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Abstract—Image registration is a key problem in a variety of 

applications, such as computer vision, medical image processing, 
pattern recognition, etc., while the application of registration is 
limited by time-consumption and the accuracy in the case of large 
pose differences. Aimed at these two kinds of problems, we 
propose a fast rotation-free feature based rigid registration 
method based on our proposed accelerated-NSIFT (A-NSIFT) 
and GMM Registration based Parallel Optimization 
(PO-GMMREG). Our method is accelerated by using the 
GPU/CUDA programming and preserving only the location 
information without constructing the descriptor of each interest 
point, while its robustness to missing correspondences and 
outliers is improved by converting the interest point matching to 
Gaussian mixture model alignment. The accuracy in the case of 
large pose differences is settled by our proposed PO-GMMREG 
algorithm by constructing a set of initial transformations. 
Experimental results demonstrate that our proposed algorithm 
can fast rigidly register 3D medical images and is reliable for 
aligning 3D scans even when they exhibit a poor initialization. 
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I. INTRODUCTION 
MAGE registration is a key problem in a variety of 
applications of computer vision, medical image processing, 

pattern recognition, etc. [1]-[3]. It overlays two or more images 
of the same scene taken at different times, from different 
viewpoints, and/or by different sensors. Image registration 
methods are generally classified into two categories: 
non-feature based registration and feature based registration. 
Non-feature based registration methods generally use the 
intensity-based information [4], [5] (the sum of squared or 
absolute differences, cross correlation, correlation coefficient), 
attribute-based information [6], [7] (histogram attribute, sobel 
edge attribute, gabor attribute), or information theory [8]-[10] 
(mutual information, normalized mutual information, regional 
mutual information). This kind of approaches has the potential 
to better quantify and represent the accuracy of the estimated 
dense deformation field, whereas it comes at the cost of 
increased computational expense. For feature based registration, 
salient structures in the images, such as significant regions 
(forests, lakes, fields), lines (region boundaries, coastlines, 
roads, rivers) or points (region corners, line intersections, 
points on curves with high curvature) are firstly extracted as 
features, and then the solution of the registration problem is 
converted into matching the extracted features [11]-[13]. 
Feature based registration is robust with respect to the existence 
of large deformations. However, extracting reliable features is 
an open problem and an active topic of research. Feature 
extraction and feature matching are two main crucial steps for 
feature based registration due to their determinative effects on 
algorithm efficiency and robustness [14]. Most existing 
registration algorithms focus on one of the two steps to improve 
algorithm performance. In the current study, we focus on the 
feature based rigid registration particularly on the improvement 
on feature extraction and feature matching. 

The most well-known algorithm for point feature extraction 
is the Scale Invariant Feature Transform (SIFT) method [15], 
proposed by Lowe to extract distinctive invariant features from 
images. SIFT features are invariant to the image scale, 
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translation and rotation, and provide robust matching across a 
substantial range of affine distortion, change in 3D viewpoint, 
addition of noise, and change in illumination. Therefore, it can 
be used to perform reliable matching between different views 
of an object or scene. Cheung and Hamarneh [16] extended the 
SIFT descriptor from 2D scalar images to scalar images of 
arbitrary dimensionality. This SIFT descriptor is highly 
discriminant, but being a 128-vector, it is relatively slow in 
computing and matching. New feature descriptors, such as the 
GLOH (Gradient location and orientation histogram) descriptor 
[17], the SURF (Speeded-Up Robust Features) descriptor [18], 
the DAISY descriptor [19], and the BRIEF descriptor [20], 
have been proposed either to reduce the descriptor dimension 
for computation efficiency or to improve the robustness. 
However, most of these SIFT or SIFT-similar based algorithms 
assume the one to one correspondence based on the neighbor 
information of the descriptor, and thus lead to two main effects. 
On one hand, it costs too much time to describe the interest 
value; on the other hand, unsatisfactory results may achieve 
when outliers of the feature description are serious, or when 
severe deformation or a large pose difference occurs. Note that 
in this paper, the large pose difference refers to the large 
rotation between the moving image and the fixed image. 

