptotical stability for all uncertainties d̄ (x ) . In the following, the relationship

between the robust control of system (1) and optimal control of its nominal system will be investigated to facilitate solving

the robust stabilization problem. 

For convenience of analysis, we denote d(x ) = R 1 / 2 d̄ (x ) , where R ∈ R 

m ×m is a symmetric positive definite matrix and

d(x ) ∈ R 

m is bounded by a known function d M 

( x ) (i.e., ‖ d ( x ) ‖ ≤ d M 

( x ) holds with d M 

(0) = 0 ). When regarding system (2) , in

order to conduct the infinite horizon optimal control design, we should find the feedback control law u ( x ) to minimize the

cost function given by 

J(x 0 ) = 

∫ ∞ 

0 

{
d 2 M 

(x (τ )) + u 

T (x (τ )) Ru (x (τ )) 
}

d τ

= 

∫ ∞ 

0 

r(x (τ ) , u (x (τ ))) d τ, (3)

where r ( x ( t ), u ( x ( t ))) is seen as the utility function. 

Recalling the optimal control theory [22,31] , the designed feedback control law must not only stabilize the system on �,

but also make sure that the cost function J ( x 0 ) is finite. That is to say, the control law must be admissible as defined in [42] .

Denote �( �) be the set of admissible control laws on �. For any admissible control u ∈ �( �), if the related cost function

(3) is continuously differentiable, then its infinitesimal version is the nonlinear Lyapunov equation that can be written as

the form 

0 = r(x, u (x )) + (∇J(x )) T ( f (x ) + g(x ) u (x )) (4)

with J(0) = 0 , where ∇( · ) � ∂ ( · )/ ∂ x denotes the gradient operation. Here, for instance, ∇J(x ) = ∂ J(x ) /∂ x . 
Define the Hamiltonian function and the optimal cost function of system (2) as 

H(x, u, ∇J(x )) = r(x, u (x )) + (∇J(x )) T ( f (x ) + g(x ) u (x )) (5)

and 

J ∗(x 0 ) = min 

u ∈ �(�) 

∫ ∞ 

0 

r(x (τ ) , u (x (τ ))) d τ, (6)

respectively, with J ∗(0) = 0 . Recalling the optimal control theory [22,31] , we know that the optimal cost function J ∗( x ) satis-

fies the HJB equation 

0 = min 

u ∈ �(�) 
H(x, u, ∇J ∗(x )) . (7)

The optimal feedback control law can be obtained by the formula 

u 

∗(x ) = arg min 

u ∈ �(�) 
H(x, u, ∇J ∗(x )) 

= −1 

2 

R 

−1 g T (x ) ∇J ∗(x ) . (8)

Based on (5) and (8) , the HJB Eq. (7) takes the following form: 

0 = d 2 M 

(x ) + (∇J ∗(x )) T f (x ) − 1 

4 

(∇J ∗(x )) T g(x ) R 

−1 g T (x ) ∇J ∗(x ) (9)

with J ∗(0) = 0 . Generally speaking, it is difficult to obtain J ∗( x ) by solving (9) directly, hence the optimal control u ∗( x ) is also

not easy to derive. Fortunately, some successive approximation methods have been proposed to solve the problem iteratively.

3. Robust optimal control design of uncertain nonlinear systems: the theoretical result 

In this part, we aim at establishing the relationship between the robust controller of uncertain nonlinear system (1) and

optimal controller of its nominal system. By modifying the optimal control law (8) via a feedback gain as the form 

ū (x ) = πu 

∗(x ) = −1 

πR 

−1 g T (x ) ∇J ∗(x ) , (10)

2 
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we can develop the robust optimal control strategy of system (1) . This result has been given in [47,49] with theoretical

proof. Here, for consistency, we recall the result by presenting the following two lemmas with brief analysis. 

Lemma 1. For the system (2) , the feedback control law given by (10) ensures that the closed-loop system is asymptotically stable

for all π ≥ 1/2 . Furthermore, for the system (1) , there exists a positive number π ∗
1 ≥ 1 , such that for any feedback gain π > π ∗

1 ,

the control law developed by (10) ensures that the closed-loop system is asymptotically stable. 

Proof. The proof is divided into two parts as follows. 

(1) Show the asymptotic stability of system ( 2 ) under the action of feedback control law ( 10 ). We show that the optimal cost

function J ∗( x ( t )) is a Lyapunov function. From (6) , it can be observed that J ∗( x ( t )) is a positive definite function for x 
 = 0. In

addition, based on (9) and (10) , we find that the derivative of J ∗( x ( t )) along the trajectory of the closed-loop system (2) can

be expressed as 

˙ J ∗(x (t)) = (∇J ∗(x )) T ( f (x ) + g(x ) ̄u (x )) 

= −d 2 M 

(x ) − 1 

2 

(
π − 1 

2 

)∥∥R 

−1 / 2 g T (x ) ∇J ∗(x ) 
∥∥2 

. 

It can be found that ˙ J ∗(x (t)) < 0 whenever π ≥ 1/2 and x 
 = 0. Hence, the conditions for Lyapunov local stability theory are

satisfied and the closed-loop system is asymptotically stable. 

