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Abstract—With the rapid growth of various applications on the Internet, recommender systems become fundamental for helping users

alleviate the problem of information overload. Since contextual information is a significant factor in modeling the user behavior, various

context-aware recommendation methods have been proposed recently. The state-of-the-art context modeling methods usually treat

contexts as certain dimensions similar to those of users and items, and capture relevances between contexts and users/items.

However, such kind of relevance has much difficulty in explanation. Some works on multi-domain relation prediction can also be used

for the context-aware recommendation, but they have limitations in generating recommendations under a large amount of contextual

information. Motivated by recent works in natural language processing, we represent each context value with a latent vector, and model

the contextual information as a semantic operation on the user and item. Besides, we use the contextual operating tensor to capture

the common semantic effects of contexts. Experimental results show that the proposed Context Operating Tensor (COT) model yields

significant improvements over the competitive compared methods on three typical datasets. From the experimental results of COT,

we also obtain some interesting observations which follow our intuition.

Index Terms—Recommender systems, context-aware, contextual information, context representation, context operation
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1 INTRODUCTION

WITH the rapid growth of available information on the
Internet, users are getting in trouble with the problem

of information overload. Recommender systems have
become an important tool which can help users to select the
information of interest in many web applications. Nowa-
days, with the enhanced ability of systems in collecting
information, a great amount of contextual information has
been collected. The contextual information describes the
situation of behavior, such as location, time, weather,
companion and so on. The user behavior tends to change
significantly under these kinds of contexts.

The survey of [1] indicates that contexts of recommender
systems specify the contextual information associated with
a recommendation application, and provides two kinds of
examples which are attributes associated with users or
items and attributes associated with user-item interac-
tions. For instance, contexts of a user, such as gender, age
and occupation, can profile this entity, and contexts of a
user-item rating, such as time, location, companion and
platform, describe situations of this interaction. The
work [2] indicates that context-aware methods are more
general than attribute-aware methods [3], [4], which only
consider additional information about users and items.
As shown in Fig. 1, generally, contextual information
includes interaction contexts, which describe the interac-
tion situations, and entity contexts, which can identify

user/item characteristics. Here, we focus on modeling the
general contextual information associated with not only
users/items but also user-item interactions.

Due to the fundamental effect of contextual information in
recommender systems, many context modeling methods
have been developed. Someworks [2], [5] incorporate contex-
tual information in a factorizationmodel via treating contexts
as one or several dimensions which have similar properties
as dimensions of the user and the item. Most of these meth-
ods calculate the relevance between contexts and entities, but
such kind of relevance is not always reasonable [6]. For exam-
ple, it is not intuitive that a user is more relevant to weekday

than weedend. In 2014, Shi et al. propose a novel CARS2

model [6] which provides each user/item with not only a
latent vector but also an effective context-aware representa-
tion. However, using a distinct vector to represent contexts of

each interaction, CARS2 has the problem in confronting
with abundant contextual information in real applications.

Besides, since CARS2 can only model the categorical context,
the numerical context should be categorized at first.

Moreover, some works on multi-domain relation predic-
tion [7], [8] can also be employed for context-aware recom-
mender systems. These methods incorporate the transfer
matrix to map latent vectors of entities from one domain to
another. Using the transfer matrix, latent vectors of users/
items can be mapped from one contextual situation to
another. However, similar to the limitation of CARS2 [6],
using a transfer matrix for each specific contextual informa-
tion, these methods have the difficulty in dealing with a
large amount of contextual information.

To overcome the shortages of the existing methods men-
tioned above, we propose a novel context modeling method
Contextual Operating Tensor model, named COT, which is
motivated by the recent work of semantic compositionality
in Natural Language Processing (NLP). Continuous vector
representations of words have a long history in NLP, and
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become even popular since Mikolov et al. [9] provide an
efficient implementation word2vec. Inspired by the powerful
ability in describing latent properties of words, in recom-
mender systems, using a vector representation of each
context value seems a good solution to examine the effect
of contexts on user-item interactions. This distributed
representation inferred from all contexts has more power-
ful ability in illustrating the operation properties of con-
texts. Moreover, in the research direction of sentence
sentiment detection, a noun has semantic information as
a latent vector, and an adjective has semantic operation
on nouns as an operating matrix [11], [12]. For instance,
in the phrase “excellent product”, the noun “product” is
represented by a latent vector, and the adjective
“excellent” is associated with a semantic operating matrix
which can operate the noun vector of “product”. Thus,
multiplying the operating matrix with the latent vector,
the phrase “excellent product” has a new latent vector.
We assume that contexts in recommendation systems
have a similar property of adjectives and can operate
latent characteristics of users and items. Then, new latent
representations of entities can show not only characteris-
tics of original entities but also new proprieties under a
specific contextual situation. For instance, a man has his
original latent interests. When this man is with children,
this companion context operates his latent interests and
he may like to watch cartoons with these children.
Besides, in real recommendation systems, some contexts
have very similar effects. For instance, both weekend and
being at home may make you prefer to read novels.
Inspired by Socher et al. [13] in simplifying the Matrix-
Vector operation, we use contextual operating tensors to
capture the common effects of contexts.

The proposed Context Operating Tensor (COT) method
learns representation vectors of context values and uses
contextual operations to capture the semantic operations of
the contextual information. We provide a strategy in
embedding each context value into a latent representation,
no matter which domain the value belongs to. For each
user-item interaction, we use contextual operating matrices
to represent the semantic operations of these contexts, and
employ contextual operating tensors to capture common
effects of contexts. Then, the operating matrix can be

generated by multiplying latent representations of contexts
with the operating tensor.

The main contributions are listed as follows:

� To describe the operation ability of contexts, we
embed each context value with a latent representa-
tion, and model the contextual information as
semantic operations on users and items. Context
representation and contextual operation present a
novel perspective of context modeling.

� We use the contextual operating tensor to capture
the common semantic effects of contexts. For each
interaction, the contextual operation can be gener-
ated from the multiplication of operating tensor and
latent vectors of contexts.