Point set registration, another interesting class of feature 
based registration, concentrates on feature matching without 
constructing the descriptor for each interest point but only uses 
the location information. Mathematically, the point registration 
problem can be described as: let  be the moving set with size

 and  the fixed set with size , in which each element is 
a vector in  ℝ𝑑 , then the task is to find the transformation 
between the two point sets to yield the best alignment. The 
iterative closest point (ICP) method [21] is one of the most 
typical point registration algorithms known for its simplicity in 
computation and completion. It finds the explicit point 
correspondence in the two current existing point sets and thus is 
less sensitive to the missing correspondences and outliers. To 
deal with the missing correspondences and outliers, some 
ICP-based algorithms such as BC-ICP [22], Subset-ICP [23], 
and Dual-Bootstrap ICP [24] have been proposed. However, 
since the ICP algorithm always converges monotonically to the 
nearest local minimum of a mean-square distance metric [21], 
[22], the ICP-based methods would generate significant errors 
when the moving set and the fixed set are not coarsely aligned. 
Another category of point registration algorithms models each 
of the two point sets with a kernel density function [25]-[29] 
and aligns the density function without establishing the explicit 
point correspondence. Using the kernel density function, the 
problem of the point set registration is translated to the density 
function alignment [25]. Bing et al [26], [27] proposed the 
Gaussian Mixture Model (GMM) registration algorithm, which 
uses the Gaussian kernel density function as the explicit kernel 
function to represent the given point sets and aligns the two 
point sets by aligning the Gaussian Mixture Model. The GMM 
method is more robust to the missing correspondences and 
outliers and has been widely used in pattern recognition and 
medical image analysis, but it may easily fail when the rotation 

angle between the moving set and the fixed set is large (that is, 
when the moving and fixed images are of large pose differences) 
[27]. Based on the analysis above, it can be concluded that a 
good initial transformation that places the two data sets in 
approximate registration is required for the point registration 
algorithms, including ICP based methods and kernel density 
based algorithms (e.g. GMM method). So far, to our best 
knowledge, no registration method survives when the rotation 
is beyond 90 degree. 

In this paper, we propose a new feature based rigid 
registration method which focuses on the improvement of 
feature extraction and feature matching to reduce the 
time-consumption and to ameliorate the accuracy in the case of 
large pose differences. First, an accelerated Multi-dimensional 
Scale Invariant Feature Transform (A-NSIFT) algorithm is 
proposed by extracting the interest points from the fixed and 
moving images using CUDA-programming and preserving 
only the location information of interest points. Then, the 
interest point sets extracted by A-NSIFT in both fixed and 
moving images are represented as Gaussian mixture models, 
based on which the rigid spatial transformation from the 
moving set to the fixed set is subsequently calculated by 
matching the mixture models. In order to solve the registration 
problem when the fixed and moving images are with large pose 
differences, we propose a Parallel Optimization based on 
Gaussian Mixture Model Registration (PO-GMMREG), which 
can align the moving and fixed images with an arbitrary angle 
of rotation. It should be noticed that Gaussian Mixture Model 
Registration is a special case of our registration algorithm. The 
main contributions of our paper are: (i) extracting feature points 
using the A-NSIFT method which does not need to construct 
the feature description of each point but only preserve their 
location information; (ii) matching the feature points using our 
PO-GMMREG method, which is proven in both theory and 
practice working well even in the case of large pose differences. 

 

 
Fig. 1.  Flowchart of our fast rotation-free feature based rigid registration 
algorithm. The two dashed boxes indicate the feature extraction using our 
proposed A-NSIFT method and feature matching with the PO-GMMREG 
algorithm respectively. 
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The rest of the paper is organized as follows. In Section II, 
we present the main idea of our A-NSIFT method for feature 
point extraction and our Parallel Optimization based on 
Gaussian Mixture Model Registration. In Section III are given 
experimental results and discussion, followed by a conclusion 
in Section IV.  