(2) Show the asymptotic stability of system ( 1 ) under the action of feedback control law ( 10 ). We select L (t) = J ∗(x (t)) as

the Lyapunov function candidate. By taking the time derivative of the Lyapunov function L ( t ) along the trajectory of the

closed-loop system (1) and letting ξ = 

[
d M 

(x ) , 
∥∥R −1 / 2 g T (x ) ∇J ∗(x ) 

∥∥]T 
, we can derive the following formula 

˙ L (t) = (∇J ∗(x )) T 
(

f (x ) + g(x )( ̄u (x ) + d̄ (x )) 
)

≤ −
{ 

d 2 M 

(x ) + 

1 

2 

(
π − 1 

2 

)∥∥R 

−1 / 2 g T (x ) ∇J ∗(x ) 
∥∥2 −

∥∥R 

−1 / 2 g T (x ) ∇J ∗(x ) 
∥∥d M 

(x ) 
} 

= −ξT 

⎡ 

⎢ ⎢ ⎣ 

1 −1 

2 

−1 

2 

1 

2 

(
π − 1 

2 

)
⎤ 

⎥ ⎥ ⎦ 

ξ . (11) 

By observing (11) , there exists a positive number π ∗
1 

≥ 1 such that any π > π ∗
1 

guarantees ˙ L (t) < 0 . This indicates the

asymptotical stability of the closed-loop system. �

From Lemma 1 , it is found that ū (x ) is the robust stabilizing control law of system (1) for any gain π > π ∗
1 

. In the

following, we show that it also holds the property of optimality with appropriate feedback gain. For the system (1) , we

define the following cost function: 

J̄ (x 0 ) = 

∫ ∞ 

0 

{ 

Q(x (τ )) + 

1 

π
ū 

T (x (τ )) R ̄u (x (τ )) 
} 

d τ, (12) 

where 

Q(x ) = d 2 M 

(x ) − (∇J ∗(x )) T g(x ) d̄ (x ) + 

1 

4 

(π − 1)(∇J ∗(x )) T g(x ) R 

−1 g T (x ) ∇J ∗(x ) . (13) 

By adding and subtracting (1 / (π − 1)) d T (x ) d(x ) to (13) and considering the bounded condition ‖ d ( x ) ‖ ≤ d M 

( x ), we can

obtain the inequality Q(x ) ≥ ((π − 2) / (π − 1)) d 2 
M 

(x ) . It can be observed that there exists a positive number π ∗
2 

≥ 2 such

that for all π > π ∗
2 , the function Q ( x ) is positive definite. The cost function (12) for the uncertain system (1) is well defined

in this sense. The following lemma presents the optimality of robust control law of the uncertain nonlinear system (1) . 

Lemma 2. Consider the system (1) with the newly defined cost function (12) . There exists a positive number π ∗ such that for any

feedback gain π > π ∗, the feedback control law computed by (10) can achieve robust optimal control of the original uncertain

nonlinear system. 

Proof. Let the Hamiltonian function of the system (1) with the newly defined cost function (12) be 

H̄ (∇ ̄J (x )) = Q(x ) + 

1 

π
ū 

T (x ) R ̄u (x ) + (∇ ̄J (x )) T 
(

f (x ) + g(x )( ̄u (x ) + d̄ (x )) 
)
, 

where π > π ∗
2 

≥ 2 . Replacing J̄ (x ) with J ∗( x ), using (9) and (10) , and observing (13) , we can acquire that H̄ (∇J ∗(x )) = 0 . This

means that J ∗( x ) is a solution of the HJB equation of the system (1) . Then, we say that the control law (10) attains optimality

with cost function (12) . Considering Lemma 1 , there exists a positive number π ∗ � max { π ∗
1 , π

∗
2 } such that for any π > π ∗,

the control law (10) achieves robust optimal control of the original uncertain nonlinear system. This completes the robust

optimal control design. �



D. Wang et al. / Information Sciences 366 (2016) 121–133 125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Lemma 2 , we should aim at solving the optimal control problem of the nominal system and then attain

the robust optimal controller of the original system. Due to the powerfulness of ADP approach with respective to nonlinear

optimal control problem, we will employ a data-based control method to design robust optimal control using actor-critic

structure and neural network technique. The next section presents the implementation procedure in detail. 

4. Data-based control method via integral policy iteration: the implementation procedure 

In this section, we investigate a data-based approach to solve the optimal control problem for the nominal system (2) .

First, we introduce the model-free online integral policy iteration algorithm with completely unknown system dynamics.

Then, we display the data-based implementation of the established model-free algorithm through neural network. 

The feedback control developed in (8) denotes a closed-form solution, which avoids getting the optimal control law via

optimization process. However, the existence of J ∗( x ) satisfying (9) is the necessary and sufficient condition, which is difficult

to derive analytically. Hence, instead of directly dealing with (9) to obtain the solution J ∗( x ), we can successively solve the

nonlinear Lyapunov Eq. (4) and then update the control law based on (8) . This idea of successive approximation is known

as the policy iteration algorithm [1] (see the following Algorithm 1 ). 

Algorithm 1. Model-based policy iteration algorithm 

Step 1. Give a small positive real number ε. Let i = 0 and start with an initial admissible control law u 0 ( x ). 

Step 2. Policy evaluation: Based on the control law u i ( x ), solve J i ( x ) via the nonlinear Lyapunov equation 

0 = r(x, u i (x )) + (∇J i (x )) T ( f (x ) + g(x ) u i (x )) . 

Step 3. Policy improvement: Update the control law by 

u i +1 (x ) = −1 

2 

R 

−1 g T (x ) ∇J i (x ) . (14)

Step 4. If ‖ u i +1 (x ) − u i (x ) ‖ ≤ ε, stop and obtain the approximate optimal control law for the nominal system; else, set

i = i + 1 and go to Step 2. 

In [40] , it was shown that on the domain �, the cost function J i ( x ) uniformly converges to J ∗( x ) with monotonicity

J i +1 (x ) < J i (x ) , and the control law u i ( x ) is admissible and converges to u ∗( x ) as i → ∞ . 