� Experimental results on three real datasets show that
COT is effective and evidently outperforms the
state-of-the-arts. Besides, context representations can
reveal the latent relation among these context values,
and context weights can indicate different importan-
ces of context values in operating latent vectors of
users and items.

The rest of the paper is organized as follows: we review
some related works in Section 2. Then, we introduce COT in
Section 3. In Section 4, we report and analyze experimental
results of COT and state-of-the-art methods on real datasets.
Finally, we conclude this work and discuss the future
research direction.

2 RELATED WORK

In this section, we review some related works on matrix fac-
torization based methods and state-of-the-art context-aware
models. In addition, we introduce some recent works on
representation learning.

2.1 Matrix Factorization

Matrix Factorization (MF) based methods [14], [15], [16]
have become a state-of-the-art approach to recommender
systems. The basic objective of MF is to factorize a user-item
rating matrix into two low rank matrices, each of which rep-
resents latent factors of users or items. With the multiplica-
tion of two factorized matrices, the original matrix can be
reconstructed, and rating predictions are obtained accord-
ingly. SVD++ [17] combines neighborhood models with
latent factor models in one prediction function.

There are some MF based methods which are designed
for a specific kind of contexts, such as the time factor and
entity attributes. Koren proposes a model named timeSVD+
+ [18], which is one of the most effective models for time-
aware recommendation. Xiong et al. [19] add the time factor
as a new dimension to the rating matrix, and factorize a
three-dimensional tensor. Attribute-aware MF is another
important direction of MF extensions. The attribute-aware
recommender systems [3], [4], [20] extend the conventional
MF model to handle user and item attributes.

2.2 Context-Aware Recommender Systems

Contextual information has been proved to be useful for
recommender systems [1], [21], and various context-aware
recommendation methods have been developed. According
to the survey of [1], these methods can be categorized into

Fig. 1. Contextual information in recommender systems contains user con-
texts, item contexts and user-item interaction contexts. User contexts or
item contexts are attributes associated with the corresponding entity, and
interaction contexts describe situations of the user-item interaction.
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pre-filtering, post-filtering and context modeling. Employ-
ing the pre-filtering or post-filtering strategy, conventional
methods [22], [23], [24] utilize the contextual information to
drive data selection or adjust the resulting set. Li et al. view
a context as a dynamic feature of items and filter out the
items that do not match a specific context [25]. Some works
[26], [27] have applied tree-based partition with matrix fac-
torization, which also fall into the pre-filtering category. To
deal with contexts and social network in recommender sys-
tems, Liu et al. propose SoCo [27], which applies matrix fac-
torization only on the leaf nodes. These pre-filtering and
post-filtering methods may work in practice, but they
require supervision and fine-tuning in all steps of recom-
mendation [2].

The context modeling methods, using the contextual
information directly in the model, have become popular
recently. These methods focus on integrating the contextual
information with the user-item rating matrix and construct
factorization models. The work of [22] proposes a multidi-
mensional recommendation model based on the cube of
multiple dimensions. Multiverse recommendation [5] repre-
sents the rating matrix with contextual information as a
user-item-context tensor, which is factorized with Tucker
decomposition [28]. Multiverse recommendation has
proved performing better than the conventional contextual
pre-filtering and post-filtering models. Rendle et al. [2]
apply Factorization Machine (FM) for the context-aware rec-
ommendation. This method can handle different kinds of
contextual information, and factorizes pairwise context rela-
tion through generating feature vectors in a proper way.
However, since these methods treat contexts as one or sev-
eral dimensions as those of the user and item, the relation
between an entity and a context value is not intuitive and
has difficulty in explanation. Recently, Shi et al. propose a
novel CARS2 [6] model which provides each user/item
with a latent factor and a context-aware representation. Sim-

ilar to HeteroMF [8], CARS2 provides the contextual infor-
mation of each interaction with a distinct vector, but is not
suitable for numerical contexts and abundant contexts in
real-world applications.

2.3 Multi-Domain Relation Prediction

Multi-domain relation prediction can also be used for the
context-aware recommendation. For relation learning in
multiple domains [29], [30], [31], CollectiveMatrix Factoriza-
tion (CMF) factorizes the user-item-rating matrix in each
domain, and latent vectors of users/items are shared among
these domains. Then, Zhang et al. [7] treat user attributes as
priors for user latent vectors, and employ a transfer matrix to
generate latent vectors from the general ones. Similarly,
Jamali et al. propose Heterogeneous Matrix Factorization
(HeteroMF), which generates context-specific latent vectors
using a general latent vector for the entity and context depen-
dent transfer matrices [8]. However, for the context-aware
recommendation, with a transfer matrix for contexts in each
interaction event, these methods have to estimate numerous
matrices for a large amount of contextual information.

2.4 Representation Learning

Here, we introduce several most significant works in NLP,
which motivate this work. For continuous vectors of words,

the neural network language model [32] is a popular and
classic work, which learns a vector representation of each
word. Mikolov et al. [9] propose neural net language models
for computing continuous vector representations of words
and provide the tool word2vec for an efficient implementa-
tion. For sentence sentiment detection, thework [11] introdu-
ces a presentation of adjective-noun phrase, where a noun
has semantic information as a latent vector and an adjective
has semantic operation on nouns as an operating matrix,
then the adjective-noun composition can be represented by
multiplying the adjective matrix with the noun vector. Fur-
ther, Socher et al. propose a model [12] in which each word
or longer phrase has a Matrix-Vector representation. The
vector captures the meaning of the constituent and the
matrix describes how it modifies the meaning of the other
combined word. Since each word has a Matrix-Vector repre-
sentation, the number of parameters becomes very large
with an increasing size of vocabulary. Then, Socher et al. [13]
propose a global tensor-based composition function for all
combinations, and improve the performance of sentence sen-
timent detection over theMatrix-Vector representation [12].

3 CONTEXT OPERATING TENSOR MODEL

We present Contextual Operating Tensor model, for the
context-aware recommendation. First we introduce notations
and fundamental concepts of context representation, and
then present COT thoroughly. Finallywedescribe the process
of parameter inference, and the optimization algorithm.