II. FAST ROTATION-FREE FEATURE BASED RIGID REGISTRATION 
FRAMEWORK 

The proposed feature based rigid registration algorithm 
consists of three steps. First, the interest point sets from the 
fixed and moving images are extracted using our A-NSIFT 
method, which transforms the image registration into point set 
registration. Then, a Parallel Optimization based on the 
Gaussian Mixture Model Registration is proposed in order to 
obtain the transformation which best matches the fixed point set 
and moving point set. Finally, the moving image is registered 
according to the transformation obtained in the second step. 
The flowchart of our proposed registration algorithm is shown 
in Fig. 1. 

 

A. Accelerated-NSIFT for interest point extraction 
The NSIFT method [16], which extends the SIFT method 

from 2D to multi-dimensional images, consists of three steps. 
First, the doG (difference of Gaussian) scale space is 
constituted by a series of Gaussian blurred images which are 
generated by a multilevel image pyramid. Then, local feature 
points are extracted by localizing the extrema in the 
approximation of doG scale space. Third, the features of each 
point are depicted by a feature descriptor through summarizing 
the gradients near this located feature point. 

 
Algorithm 1 The proposed A-NSIFT method based on CUDA-programming 
Input: the moving (fixed) image. 
Output: the moving (fixed) set 
1 Begin: 
2      load the image in CPU and copy to GPU memory as the initial image 

( , , )x y zI v v v   
3      while (octavenum<OCTAVE) 
4           compute the Gaussian smoothing image series with the initial image 

( , , )x y zI v v v ; 

5          ( , , , ) ( , , , ) * ( , , )x y z x y z x y zL v v v G v v v I v v vσ σ=  
2 2 2

22
3

2

1( , , , )
2

x y zv v v

x y zG v v v e σσ
πσ

+ +
−

=  

6          generate the doG space; 
7           ( , , , ) ( , , , ) ( , , , )x y z x y z x y zD v v v L v v v l L v v vσ σ σ= −   
8           local the extreme in the doG space, label them in the mask volume and 

compute the localization. 
9         downsample the last scale Gaussian smoothing image in this octave 

and use it as the initial image. 
10        octavenum ++; 
11     endwhile 
12 End 
Note: OCTAVE indicates the number of down-sampling scales of an image 

[15]. 
 
Feature points extracted from the NSIFT method are 

invariant to image scale and rotation, whereas it costs too much 

time to generate the interest points’ feature descriptor by the 
NSIFT method. To reduce the computation cost, we propose an 
accelerated NSIFT (A-NSIFT) to speed up the NSIFT while 
extracting the distinctive scale invariant features in the 3D 
medical image. Our proposed A-NSIFT does not need to 
construct the feature descriptor, but uses a multilevel image 
pyramid to generate the doG space and to locate the extrema in 
the doG space, followed by the acceleration of the first two 
steps of the NSIFT using CUDA-programming. Algorithm 1 
shows the preudocode of our proposed A-NSIFT method, in 
which the CUDA-programming idea can be found from line 4 
to line 9. Four kernels are used in the CUDA-programming: the 
Gaussian smoothing kernel, the doG generating kernel, the 
extrema localization kernel and the downsampling kernel. 

(1) Gaussian smoothing kernel. This kernel is applied to the 
initial images (both fixed images and moving images) for the 
data parallelism by assigning each voxel a thread. Supposing 
that voxels are stored in the order vx, vy, and vz, then we can use 
M threads per block and N blocks for all the voxels in data 
parallelism. Separable filtering and data reuse are integrated 
into our parallel scheme to speed up the feature extraction. 
Separable filtering is used to avoid the multi-dimensional 
convolution and is accomplished by performing convolution of 
the initial input image with a 3D Gaussian filter. Since the 
Gaussian filter is separable, the convolution is performed in 
separate passes for the vx, vy, and vz filters. The second 
technique is the data reuse using the texture memory, which is 
completed by allocating texture memory and binding the initial 
data on it. Since the convolution value at each voxel is 
correlated with its neighbor voxels, each voxel can be used 
many times. We would note that the data reuse with the texture 
memory is also used in the following three steps. 