To deal with the optimal control problem with completely unknown system dynamics, we next develop a data-based on-

line integral policy iteration algorithm. We consider the following nonlinear system explored by a known bounded piecewise

continuous probing signal e ( t ) 

˙ x (t) = f (x (t)) + g(x (t ))(u (x (t )) + e (t)) . (15)

Considering the Lyapunov function (4) , the derivative of the cost function (3) with respect to time along the trajectory of

the explored nominal system (15) can be calculated as 

˙ J (x ) = (∇J(x )) T ( f (x ) + g(x )(u (x ) + e )) 

= −r(x, u (x )) + (∇J(x )) T g(x ) e. (16)

Lemma 3. Under the admissible control policy u ( x ), if the state x is generated by the system (15) , solving J ( x ) from the following

integral equation 

J(x (t + T )) − J(x (t)) = 

∫ t+ T 

t 

(∇J(x )) T g(x ) e d τ −
∫ t+ T 

t 

r(x, u (x )) d τ (17)

is equivalent to finding the solution of (16) . 

Proof. Integrating (16) from t to t + T along the trajectory generated by the explored nominal system (15) , we obtain the

integral equation (17) where the integral is well-defined since J ( x ) and the interval [ t, t + T ] are finite. This means that

J ( x ) as the unique solution of (16) , also satisfies (17) . To complete this proof, we show that (17) has a unique solution by

contradiction. 

We assume that there exists another cost function V ( x ) which satisfies (17) with the condition V (0) = 0 . As a result, the

cost function satisfies 

˙ V (x ) = −r(x, u (x )) + (∇V (x )) T g(x ) e. 

Subtracting this from (16) , we obtain 

0 = 

˙ J (x ) − ˙ V (x ) − (∇J(x ) − ∇V (x )) T g(x ) e 

= (∇J(x ) − ∇V (x )) T ( ̇ x − g(x ) e ) 

= 

(
d (J(x ) − V (x )) T 

d x 

)
( f (x ) + g(x ) u (x ) ) , (18)
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which holds for any state x ( t ) on the system trajectories generated by the admissible control law u ( x ). Considering (18) , we

get the formula J(x ) = V (x ) + c. Note that it must hold for x (t) = 0 , so we have J(0) = V (0) + c, which implies that c = 0 .

Thus, J(x ) = V (x ) , i.e., (17) has a unique solution which is equal to the solution of (16) . The proof is completed. �

Using the symbols J i ( x ) and u i ( x ), and considering the policy improvement (14) , the formulation (17) can be rewritten

as 

J i (x (t + T )) − J i (x (t)) = −2 

∫ t+ T 

t 

u 

T 
i +1 (x ) Re d τ −

∫ t+ T 

t 

r(x, u i (x )) d τ. (19) 

Since the terms f ( x ) and g ( x ) do not appear in the integral Eq. (19) , it is significant to find that the policy iteration can be

conducted without using the system dynamics. Thus, we can obtain the online model-free integral policy iteration algorithm

as follows (see Algorithm 2 ). 

Algorithm 2. Model-free integral policy iteration algorithm 

Step 1. Give a small positive real number ε. Let i = 0 and start with an initial admissible control law u 0 ( x ). 

Step 2. Policy evaluation and improvement: 

Based on the control policy u i ( x ), solve J i ( x ) and u i +1 (x ) from the integral Eq. (19) . 

Step 3. If ‖ u i +1 (x ) − u i (x ) ‖ ≤ ε, stop and obtain the approximate optimal control law for the nominal system; else, set i =
i + 1 and go to Step 2. 

The convergence of the model-free integral policy iteration algorithm is presented in the following main theorem. 

Theorem 1. Give an initial admissible control law u 0 ( x ) for the nominal system (2) . Using the integral policy iteration algorithm

established in Algorithm 2 , the cost function and the control law converge to the optimal ones as i → ∞ , i.e., J i ( x ) → J ∗( x ) and

u i ( x ) → u ∗( x ) . 

Proof. If the initial control law u 0 ( x ) is admissible, according to (14) and (16) , all the subsequent control laws will be

admissible [43] and the iteration process will converge to the solution of the HJB equation as well. Considering (19) and

Lemma 3 , we can conclude that the developed integral policy iteration algorithm will converge to the solution of the optimal

control of (2) without using the knowledge of system dynamics. The proof is completed. �

Next, we discuss the data-based implementation method of the established model-free policy iteration algorithm using

the neural network technique. A critic neural network and an actor neural network are introduced to approximate the cost

function and the control law of the nominal system, respectively. We assume that for the nominal system, J i ( x ) and u i +1 (x )

are represented on a compact set � by single-layer neural networks as 

J i (x ) = 

N c ∑ 

j=1 

ω i j φ j (x ) + ε c (x ) , 

u i +1 (x ) = 

N a ∑ 

j=1 

νi j ψ j (x ) + ε a (x ) , 

where ω i j ∈ R and νi j ∈ R 

m are unknown bounded ideal weight parameters, φ j (x ) ∈ R and ψ j (x ) ∈ R , { φ j } N c j=1 
and { ψ j } N a j=1 

are the sequences of real-valued activation functions that are linearly independent and complete, and ε c (x ) ∈ R and ε a (x ) ∈
R 

m are the bounded neural network approximation errors. Since the ideal weights are unknown, the outputs of the critic

network and the actor network are denoted as 

ˆ J i (x ) = 

N c ∑ 

j=1 

ˆ ω i j φ j (x ) = ˆ ω 

T 
i φ(x ) , (20) 

ˆ u i +1 (x ) = 

N a ∑ 

j=1 

ˆ νi j ψ j (x ) = ˆ νT 
i ψ(x ) , (21) 

where ˆ ω i and ˆ νi are the current estimated weights, and 

φ(x ) = [ φ1 (x ) , φ2 (x ) , . . . , φN c (x )] T ∈ R 

N c , 

ψ(x ) = [ ψ 1 (x ) , ψ 2 (x ) , . . . , ψ N a (x )] T ∈ R 

N a , 

ˆ ω i = [ ̂  ω i 1 , ˆ ω i 2 , . . . , ˆ ω iN c ] 
T ∈ R 

N c , 

ˆ νi = [ ̂  νi 1 , ̂  νi 2 , . . . , ̂  νiN a ] 
T ∈ R 

N a ×m . 