3.1 Notations

In typical recommender systems, there is a user set U and an

item set V . u 2 Rd and v 2 Rd are latent vectors of user u
and item v, where d is the dimensionality. There are multi-
ple contexts associated with users, items and user-item
interactions, such as age, gender, occupation, releaseYear,
director, genre, theater, time, companion, etc.

In this work, we divide these multiple contexts into user
contexts CU1 ; CU2 ; . . . ; item contexts CV1 ; CV1 ; . . . ; and interaction

contexts CI1; CI1; . . .. User contexts and item contexts indicate
the attribute information associated with the user and item,
while interaction contexts describe the situations of user-
item interaction. For instance, in the scenario of a movie rec-
ommendation system, item contexts contain title, length,
releaseYear, director and genre, and interaction contexts
contain theater, time and companion, etc.

A specific context value cim is a variable of context CIm.
Context values of user u, cu ¼ fcu1 ; cu2 ; . . .g, are called user
context combination, and context values of item v,
cv ¼ fcv1; cv2; . . .g, are named item context combination. The
interaction contexts of a user-item rating are named interac-

tion context combination ci ¼ fci1; ci2; . . .g. The rating that
user u provides to item v under contextual information c
can be written as ru;v;c. The general contextual information c
associated with rating ru;v;c is composed of user context
combination cu, item context combination cv and interaction

context combination ci.
The representation vector of a context value cim is

denoted as hi
m 2 Rdc . Each context combination can be illus-

trated by a latent matrix which consists of latent vectors
of context values. Then, user context combination cu, item
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context combination cv and interaction context combination

ci can be represented as Hu ¼ ½hu
1 ;h

u
2 ; . . .� 2 Rdc�jcuj, Hv ¼

½hv
1;h

v
2; . . .� 2 Rdc�jcvj and Hi ¼ ½hi

1;h
i
2; . . .� 2 Rdc�jcij respec-

tively, where cuj j, cvj j and cij j are the numbers of user con-
texts, item contexts and interaction contexts.

3.2 Context Representation

There are various types of context values in practical recom-
mender systems, such as categorical value, categorical set
value and numerical value. Here, we show how different
types of context values can be transformed into correspond-
ing latent representations.

Categorical domain: If a user watches a movie in a theater,

theater is the categorical context value. Each context value cim
in the categorical domain should be represented by a distinct

vectorhi
m 2 Rdc . Fig. 2 showsmale and famale in the categori-

cal domain gender are represented by two distinct vectors.
Numerical domain: Numerical context values widely exist,

e.g., the age of a user, the length of a movie and the time
when a user watches a movie. To match with the represen-
tations of context values in other domains, we use a vector

hI
m 2 Rdc to represent a numerical domain. To alleviate the

dominant effect of large context values and the negligible
effect of small ones, we employ a logistic function in nor-
malization. Assume context values of a numerical domain
falls a normal distribution, we can calculate the mean m and

variance s2 of this domain. Then a context value cim in this

domain is represented as a logistic function hi
m ¼ 1 þð

exp � cim � m
� �

=s2
� �Þ�1 � hI

m. For example, in Fig. 2, the

numerical domain length is represented as hI
m, then 18 and

97 are normalized by a logistic function as 1þ expð
�ð18� mÞ=s2ð ÞÞ�1 � hI

m and 1þ exp �ð97� mÞ=s2ð Þð Þ�1�hI
m,

where m and s2 are the corresponding mean and variance of
the domain length.

Categorical set domain: When a user watches a movie with
parents and children, this companion cim ¼ fparents;
childreng is a context value in the categorical set domain CIm
¼ ffriends; parents; childreng. For this context value, we
construct an indicator vector, where we normalize this vec-
tor for non-empty context values such that all values in the

vector sum up to 1. Then we estimate a latent vector hi
m;� for

each element cim;� in CIm. For example, in Fig. 2, watching a

movie with parents and children, the indicator vector is

zT ¼ ð0; 0:5; 0:5Þ and the categorical set domain ffriends;
parents; childreng is represented by ðhI

m;1;h
I
m;2;h

I
m;3Þ. Then,

the context value fparents; childreng can be computed as

hi
m ¼ zT � ðhI

m;1;h
I
m;2;h

I
m;3Þ.

In practical applications, various types of contexts fall
into one of these domains mentioned above. For instance,
the geographical location can be denoted by a numerical set
flatitude; longitudeg, where each element has its numerical
domain. Some kinds of entity contexts, for instance, low-
level features of image/text and social relations, can be
transformed into feature vectors using machine learning
techniques. Each value in the obtained feature vector can be
treated as the value in a numerical domain.

3.3 Contextual Operating Matrix

In typical matrix factorization methods, latent vectors of
users and items are constant with varying contexts. But in
real-world applications, user interests and item properties
are changed with varying contexts. Here, under different
contexts, we provide context-specific latent vectors for users
and items, and the rating prediction can be rewritten as:

r̂u;v;c ¼ b0 þ bu þ bv þ
Xcj j

m¼1
bc;m þ uc

Tvc ; (1)

where cj j ¼ cuj j þ cvj j þ cij j is the number of contexts, b0 is
the mean rating in training data, bu and bv denote the biases
of user u and item v, bc;m is the bias of a context value. uc

and vc are latent vectors of user u and item v under the con-
textual information c.