Define col { ̂  νT 
i 
} = [ ̂  νT 

i 1 
, ̂  νT 

i 2 
, . . . , ̂  νT 

iN a 
] T ∈ R 

mN a , then 

ˆ u 

T 
i +1 (x ) Re = 

(
ˆ νT 

i ψ(x ) 
)T 

Re 
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= (ψ(x ) � (Re )) T col { ̂  νT 
i } , 

where � represents the Kronecker product. Substituting (20) and (21) into the integral Eq. (19) , we obtain the following

expression 

λT 
k 

[
ˆ ω i 

col { ̂  νT 
i 
} 
]

= θk (22)

with 

θk = 

∫ t+ kT 

t+(k −1) T 
r(x, ˆ u i (x )) d τ, 

λk = 

[ (
φ(x (t + (k − 1) T )) − φ(x (t + kT )) 

)T 

, −2 

∫ t+ kT 

t+(k −1) T 
(ψ(x ) � (Re )) T d τ

] T 
, 

where the measurement time is considered from t + (k − 1) T to t + kT . Note that (22) is only a 1-dimensional equation, we

cannot ensure the uniqueness of the solution. Inspired by [18] , we introduce the least squares method to solve the parameter

vector over the compact set �. For any positive integer K , we denote � = [ λ1 , λ2 , . . . , λK ] and � = [ θ1 , θ2 , . . . , θK ] 
T . Then,

we have the following K -dimensional equation 

�T 

[
ˆ ω i 

col { ̂  νT 
i 
} 
]

= �. 

If �T has full column rank, the parameters can be solved by the following operation [
ˆ ω i 

col { ̂  νT 
i 
} 
]

= (��T ) −1 ��. (23)

Here, the number of collected points K should be set satifying K ≥ rank (�) = N c + mN a to guarantee the existance of

(��T ) −1 . The least squares problem in (23) can be solved in real time by collecting enough data points generated by

the explored nominal system (15) . 

Remark 1. Based on the integral policy iteration algorithm and neural network technique, we solve the optimal control

problem iteratively and hence the approximate optimal control law ˆ u ∗(x ) can be obtained. According to (10) , we can derive

the robust control law ū (x ) = π ˆ u ∗(x ) . Therefore, the closed-form expression of the robust optimal controller of the uncer-

tain nonlinear system is available. This completes the data-based robust optimal control design of continuous-time affine

nonlinear system with matched uncertainties in theory and implementation. 

5. Simulation studies 

In this section, two simulation examples with application backgrounds are presented to illustrate the effectiveness of the

established robust optimal control scheme. 

Example 1. Consider an input-affine continuous-time nonlinear system described as [47] 

˙ x = 

[ −0 . 5 x 1 + x 2 (1 + 0 . 5 x 2 2 ) 

−0 . 8(x 1 + x 2 ) + 0 . 5 x 2 (1 − 0 . 3 x 2 2 ) 

]
+ 

[
0 

−0 . 6 

](
ū (x ) + d̄ (x ) 

)
, (24)

where x = [ x 1 , x 2 ] 
T ∈ R 

2 and ū ∈ R are the state and control variables, respectively. The matched uncertainty of system

(24) is d̄ (x ) = δ1 x 2 cos (δ2 x 1 + δ3 x 2 ) , where δ1 , δ2 , and δ3 are unknown parameters with δ1 ∈ [ −1 , 1] , δ2 ∈ [ −5 , 5] , and

δ3 ∈ [ −3 , 3] . We set R = I ( I is an identity matrix with appropriate dimension) so d(x ) = d̄ (x ) and choose d M 

(x ) = ‖ x ‖ as

the bound of the uncertain term d ( x ). 

Based on the theoretical results of this paper, we should solve the optimal control problem of the nominal system 

˙ x = 

[ −0 . 5 x 1 + x 2 (1 + 0 . 5 x 2 2 ) 

−0 . 8(x 1 + x 2 ) + 0 . 5 x 2 (1 − 0 . 3 x 2 2 ) 

]
+ 

[
0 

−0 . 6 

]
u (25)

with a newly defined cost function of the form 

J(x 0 ) = 

∫ ∞ 

0 

{‖ x (τ ) ‖ 

2 + u 

T (x (τ )) Ru (x (τ )) 
}

d τ. 

In the following, two case studies are provided with comparison remarks between the data-based integral policy iteration

algorithm and the traditional model-based policy iteration algorithm. 

Case 1: Assume that the exact knowledge of dynamical system (25) is fully unknown. We adopt the data-based integral

policy iteration algorithm to tackle the optimal control problem. In this example, the activation functions are chosen as 

φ(x ) = [ x 2 1 , x 1 x 2 , x 
2 
2 , x 

4 
1 , x 

3 
1 x 2 , x 

2 
1 x 

2 
2 , x 1 x 

3 
2 , x 

4 
2 ] 

T , 
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Fig. 1. Evolution of the weights of the critic network ( ω aij represents ˆ ω i j , j = 1 , 2 , . . . , 8 ). 

Fig. 2. Evolution of the weights of the actor network ( νaij represents ˆ νi j , j = 1 , 2 , . . . , 6 ). 

 

 

 

 

 

 

 

 

 

 

ψ(x ) = [ x 1 , x 2 , x 
3 
1 , x 

2 
1 x 2 , x 1 x 

2 
2 , x 

3 
2 ] 

T . 

Observing the fact that N c = 8 and N a = 6 , we can conduct the iteration algorithm with K = 20 . During the simulation

process, the initial weights of the critic network and the actor network are chosen as 

ˆ ω 0 = [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] T , 

ˆ ν0 = [0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5] T . 

Let the initial state be x 0 = [0 . 5 , −0 . 5] T . The time interval T = 0 . 1 s and the probing signal e (t) = 0 . 1 sin (2 πt) + 0 . 1 cos (2 πt)

are chosen in the learning process. The least squares problem is solved after 20 samples are acquired. Hence, the weights

of the neural networks are updated every 2s. During simulation, Figs. 1 and 2 illustrate the evolutions of the weights of the

critic network and the actor network, respectively. It is clear that the weights are convergent after five iterations. At t = 10 s,

we have 

ˆ ω 5 = [0 . 9286 , 0 . 0884 , 1 . 0948 , −0 . 0291 , 0 . 0690 , −0 . 1644 , 0 . 2449 , −0 . 0141] T , 

ˆ ν5 = [0 . 0265 , 0 . 6569 , 0 . 0207 , −0 . 0987 , 0 . 2205 , −0 . 0169] T . 

At last, a set of scalar parameters: π = 3 , δ1 = 0 . 8 , δ2 = −5 , and δ3 = 3 , is selected in order to evaluate the performance

of robust controller. Then, the state response of system (24) combined with the robust controller during the first 20s is

given in Fig. 3 . According to the conclusion of Lemma 2 , it also holds the property of optimality with cost function (12) .

These results verify the effectiveness of the data-based robust optimal control strategy given in this paper. 

Case 2: To demonstrate the effectiveness of the developed algorithm without system dynamics, we use Algorithm 1 to

solve the optimal control problem of (25) with the knowledge of system dynamics. Using the implementation method de-
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Fig. 3. The state trajectory of the original nonlinear system when setting π = 3 , δ1 = 0 . 8 , δ2 = −5 , and δ3 = 3 (Case 1). 

Fig. 4. Evolution of the weights of the critic network ( ω aij represents ˆ ω i j , j = 1 , 2 , . . . , 8 ). 

 

 

 

 

 

 

 

 

 

 

 

scribed in [1] , the cost function can be approximated by the activation function φ(x ) = [ x 2 
1 
, x 1 x 2 , x 

2 
2 
, x 4 

1 
, x 3 

1 
x 2 , x 

2 
1 
x 2 

2 
, x 1 x 

3 
2 
, x 4 

2 
] T .

Using the information of system dynamics, the weights of the critic network can be updated iteratively by

solving the generalized-HJB equation. In the simulation process, Fig. 4 illustrates the evolution of the weights

of the critic network. It is clear to find that the weights are convergent after six iterations, that is ˆ ω 6 =
[0 . 9271 , 0 . 0853 , 1 . 0921 , −0 . 0229 , 0 . 0772 , −0 . 1563 , 0 . 2509 , −0 . 0142] T . Setting the parameters the same as in Case 1, the per-

formance of the robust control strategy is displayed in Fig. 5 , which is difficult to observe difference compared with Fig. 3 . 

Remark 2. In this example, we use the model-based policy iteration algorithm and the integral policy iteration algorithm,

which is regarded as a model-free algorithm, to solve the optimal control problem of the nominal system (25) , respectively.

The simulation results testify the equivalence of the two algorithms. Compared with Algorithm 1 , the integral policy it-

eration algorithm can be implemented with completely unknown system dynamics in an online manner. Moreover, using

the relationship between the robust optimal control of the uncertain system and optimal control of its nominal system, a

model-free robust optimal control approach can be developed. In this sense, we establish the data-based robust optimal

control strategy of continuous-time affine nonlinear systems under uncertain environment. 

Example 2. In this example, we consider the classical multi-machine power system with governor controllers [9,13,14,17] 

˙ δi (t) = ω i (t) , 

˙ ω i (t) = − D i 

2 H i 

ω i (t) + 

ω 0 

2 H i 

(P mi (t) − P ei (t)) , 

˙ P mi (t) = 

1 

T 
(−P mi (t) + u gi (t)) , 
i 
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Fig. 5. The state trajectory of the original nonlinear system when setting π = 3 , δ1 = 0 . 8 , δ2 = −5 , and δ3 = 3 (Case 2). 

Table 1 

Summary of parameters used in the multi-machine power system. 

δi ( t ) Angle of the i th generator ω 0 Steady state frequency 

ω i ( t ) Relative rotor speed E ′ 
qi 

Transient electromotive force constant 

P mi ( t ) Mechanical power B ij Imaginary part of the admittance matrix 

P ei ( t ) Electrical power G ij Real part of the admittance matrix 

D i Damping constant u gi ( t ) Speed governor control signal for the i th generator 

H i Inertia constant δij ( t ) The angular difference between the i th and j th generators 

T i Governor time constant N Number of the generators 

 

 

 

 

 

 

 

 

 

 

P ei (t) = E ′ qi 

N ∑ 

j=1 

E ′ q j (B i j sin δi j (t) + G i j cos δi j (t)) , 

where 1 ≤ i , j ≤ N . Table 1 shows the summary of parameters used in the multi-machine power system. The values of these

parameters are set the same as that in [13] . 

We consider the third generator of the power system in this numerical simulation. Similarly, as in [13] , we rewrite the

third generator as the following form 

˙ x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

x 2 

− D 

2 H 

x 2 + 

ω 0 

2 H 

x 3 

− 1 

T 
x 3 

⎤ 

⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎣ 

0 

0 

1 

T 

⎤ 

⎥ ⎥ ⎦ 

(
ū (x ) + d̄ (x ) 

)
, (26) 

where the state vector x is denoted as x = [ x 1 , x 2 , x 3 ] 
T ∈ R 

3 . Here, the components of state x are defined as x 1 = �δ(t) =
δ(t) − δ0 , x 2 = �ω(t) = ω(t) − ω 0 , x 3 = �P m 

(t) = P m 

(t) − P e (t) , and the system control is defined as ū (x (t)) = u g (t) − P e (t) .