In a phrase of noun and adjective, the noun has semantic
information and the adjective has semantic operation on the
noun. In recommender systems, entities have rich semantic
information and contexts act like adjectives which have the
semantic operation on entities. For example, companion
with children can change interests of a user, and he/she
may tend to watch cartoons with children. During Valen-
tine’s Day, the latent characteristics of a romantic film may
be changed and this film may become popular. We use con-
textual operating matrices to reveal how the contextual
information c affects the properties of user/item. The
context-specific latent vectors of users and items can be gen-
erated from their original ones.

uc ¼MU
c u ; (2)

vc ¼MV
c v ; (3)

where u and v are the original vectors of the user and item,

MU
c and MV

c are d� d contextual operating matrices of the
contextual information c on users and items. These context-
specific vectors can also be generated from other nonlinear
function, e.g., the sigmoid function in Eq. 4 and 5, to assess
the effectiveness of the COT framework. In the experimental
section, we will show the results of these two computations.

uc ¼ 1þ exp �MU
c u

� �� ��1�0:5 ; (4)

vc ¼ 1þ exp �MV
c v

� �� ��1�0:5 : (5)

Fig. 2. Latent representations of context values in different domains. The
context value in a categorical domain can be converted into a latent vec-
tor. Context values in one numerical domain have a shared latent vector
and each value can be represented by a scalar multiplication. Each ele-
ment in a categorical set is represented by a latent vector, and each con-
text value can be represented by averaging latent vectors of elements in
this context value.
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Comparing with the interaction context combination
which can operate the latent properties of users and items
simultaneously, the user or item context combination does
not have very similar operation on both users and items.
For instance, a user context occupation can indicate the
potential characteristics of users which may not have been
revealed by the observed user-item interactions, but has a
slight influence in changing item properties. In this work,
confronting with three kinds of contextual information, we
plan to separate theirs effects.

Treating three context combinations separately, we can
rewrite the contextual operating matrix as an operation
combination. Serial multiplication may enlarge the defect of
one context combination. Here, we resort to the linear com-
putation, contextual operating matrices of users and items
are denoted as

MU
c ¼MU

cu
þMU

cv
þMU

ci
; (6)

MV
c ¼MV

cu
þMV

cv
þMV

ci
; (7)

where MU
cu
,MU

cv
andMU

ci
are user-wise operation matrices of

user context combination cu, item context combination cv

and interaction context combination ci. MV
cu
, MV

cv
and MV

ci

are item-wise operation matrices of these context combina-
tions. This linear computation not only can separate the
effect of three context combinations but also can learn dif-
ferent weights of them implicitly. It can be replaced by other
nonlinear computation. For example, using a sigmoid func-
tion, these two operation matrices can be denoted as

MU
c ¼ 1þ exp �MU

cu
�MU

cv
�MU

ci

� �� ��1
�0:5 ; (8)

MV
c ¼ 1þ exp �MV

cu
�MV

cv
�MV

ci

� �� ��1
�0:5: (9)

3.4 Contextual Operating Tensor

We need two weighting matrices to map the latent matrix of
a specific context combination into the operation matrices.
For example, we need to estimate two matrices for each Hi

and obtain operation matrices MU
ci
and MV

ci
. The number of

parameters will increase rapidly as the number of context
combinations grows. Besides, since different contexts share
similar semantic effects, for example, both weekend and
being at home may make you would like to read novels. It
will be plausible if we can generate contextual operating
matrices from several basic matrices (operating tensor)
which represent some common semantic effects of contexts.

To employ the contextual operating tensor, we first
should convert the latent matrix of context combination into
a vector, and then the operating matrix can be generated
from the multiplication of this vector with the operating ten-
sor. Here, we show how to transform latent matrices of
three context combinations into latent vectors as follows:

aUcu ¼ HuwU
CU

; aUcv ¼ HvwU
CV

; aUci ¼ HiwU
CI
;

aVcu ¼ HuwV
CU

; aVcv ¼ HvwV
CV

; aVci ¼ HiwV
CI
;

where each column ofHi denotes the latent vector of a context

value, andwU
CI

indicates the user-wise context weights onHi.

The context combination vector a is a dc dimensional latent
vector, which is aweighted combination of context vectors.

We demonstrate the process of mapping the latent matrix
of a context combination to vectors in Fig. 3. For latent
matrix Hi, we estimate two weighting vectors wU

CI
and wV

CI

which indicate user-wise and item-wise weights on this con-
text combination. Multiplying the latent matrix with the
weighting vectors, we can obtain the user-specific and item-

specific latent vectors aUCI
and aVCI

respectively. For example,

given Tom and Titanic, the contextual information of
theater, time, weather, companion is shown in the middle
part, and each context is denoted as a column. Context
weights in the left indicate the influences of four contexts on
Tom and Titanic, the right part is context combination vec-
tors for Tom and Titanic.

After obtaining latent vectors of context combinations,
operation matrices can be generated by multiplying the
latent vectors of context combinations with the operating
tensors. We use TU; 1:d½ � and TV; 1:d½ � to denote the operating

tensors for users and items, and briefly write as TU and TV

for simplicity. Since entity contexts have significantly differ-
ent properties from interaction contexts, we would like to
employ different operating tensors for three context combi-
nations. The contextual operation matrices are calculated as

MU
c ¼ aUcu

� �T

TU
CU
þ aUcv

� �T

TU
CV
þ aUci

� �T

TU
CI

; (10)

MV
c ¼ aVcu

� �T

TV
CU
þ aVcv

� �T

TV
CV
þ aVci

� �T

TV
CI

; (11)

where TU
CU

, TU
CV

and TU
CI

are dc � d� d tensors, denoting the
operating tensors of three context combinations for users,

TV
CU

, TV
CV

and TV
CI

are operating tensors for items. The operat-

ing tensor is composed of d slices, and each slice should be
multiplied with the vector of context combination. Substitut-
ing Equations (10-11) in Equations (2-3), we write detailed
equations of context-specific latent vectors of users and items.

uc ¼
aUcu

� �T

TU
CU ;1

uþ aUcv

� �T

TU
CV ;1

uþ aUci

� �T

TU
CI ;1

u
� � �

aUcu

� �T

TU
CU ;d

uþ aUcv

� �T

TU
CV ;duþ aUci

� �T

TU
CI ;d

u

2
664

3
775

vc ¼
aVcu

� �T

TV
CU ;1

vþ aVcv

� �T

TV
CV ;1vþ aVci

� �T

TV
CI ;1

v
� � �

aVcu

� �T

TV
CU ;d

vþ aVcv

� �T

TV
CV ;dvþ aVci

� �T

TV
CI ;d

v

2
664

3
775;