The term d̄ (t) = −E ′ q (δ1 cos (x 1 − δ3 ) − δ2 sin (x 1 − δ3 ))(x 2 − δ4 ) reflects the uncertainty caused by the other generators of the

multi-machine power system, with unknown parameters δ1 ∈ [0, 0.9], δ2 ∈ [ −0 . 45 , 0 . 45] , δ3 ∈ [ −60 , 60] , and δ4 ∈ [ −2 , 2]

included. We set R = I and select d M 

(x ) = 10 
√ 

10 ‖ x ‖ as the bound of the uncertain function d ( x ). Using the obtained theo-

retical results, the cost function can be represented as 

J(x 0 ) = 

∫ ∞ 

0 

{
10 0 0 ‖ x (τ ) ‖ 

2 + u 

T (x (τ )) Ru (x (τ )) 
}

d τ. 

Assume that the exact knowledge of the dynamics (26) is fully unknown. We adopt the data-based integral policy it-

eration algorithm to tackle the optimal control problem of the nominal system (which is omitted here). In this simulation

study, the activation functions are chosen as 

φ(x ) = [ x 2 1 , x 1 x 2 , x 1 x 3 , x 
2 
2 , x 2 x 3 , x 

2 
3 ] 

T , 

ψ(x ) = [ x 1 , x 2 , x 3 ] 
T . 

Clearly, we find that N c = 6 and N a = 3 and then we can conduct the simulation with K = 10 . During the simulation process,

the initial weights of the two networks are chosen as 



D. Wang et al. / Information Sciences 366 (2016) 121–133 131 

Fig. 6. Evolution of the weights of the critic network ( ω aij represents ˆ ω i j , j = 1 , 2 , . . . , 6 ). 

Fig. 7. Evolution of the weights of the actor network ( νaij represents ˆ νi j , j = 1 , 2 , 3 ). 

 

 

 

 

 

 

 

 

 

 

ˆ ω 0 = [100 , 100 , 100 , 100 , 100 , 100] T , 

ˆ ν0 = −[10 , 20 , 50] T . 

Let the initial state be x 0 = [1 , 1 , 1] T . The time interval T = 0 . 1 s and the probing signal e (t) = 0 . 01 sin (2 πt) + 0 . 01 cos (2 πt)

are also introduced to the learning process. The least squares problem is solved after 10 samples are acquired. Thus, the

weights of the neural networks are updated every 1s. In this simulation, Figs. 6 and 7 illustrate the evolutions of the weights

of the critic network and the actor network, respectively. We can observe that the weights of two networks are convergent

after 10 iterations. At t = 10 s, we have 

ˆ ω 10 = [1089 . 0219 , 184 . 1026 , 399 . 1418 , 95 . 3567 , 424 . 7228 , 954 . 6765] T , 

ˆ ν10 = [ −31 . 61284 , −33 . 7111 , −151 . 4410] T . 

Finally, the scalar parameters π = 3 , δ1 = 0 . 5 , δ2 = 0 . 3 , δ3 = 50 , and δ4 = 2 , are chosen to display the performance of

the robust control method. When employing the derived robust control strategy, the state response of system (26) during

the first 20s is displayed in Fig. 8 , which verifies the availability of the present robust optimal control scheme. 

6. Conclusion 

A novel integral policy iteration approach for robust optimal control of input-affine nonlinear systems with matched

uncertainties is developed in this paper, based on the novel idea of data-based ADP. It is proved that the robust controller of

the original uncertain system can attain optimality with a newly specified cost function. Then, the problem of designing the

robust optimal control is transformed into an optimal control problem. Using model-free integral policy iteration algorithm,
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Fig. 8. The angle and frequency trajectories of the controlled generator when setting π = 3 , δ1 = 0 . 5 , δ2 = 0 . 3 , δ3 = 50 , and δ4 = 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the optimal controller of the nominal system can be developed without relying on the knowledge of system dynamics. The

obtained results are a natural extension of the traditional ADP-based optimal control design to robust optimal control of

nonlinear systems under uncertain environment. The two simulation examples verify the good control performance. 

References 

[1] R.W. Beard , G.N. Saridis , J.T. Wen , Galerkin approximations of the generalized Hamilton–Jacobi–Bellman equation, Automatica 33 (1997) 33–1997 . 

[2] R.E. Bellman , Dynamic Programming, Princeton University Press, Princeton, NJ, 1957 . 
[3] S. Bhasin , R. Kamalapurkar , M. Johnson , K.G. Vamvoudakis , F.L. Lewis , W.E. Dixon , A novel actor-critic-identifier architecture for approximate optimal

control of uncertain nonlinear systems, Automatica 49 (2013) 49–2013 . 
[4] T. Bian , Y. Jiang , Z.P. Jiang , Adaptive dynamic programming and optimal control of nonlinear nonaffine systems, Automatica 50 (2014) 50–2014 . 

[5] L. Cheng , Z.G. Hou , M. Tan , Y. Lin , W. Zhang , Neural-network-based adaptive leader-following control for multi-agent systems with uncertainties, IEEE
Trans. Neural Netw. 21 (2010) 21–2010 . 

[6] T. Dierks , S. Jagannathan , Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy
update, IEEE Trans. Neural Netw. Learn. Syst. 23 (2012) 23–2012 . 

[7] B. Gu , V.S. Sheng , K.Y. Tay , W. Romano , S. Li , Incremental support vector learning for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst. 26 (2015)

26–2015 . 
[8] B. Gu , V.S. Sheng , Z. Wang , D. Ho , S. Osman , S. Li , Incremental learning for ν-support vector regression, Neural Netw. 67 (2015) 140–150 . 

[9] G. Guo , Y. Wang , D.J. Hill , Nonlinear output stabilization control for multimachine power systems, IEEE Trans. Circuits Syst.–I 47 (20 0 0) 47–20 0 0 . 
[10] W. He , S. Zhang , S.S. Ge , Adaptive control of a flexible crane system with the boundary output constraint, IEEE Trans. Ind. Electron. 61 (2014) 61–2014 .

[11] A. Heydari , S.N. Balakrishnan , Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics, IEEE Trans. Neural
Netw. Learn. Syst. 24 (2013) 145–157 . 

[12] Z.S. Hou , Z. Wang , From model-based control to data-driven control: Survey, classification and perspective, Inf. Sci. 235 (2013) 3–35 . 

[13] Y. Jiang , Z.P. Jiang , Robust adaptive dynamic programming for large-scale systems with an application to multimachine power systems, IEEE Trans.
Circuits Syst.–II 59 (2012) 59–2012 . 

[14] Y. Jiang, Z.P. Jiang, Robust Adaptive Dynamic Programming for Large-scale Systems with an Application to Multimachine Power Systems, New York
University, Brooklyn, NY, 2012 Technical report . [Online] Available: http://files.nyu.edu/yj348/public/papers/2012/tcas12tr.pdf . 

[15] Y. Jiang , Z.P. Jiang , Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics, Automatica 48
(2012) 48–2012 . 

[16] Y. Jiang , Z.P. Jiang , Robust adaptive dynamic programming and feedback stabilization of nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst. 25

(2014) 25–2014 . 
[17] P. Kundur , N.J. Balu , M.G. Lauby , Power System Stability and Control, McGraw-Hill, New York, NY, 1994 . 

[18] J.Y. Lee , J.B. Park , Y.H. Choi , Integral q-learning and explorized policy iteration for adaptive optimal control of continuous-time linear systems, Auto-
matica 48 (2012) 2850–2859 . 

[19] J.Y. Lee , J.B. Park , Y.H. Choi , Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explo-
rations, IEEE Trans. Neural Netw. Learn. Syst. 26 (2015) 916–932 . 

[20] F.L. Lewis , D. Liu , Reinforcement Learning and Approximate Dynamic Programming for Feedback Control, Wiley, Hoboken, NJ, 2013 . 

[21] F.L. Lewis , D. Vrabie , Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits Syst. Mag. 9 (2009) 9–2009 . 
[22] F.L. Lewis , D. Vrabie , V. Syrmos , Optimal Control, Wiley, Hoboken, NJ, 2012 . 

[23] J. Liang , G.K. Venayagamoorthy , R.G. Harley , Wide-area measurement based dynamic stochastic optimal power flow control for smart grids with high
variability and uncertainty, IEEE Trans. Smart Grid 3 (2012) 3–2012 . 

[24] F. Lin , R.D. Brand , J. Sun , Robust control of nonlinear systems: Compensating for uncertainty, Int. J. Control 56 (1992) 1453–1459 . 
[25] D. Liu , C. Li , H. Li , D. Wang , H. Ma , Neural-network-based decentralized control of continuous-time nonlinear interconnected systems with unknown

dynamics, Neurocomputing 165 (2015) 165–2015 . 

[26] D. Liu , D. Wang , H. Li , Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control
approach, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014) 25–2014 . 

[27] D. Liu , D. Wang , X. Yang , An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with
constrained inputs, Inf. Sci. 220 (2013) 331–342 . 

[28] D. Liu , D. Wang , D. Zhao , Q. Wei , N. Jin , Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized
dual heuristic programming, IEEE Trans. Autom. Sci. Eng. 9 (2012) 628–634 . 

http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0001
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0003
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0013
http://files.nyu.edu/yj348/public/papers/2012/tcas12tr.pdf
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0015
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0028


D. Wang et al. / Information Sciences 366 (2016) 121–133 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[29] B. Luo , H.N. Wu , T. Huang , D. Liu , Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design, Automatica 50
(2014) 3281–3290 . 

[30] H. Modares , M.B. Naghibi-Sistani , F.L. Lewis , A policy iteration approach to online optimal control of continuous-time constrained-input systems, ISA
Trans. 52 (2013) 52–2013 . 

[31] D.S. Naidu , Optimal Control Systems, CRC Press, Boca Raton, FL, 2003 . 
[32] C. Mu, Z. Ni, C. Sun, H. He, Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming, IEEE Trans. Neural Netw. Learn.

Syst. (2016), doi: 10.1109/TNNLS.2016.2516948 . (In press). 

[33] C. Mu , C. Sun , A new finite time convergence condition for super-twisting observer based on Lyapunov analysis, Asian J. Control 17 (2015) 17–2015 . 
[34] C. Mu , C. Sun , W. Xu , Fast sliding mode control on air-breathing hypersonic vehicles with transient response analysis, proceedings of the institution

of mechanical engineers, Part I: J. Syst. Control Eng. 230 (2016a) 230–2016 . 
[35] C. Mu , W. Xu , C. Sun , On switching manifold design for terminal sliding mode control, J. Frankl. Inst. 353 (2016b) 1553–1572 . 

[36] Z. Ni , H. He , J. Wen , Adaptive learning in tracking control based on the dual critic network design, IEEE Trans. Neural Netw. Learn. Syst. 24 (2013)
24–2013 . 

[37] Z. Ni , H. He , D. Zhao , X. Xu , D.V. Prokhorov , GrDHP: a general utility function representation for dual heuristic dynamic programming, IEEE Trans.
Neural Netw. Learn. Syst. 26 (2015) 26–2015 . 