Fig. 3. The process of generating latent vectors of a context combina-
tion. The middle part is the latent matrix Hi of the context combination
ci. The left part is user-wise and item-wise context weights which indi-
cate different influences of context values on users and items. The
right part denotes the user-specific and item-specific latent vectors of
this context combination.
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where TU
CI ;m

and TV
CI ;m

are dc � d matrices, denoting the

mth slice of TU
CI

and TV
CI
. Each slice captures a specific

type of common semantic operation on users/items.
The process of generating the context-specific latent vec-

tor of a user is illustrated in Fig. 4. After generating the
latent vector of contexts in Fig. 3, we can obtain the opera-
tion of these contexts by multiplying with a tensor. The
operation matrix of these contexts should change the latent
vector of user or item under these contexts. There are three
operating tensors TU

CU
, TU

CV
and TU

CI
. For a specific user-item

interaction ru;v;c, we use aUcu , a
U
cv

and aUci to represent three

context combinations. Multiplying these vectors of context
combinations with the tensors, the corresponding operation

matrices MU
cu
, MU

cv
and MU

ci
can be obtained, which are cer-

tain combinations of semantic operations in respective con-
textual operating tensors. The linear computation of three

operation matrices MU
cu
þMU

cv
þMU

ci
is used to change the

original latent vector of user u. For instance, given Tom,
Titanic and contexts theater, time, weather, companion, we
have shown how to generate context combination vectors
for Tom and Titanic in Fig. 3. In Fig. 4, we can compute the
operation matrix of these vectors by multiplying with oper-
ating tensor in the left. Then the latent vector of Tom under
these contexts can be calculated by using operation matrix
and the original latent vector.

After discussing the generating process of context-spe-
cific vectors of users and items, the overall prediction func-
tion of COT can be written as:

r̂u;v;c ¼ b0 þ bu þ bv þ
Xcj j

m¼1
bc;mþ

aUcu

� �T

TU
CU
þ aUcv

� �T

TU
CV
þ aUci

� �T

TU
CI

� �
u

� 	T

;

aVcu

� �T

TV
CU
þ aVcv

� �T

TV
CV
þ aVci

� �T

TV
CI

� �
v

� 	
:

3.5 Parameter Inference

We have already introduced our model mathematically
in the previous section. Now, to accomplish the parame-
ter inference, we need to minimize the following objec-
tive function:

min
u;v;H;T;w

J ¼
X

u;v;ch i2V
ðru;v;c � r̂u;v;cÞ2

þ �

2
ðbu2 þ bv

2 þ
Xcj j

m¼1
bc;m

2

þ jjujj2 þ jjvjj2 þ jjHjj2 þ jjTjj2 þ jjwjj2Þ;

(12)

where V denotes the training set, and � is a parameter to
control the regularizations, which can be determined using
cross validation. The derivations of J with respect to all
parameters can be calculated as:

@J

@b�
¼ �2lu;v;c þ �b�;

@J

@u
¼ �2lu;v;c MU

c

� �T
MV
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� �þ �u;

@J

@v
¼ �2lu;v;c MU

c u
� �

MV
c þ �v;

@J

@H�
¼ � 2lu;v;c TU

C�u
� �
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c v

� �
wU

C�

� �T

þ lu;v;c TV
C�v

� �
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c u
� �

wV
C�

� �T

þ�H�;
@J

@wU
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¼ �2lu;v;cHT
u TU
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� �
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� �þ �wU
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;
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MV

c v
� �þ �wU
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;
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u
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@J

@wV
CV

¼ �2lu;v;c MU
c u

� �
HT

v TV
CV

u
� �

þ �wV
CV

;

@J

@wV
CI

¼ �2lu;v;c MU
c u

� �
HT

i TV
CI
u

� �
þ �wV

CI
;

@J

@TU
�;m
¼ �2li;j;kHuw

U
� u

T vc;m þ �TU
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Fig. 4. Overview of constructing the context-specific latent vector for a user. Contextual operating tensors are shown on the left side, and the process
of generating the operating matrix is illustrated in the square.
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where b� is a specific bias,H� describes the latent matrix of a

specific context combination, TU
� is an operating tensor of a

specific context combination for the user, and TU
�;m is the

mth slide of the operating tensor TU
� . uc;m and vc;m denotes

the mth component of latent vector uc and vc respectively,
and lu;v;c ¼ ru;v;c � r̂u;v;c.

3.6 Optimization

After calculating all the derivations, a minimum solution of
J in Equation 12 can be obtained by using stochastic gradi-
ent decent, which has been widely used in recommender
systems [15], [16]. We propose an efficient learning algo-
rithm (Algorithm 1) to optimize the objective function with
the contextual operation. At first, all the parameters are ini-
tialized randomly in the range [-0.5, 0.5]. Then, we ran-
domly choose a rating ru;v;c from the training set, and
update all parameters using the derivations in the section of
parameter inference. After the algorithm is convergent, the
model parameters b, u, v, H, T and w are obtained, and the
rating prediction r̂u;v;c can be calculated using Equation 12.
Note that g is the learning rate, which can be determined
through the cross validation. This optimization algorithm
can be implemented without requiring significant change to
conventional matrix factorization models.

Algorithm 1. Optimization Algorithm of COT

1: Input: The training set, each ru;v;c is associated with a user
u, an item v and contextual information c.

2: Output: Model parameters b, u, v,H, T andw.
3: Initialize b, u, v,H, T andw randomly.
4: while not convergent do
5: Select an instance ru;v;c from the training set.

6: Calculate @J
@b,

@J
@u,

@J
@v,

@J
@H,

@J
@T,

@J
@w.

7: Update b b� g @J
@b.

8: Update u u� g @J
@u.

9: Update v v� g @J
@v.

10: UpdateH H� g @J
@H.

11: Update T T� g @J
@T.

12: Updatew w� g @J
@w.