[38] A.E. Ougli , B. Tidhaf , Optimal type-2 fuzzy adaptive control for a class of uncertain nonlinear systems using an LMI approach, Int. J. Innov. Comput.

Inf. Control 11 (2015) 11–2015 . 
[39] D.V. Prokhorov , D.C. Wunsch , Adaptive critic designs, IEEE Trans. Neural Netw. 8 (1997) 8–1997 . 

[40] G.N. Saridis , C.G. Lee , An approximation theory of optimal control for trainable manipulators, IEEE Trans. Syst. Man Cybern. – Part B 9 (1979) 9–1979 .
[41] Y. Tang, H. He, Z. Ni, D. Zhao, X. Xu, Fuzzy-based goal representation adaptive dynamic programming, IEEE Trans. Fuzzy Syst. (2016), doi: 10.1109/

TFUZZ.2015.2505327 . (in press). 
[42] K.G. Vamvoudakis , F.L. Lewis , Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem, Automatica 46 (2010)

46–2010 . 

[43] D. Vrabie , F.L. Lewis , Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems, Neural
Netw. 22 (2009) 22–2009 . 

[44] D. Wang , D. Liu , Neuro-optimal control for a class of unknown nonlinear dynamic systems using SN-DHP technique, Neurocomputing 121 (2013)
218–225 . 

[45] D. Wang , D. Liu , H. Li , Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems, IEEE Trans.
Autom. Sci. Eng. 11 (2014) 627–632 . 

[46] D. Wang , D. Liu , H. Li , B. Luo , H. Ma , An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems

with uncertainties, IEEE Trans. Syst. Man Cybern. 46 (2016) 713–717 . 
[47] D. Wang , D. Liu , H. Li , H. Ma , Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic

programming, Inf. Sci. 282 (2014) 167–179 . 
[48] D. Wang , D. Liu , Q. Wei , D. Zhao , N. Jin , Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic program-

ming, Automatica 48 (2012) 48–2012 . 
[49] D. Wang, D. Liu, Q. Zhang, D. Zhao, Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics, IEEE Trans. Syst.

Man Cybern. (2016), doi: 10.1109/TSMC.2015.2492941 . (In press). 

[50] P.J. Werbos , D.A. White , D.A. Sofge , Approximate dynamic programming for real-time control and neural modeling, in: Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches, Van Nostrand Reinhold, New York, NY, 1992 . 

[51] L. Wu , R. Yang , P. Shi , X. Su , Stability analysis and stabilization of 2-d switched systems under arbitrary and restricted switchings, Automatica 59
(2015) 59–2015 . 

[52] T.S. Wu , M. Karkoub , H.S. Chen , W.S. Yu , M.G. Her , Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear MIMO systems
with time delayed states, Inf. Sci. 290 (2015) 86–105 . 

[53] H. Xing , X. Zhong , J. Li , Linear extended state observer based back-stepping control for uncertain SISO nonlinear systems, Int. J. Innov. Comput. Inf.

Control 11 (2015) 11–2015 . 
[54] B. Xu , C. Yang , Z. Shi , Reinforcement learning output feedback NN control using deterministic learning technique, IEEE Trans. Neural Netw. Learn. Syst.

25 (2014) 25–2014 . 
[55] X. Xu , Z. Hou , C. Lian , H. He , Online learning control using adaptive critic designs with sparse kernel machines, IEEE Trans. Neural Netw. Learn. Syst.

24 (2013) 762–775 . 
[56] X. Xu , L. Zuo , Z. Huang , Reinforcement learning algorithms with function approximation: recent advances and applications, Inf. Sci. 261 (2014)

261–2014 . 

[57] R. Yang , G.P. Liu , P. Shi , C. Thomas , M.V. Basin , Predictive output feedback control for networked control systems, IEEE Trans. Ind. Electron. 61 (2014)
61–2014 . 

[58] X. Yang , D. Liu , H. Ma , Y. Xu , Online approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systems, Inf. Sci.
328 (2016) 328–2016 . 

[59] H. Zhang , D. Liu , Y. Luo , D. Wang , Adaptive Dynamic Programming for Control: Algorithms and Stability, Springer, London, UK, 2013 . 
[60] H. Zhang , C. Qin , Y. Luo , Neural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic

programming, IEEE Trans. Autom. Sci. Eng. 11 (2014) 11–2014 . 
[61] X. Zhong , H. He , H. Zhang , Z. Wang , A neural network based online learning and control approach for markov jump systems, Neurocomputing 149

(2015) 149–2015 . 

[62] X. Zhong, Z. Ni, H. He, A theoretical foundation of goal representation heuristic dynamic programming, IEEE Trans. Neural Netw. Learn. Syst. (2016),
doi: 10.1109/TNNLS.2015.2490698 . (in press). 

http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0030
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0031
http://dx.doi.org/10.1109/TNNLS.2016.2516948
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0033
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0035
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0036
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0037
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0038
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0039
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0040
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0040
http://dx.doi.org/10.1109/TFUZZ.2015.2505327
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0042
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0043
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0044
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0045
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0046
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0047
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0048
http://dx.doi.org/10.1109/TSMC.2015.2492941
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0050
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0051
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0052
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0053
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0054
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0055
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0056
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0057
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0058
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0059
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0060
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0061
http://refhub.elsevier.com/S0020-0255(16)30366-8/sbref0061
http://dx.doi.org/10.1109/TNNLS.2015.2490698

	Data-based robust optimal control of continuous-time affine nonlinear systems with matched uncertainties
	1 Introduction
	2 Problem statement and preliminaries
	3 Robust optimal control design of uncertain nonlinear systems: the theoretical result
	4 Data-based control method via integral policy iteration: the implementation procedure
	5 Simulation studies
	6 Conclusion
	 References