13: end while

Based on the optimization algorithm, now we analyze
the time complexity of training process. In each iteration,
the time complexity of updating u and v are Oðd2 � jVjÞ,
where jVj is the size of training dataset. The time complex-

ity of updating H and w are Oðdc � d2 � jVjÞ, and the com-
plexity of updating T is Oðdc � d� jVjÞ. Therefore, the total

time complexity of training process is Oðdc � d2 � jVjÞ.
Since jVj is much larger than dc � d2, the time complexity
can be viewed as growing linearly with respect to the size of
training dataset. Therefore, the time complexity of COT is

very similar to that of the state-of-the-art CARS2 and FM
models, which both can be treated as linear with size of
training set. This time complexity also shows that COT has
potential to scale up to large-scale data sets.

4 EXPERIMENT

In this section, we investigate the performance of COT.
First, we describe the datasets, the comparison methods

and experimental settings. Then we analyze experimental
results, the convergence performance, the scalability and
impact of parameters. Last but not the least, we find
some interesting observations on context representations
and context weights.

4.1 Evaluation Datasets

Although the context-aware recommendation is a practical
problem, there are only a few publicly available datasets.
We investigate the performance of our proposed model on
three benchmark datasets: the Food dataset [33], the Adom
dataset [22] and the MovieLens-1M dataset.1

� Food dataset [33] is collected from a restaurant. There
are two interaction contexts: virtuality describes if
the situation in which the user rates is virtual or real,
and hunger captures how hungry the user is.

� Adom dataset [22] is collected from a movie website
and has rich contextual information. There are
five interaction contexts: companion captures
whom the user watches the movie with, when
shows whether the user watches the movie at
weekend, release indicates whether the user
watches the movie on the release weekend, rec
captures how the user will recommend the movie,
and where indicates whether the user watches the
movie in a theater.

� Movielens-1M dataset is collected from a personalized
movie recommender system2. There is no explicit
contextual information, but the timestamp can be
split into two interaction contexts: hour and day.
Besides, this dataset contains user and item contexts,
i.e., gender, age and occupation of the user and title
and genre of the item.

The main difference between Food and Adom lies on the
amount of contextual information, which gives us an oppor-
tunity to estimate the relation between the model perfor-
mance and the scale of contexts. The MovieLens-1M dataset
is another widely used dataset [27], where the timestamp
can be used as interaction contexts and attributes of users
and items can be treated as entity contexts. We employ this
dataset to examine the performance of methods in dealing
with general contextual information.

4.2 Compared Methods

In this work, we compare the COT model with five state-of-
the-art models:

� SVD++ [17] is an advanced matrix factorization
model, but is not designed for the context-aware rec-
ommendation. We implement it as the baseline in
our experiments.

� Multiverse recommendation [5] is a state-of-the-art
model which employs Tucker decomposition on the
user-item-context rating tensor. This model outper-
forms conventional context-aware recommendation
models, such as the pre-filtering and multidimen-
sional approach [22].

1. http://grouplens.org/datasets/
2. http://movielens.org/
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� FM [2] is applicable for different kinds of contextual
information by specifying the input data. We use
LibFM3 to implement this general method.

� HeteroMF [8] uses transfer matrices to model the
interaction contexts. Each specific context combina-
tion has a transfer matrix.

� CARS2 [6] provides each user and item with a latent
vector and a context-aware representation. The con-
text-aware representation captures latent properties
of the user and item manipulated by the contextual
information.

Moreover, among these methods, FM and COT can han-
dle general contextual information, and other methods only
address the interaction contexts.

4.3 Evaluation Metrics

To measure the performance of rating prediction, we use the
most popular metrics, Root Mean Square Error (RMSE) and
Mean Average Precision (MAE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ru;v;c2Vtest
ru;v;c � r̂u;v;c
� �2
ntest

s
; (13)

MAE ¼
P

ru;v;c2Vtest
jru;v;c � r̂u;v;cj

ntest
; (14)

where Vtest denotes the test set and ntest denotes the number
of ratings in the test set. For these two metrics, the smaller
the value, the better the performance.

4.4 Experimental Methodology

In the experiment, to assess the performance of comparison
methods on all users and cold start users, we adopt two dif-
ferent ways in splitting the datasets.

All users: We randomly sample about 10 percent ratings
from the dataset to create the test set, and the remaining
90 percent ratings are used as the training set.

Cold start: We randomly sample some users from the orig-
inal dataset, then select less than three of their ratings as the
training set, and use all remaining ratings as the test set. The
numbers of ratings of each user in the test set are randomly
decided. Also, the test set covers about 10 percnet of the origi-
nal dataset, and the training set covers about 90 percent.

Moreover, in all experiments, the training set is further
split into five parts, and the model parameters can be better
determined by using five-fold cross validation.

4.5 Performance Comparison

Table 1 illustrates experimental results measured by RMSE
and MAE on three datasets and two kinds of splitting. We
identify that through all the experiments, context-aware
models outperform the context-unaware model SVD++. It
demonstrates the importance of utilizing the contextual
information in recommender systems. This table also shows
that COT achieves the best results consistently. It is because
that using context representation and contextual operating
tensor to model contextual information is very effective.
Comparing with the results of CARS2, the better perfor-
mance of COT is due to the powerful representative ability
of distributed representations of context values. Moreover,
on Movielens-1M with entity contexts, FM gets slightly bet-

ter results than CARS2. It shows that user/item contexts can
provide additional information which cannot be revealed

by interactions and interaction contexts. Since CARS2 only
deal with interaction contexts, FM utilizing interaction con-
texts and entity contexts simultaneously can outperform

CARS2 on Movielens-1M.
In terms of all users splitting, comparing with the best

performance of other models, COT improves the RMSE val-
ues by 2:4, 3:9 and 1:0 percent on Food, Adom and Move-
lens-1M respectively. In terms of cold start splitting, the
improvements become 1:7%, 2:4% and 1:2% accordingly.
The improvement of MAE has very similar trend as that of
RMSE. Among three datasets, COT has the greatest
improvement on Adom, which shows COT to be particu-
larly helpful for the dataset with rich contextual informa-
tion. FM and Multiverse achieve very similar performance
on Food and Adom, but on Movielens FM has great
improvement over Multiverse. This improvement indicates
that user/item contexts are important in the contextual
modeling. HeteroMF performs close to Multiverse on Food
and Movielens-1M, but fails on Adom. This may be because
Adom has richer contextual information than others, and
HeteroMF needs to estimate too many transfer matrices for
great amount of contextual information.

We illustrate the RMSE improvements of corresponding
context-aware models over the context-unaware method
SVD++ in Fig. 5. On all three datasets, the RMSE improve-
ments on cold start splitting are larger than those on all
users splitting. It shows that the contextual information is
more important in the cold start situation and can be used
to compensate for the lack of history information. Since
Adom has the greatest amount of contextual information
among three datasets, RMSE improvements on Adom
(more than 30 percent in average) are greater than those on

TABLE 1
Performance Comparison with RMSE and MAE on Three Datasets and Two Kinds of Splitting (d ¼ 8, dc ¼ 4)

Food Adom Movielens-1M

All Users Cold Start All Users Cold Start All Users Cold Start

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVD++ 1.155 0.948 1.278 1.086 2.782 2.093 3.421 2.436 0.908 0.693 1.203 0.921
Multiverse 1.063 0.841 1.121 0.921 1.833 1.383 2.168 1.556 0.883 0.669 1.025 0.771
FM 1.055 0.845 1.115 0.918 1.842 1.426 2.125 1.563 0.863 0.661 0.983 0.752
HeteroMF 1.072 0.862 1.136 0.932 2.084 1.552 2.384 1.782 0.887 0.677 1.054 0.806
CARS2 1.020 0.807 1.112 0.911 1.788 1.372 2.104 1.538 0.869 0.664 0.992 0.758
COT 0.996 0.791 1.093 0.896 1.718 1.364 2.054 1.515 0.855 0.654 0.971 0.743

3. http://www.libfm.org/
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the others (about 10 percent in average). These abundant
contexts are helpful for model construction and significantly
enhance the recommendation performance. Moreover, on
Movielens, the improvement on cold start splitting is about
three times more than the improvement on all users split-
ting. As the rating number of Movielens is larger than those
of other datasets, the advanced context-unaware method
SVD++ can be trained more sufficiently and obtain better
results. When the rating number decreases significantly,
contextual modeling becomes important on the cold start
users. This observation reveals the context modeling is
really helpful for the cold start users in real applications.

Here, we compare and analyze the performance differ-
ence between COT and two variants introduced in Section
3.3. The variant with a nonlinear transformation of context-
specific latent vector is named as COT V1, and the variant
employing a nonlinear combination of different contexts is
denoted as COT V2. The experimental performance on all
users splitting of three datasets is list in Table 2. The results
of COT and two variants are very similar. It may be because
that the contextual operation can well reveal the underlying
properties of contextual information. Then, under this
framework, different strategies of transformation or combi-
nation just have a slight effect on the final performance.

4.6 Convergence Analysis

The convergence curves of comparison methods on three
datasets are illustrated in Fig. 6. It shows that RMSE of COT
becomes stable after about 30 iterations. These evidences
indicate that COT has a satisfying convergence rate and can
be trained rapidly and efficiently in practical applications.
HeteroMF also shows its ability in convergence and the per-
formance becomes stable after convergence. SVD++ con-
verges slowly, and convergence curves become stable on
Adom and Movielens-1M until the number of iterations
reaches about 100. The performance of FM using SGD is very
effective, but we also observe that FM needs numerous

iterations to obtain convergent situations on Food and Mov-
ielens-1M. On Food, CARS2 and Multiverse need more itera-

tions to obtain a stable result. It may be because that CARS2

and Multiverse have many parameters to be estimated and
aremore likely to overfit this kind of sparse dataset.

As we discussed above, each slice of the contextual oper-
ating tensor represents one kind of common operation.
With the larger difference among these slices, the contextual
operating tensor is more powerful in modeling the contex-
tual operation. Similar to the content diversity measuring
the difference among contents of movies [34], we use a met-
ric matrix diversity to measure the difference among all sli-
ces. Matrix diversity is calculated as average RMSE of all
slice pairs in each tensor. Fig. 7 illustrates how matrix diver-
sities of contextual operating tensors change with the
increasing number of iterations. It indicates that matrix
diversities are increasing when the number of iterations
grows from 1 to about 30. After 30 iterations, matrix diversi-
ties become stable. We find that COT achieves convergence
in Fig. 6 at the same time as the matrix diversity converged
in Fig. 7. These evidences indicate that when the matrix
diversity achieves stable results, COT can obtain the best
performance. Moreover, the stable value of matrix diversity
on Adom is the largest one. This may be because rich con-
textual information on Adom has the powerful operating
ability in changing the properties of users and items. This
clue also confirms the evidence in Fig. 5, context-aware
methods have the greatest RMSE improvement over the
context-unaware SVD++ on Adom.

4.7 Scalability Analysis

Besides the analysis of convergence rate, we also investigate
the scalability of the COT method with varying portion of
training data. Here, we implement COT on three datasets
and for each dataset we measure the corresponding time
cost of one iteration in the training process Fig. 8 shows that
on three datasets, time consumptions of our method is lin-
ear with respect to the size of training data. This result
empirically confirms the analysis of time complexity in Sec-
tion 3.6. Comparing with the state-of-the-arts, i.e., the
CARS2 and FM methods, time consumptions of these three
methods have very similar trend, they all can be viewed as
linearly increasing with the size of training set. These empir-
ical results and analysis of time complexity show that our
proposed method is very efficient and can provide a reason-
able scalability for real applications.

Fig. 5. RMSE improvements (%) of corresponding context-aware methods over the context-unaware method SVD++ on three datasets.

TABLE 2
Performance Comparsion of COTand Two Variants

Food Adom Movielens-1M

RMSE MAE RMSE MAE RMSE MAE

COT 0.996 0.791 1.718 1.364 0.855 0.654
COT V1 0.999 0.793 1.726 1.365 0.857 0.655
COT V2 0.997 0.792 1.723 1.365 0.856 0.655
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4.8 Distribution of Context Representation

In this section, we demonstrate distributed representations
of context values, and observe the potential relation among
these context values.

We use Principal Component Analysis (PCA) to project
representations of context values on Adom into two dimen-
sional vectors, and these context values are illustrated in
Fig. 9. The distance reveals the potential relation among

these context values. On weekends, we may watch a movie
in companion with lover and parents, and on weekdays we
are more likely to watch alone. This observation follows our
intuition. If a person is alone, he is more likely to watch a
movie at home. If a person is with lover or parents, he tends
to watch a movie in a theater. When a movie is on its
released weekend, we can watch it in a theater, and if a
movie has been released for a long time, we may watch it at
home. Besides, we see that the colleagues is close to friends,
lover and parents are close to siblings. colleagues and
friends seem far away from other context values, which
reveals that a person rarely watches a movie with colleagues
or friends. Moreover, we find that excellent is an outlier,
and the majority of movies are good, just so so or terrible.
excellent is in the same direction of good. These observations
are interesting and follow our intuition, and the context
representation of COT provides us an opportunity to exam-
ine the potential relation of these context values.

4.9 Context Weights

On Food, Adom and Movielens, the user-wise and item-
wise context weightswU andwV are demonstrated in Fig. 9.

Fig. 6. Convergence curves of comparison models on three datasets. The x-axis is the number of iterations, and y-axis shows the values of
RMSE(log).

Fig. 7. Matrix diversities of operating tensors with the increasing number
of iterations on three datasets.

Fig. 8. Time consumption of COTwith varying portion of training data on
three datasets.

Fig. 9. Demonstration of distributed representations of context values in
a two dimensional space using PCA.
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Fig. 9a is the user-wise context weights and Fig. 9b is the
item-wise context weights. The major difference between
these two figures is the context weights on the Food dataset.
When a user rates one kind of food, for the user, how
hungry is more relevant to the rating results than whether
the situation is virtual or real. For the item, virtual or real is
more significant than the hunger degree of the user. These
are because the degree of hungry is describing situations of
users and has more important effect on users, while
virtuality describes different situations of rating events, and
real or virtual is important in revealing the properties of
items. On the Adom dataset, the context rec has the highest
weight and becomes the dominant context. This may be
because the rec context, indicating how the user will recom-
mend the movie, has high relevance with the final rating.
On Adom, we also observe that a slight difference between
user-wise and item-wise weights is the companion context.
It may be because with different companion a person can
choose different kinds of movies to watch, but some movies
are pictured for specific kinds of audiences. For example,
the cartoon movie is for parents with children and the
romance movie is for a person with his/her lover. The

figure also demonstrates that on Movielens-1M day is more
important than hour. It shows that the context day has more
discrimination ability than the context hour on the user
behavior of watching movie.

4.10 Impact of Parameters

Here, we first assess the COT model with respect to varying
dimensionalities of entity vector d and context vector dc on
the Food dataset. Fig. 11a shows that with increasing d and
dc, the RMSE value decreases at first, then stays nearly sta-
ble after d ¼ 5 and dc ¼ 3. These observations indicate that
the parameter d and dc can be selected in a large range on
Food, and the performance of COT does not rely on the
parameter selection very much.

In Figs. 11b and 11c we further illustrate the RMSE values
onAdomw.r.t. d and dc respectively.We set dc ¼ 4 and calcu-
late the RMSE values with the varying dimensionality of d,
and the results are demonstrated in Fig. 11b. Then we fix
d ¼ 8 and evaluate the performance of COT with dc in
Fig. 10c. Fig. 10b indicates that the performance of COT is
improving with the increase of dimensionality d generally.
When the dimensionality d is larger than 5, the COT method
can obtain decent results. This observation of the entity vector
dimensionality on Adom is very similar to the performance
on Food in Fig. 11a. On the other hand, the performance of
COT is changed greatly with the dimensionality of context
vector dc. The best performance is obtained when the
dimensionality dc is in the range ½3; 6�. When we increase the
dimensionality dc, the performance of COT is decreasing.
Since the Adom dataset has abundant contextual information
but a small number of training ratings, the context representa-
tionwith high dimensionality is prone to overfitting.

From the experimental results in Fig. 11, we observe that
the dimensionality of context vector dc should be selected in
a range with small values, and the performance of COT will
be very stable. Since the performances of COT with parame-
ter values selected from these ranges are very similar, we
only illustrate the results with d ¼ 8 and dc ¼ 4 on three
datasets for simplicity.

5 CONCLUSION

In this work, a novel context-aware recommendation
method, i.e., COT, has been proposed. We provide each con-
text value with a continuous vector, which is a distributed

Fig. 10. Performance of COT measured by RMSE on Food and Adom
with varying dimensionalities of entity vector d and context vector dc.
(a) shows RMSE values on Food with varying dimensionalities of d and
dc, (b) illustrates RMSE values on Adom with the dimensionality of d,
and (c) indicates RMSE values on Adom with the dimensionality of dc.

Fig. 11. User-wise and item-wise context weights on three datasets. Fig. (a) shows user-wise context weights wU and Fig. (b) illustrates item-wise
context weightswV
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representation. Such representations have a powerful ability
in describing the semantic operation of context values. Simi-
lar to the semantic composition in NLP where the adjective
has an operation on the noun, we provide the contextual
information of each rating event with a semantic operation
matrix, which can be used to generate new vectors of users
and items under this contextual situation. At the same time,
the common semantic effects of contexts can be captured by
contextual operating tensors. Then the contextual operating
matrix can be calculated from the contextual operating ten-
sor and context representations. The experimental results
on three real datasets show that COT outperforms state-of-
the-art context-aware models. We also observe that the
potential relation among the context values is interesting
and follows our intuition. And context weights of COT can
be used to explain the importance of context values in
changing vectors of users and items.

In the future, we would like to introduce a pairwise rank-
ing constraint on the contextual information. A user-item
interaction can be generated under specific contextual infor-
mation but cannot be yielded under other contextual situa-
tions. This kind of pairwise ranking constraint reveals the
relative information among different contextual situations
and can be used to further enhance context modeling. More-
over, since the top-n recommendation is another significant
measurement of recommender systems, analyzing the rank-
ing performance of the COT framework will be a very inter-
esting issue in future.
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