(2) doG generating kernel. This kernel generates the doG 
space by taking the series of Gaussian blurred images as input 
and producing the difference of Gaussian space at each voxel 
respectively in vx, vy, and vz directions. 

(3) Extrema localization kernel. This group localizes the 
position of the distinct point. It takes the doG space as the input 
and label the local extrema in the mask volume. 

(4) Downsampling kernel. This kernel downsamples the 
Gaussian smoothing images. It takes the last scale of Gaussian 
smoothing image as its input and the downsampled image as 
the next octave’s initial image. 

By using our A-NSIFT, interest point sets from both the 
moving image and the fixed image are extracted, and then the 
image registration is converted into finding a mapping from the 
two interest point sets. 

 

B. Parallel optimization based on GMM registration 
1) Point set registration with the Gaussian mixture model 

Based on the interest point extraction, the moving point set 
can be obtained as well as the fixed set, in which each point can 
be treated as a statistical sample from a continuous probability 
distribution. Thus, the probability distribution (which is a 
continuous density function) of the interest point set can be 
represented by a Gaussian mixture model [30], [31] as 
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1

( ) ( | , )

( ) ( )exp( )
2( | , )

(2 ) det( )

k
i i ii

T
i i i

i i d
i

p x x

x x

x

ω φ

φ
π

=

−

 =

 − − −
 =



∑ μ Σ

μ Σ μ

μ Σ
Σ

,             (1) 

where, ( | , )i ixφ μ Σ  indicates the ith component of a Gaussian 
mixture model, iμ  corresponds to the mean vector of the ith 
component, iΣ  denotes the covariance matrix of the ith 
component, iω  is the weight of the ith component and k is the 
number of Gaussian mixture model components. 

In (1) each component of the Gaussian mixture model is a 
cluster and may contain several points of the interest point set. 
For simplification, each point in the interest point set can be 
treated as a cluster or a component of the Gaussian mixture 
model. Kanazawa and Kanatani [32] have demonstrated by 
experiments that this simplification has no significant effect on 
the results of image registration. In this case, the mean vector of 
each component is the value in this point, and the covariance 
matrix is different from the identity matrix by a fixed scale 
factor. Therefore, both the moving set and the fixed set are 
represented as a Gaussian mixture model, 

1
( ) ( | , )Mn

i i ii
gmm xα φ

=
= ∑M μ Σ ,                           (2) 

1
( ) ( | , )Fn

j j jj
gmm xβ φ

=
= ∑F ξ Γ .                           (3) 

The problem of interest point set registration is now 
translated into the alignment of Gaussian mixture models. This 
alignment can be solved by optimizing the cost function that 
measures the similarity between ( )gmm M and ( )gmm F . A 
distance metric based on the 2L  divergence is used as the cost 
function to measure the similarity of Gaussian mixture models 

2

2( , , ) ( ( ) ( ( , )))Ld gmm gmm T dx= −∫M F θ F M θ ,         (4) 

where, ( ),T M θ  indicates the registered point set when 
applying a transformation T  to the moving set M , and θ  is a 
vector of the transformation parameters which include rotation 
and translation for rigid registration but correspond to the 
coefficients in interpolation algorithms for non-rigid 
registration. The image registration is then to find the parameter 
vector θ  of transformation T  to minimize the cost function. 

In this paper, we apply the Gaussian mixture model 
alignment for rigid registration but will ameliorate its 
performance in the case of large pose differences (see the II (2) 
subsection). Since a rigid transformation can be characterized 
by a rotation matrix R  and a translation vector t , the 
transformation parameter vector θ  is determined by R  and t . 

In this study, we use a quaternion ( )1 2 3 4, , , Tr r r r=q  to represent 
the 3D rotation R  for its simplicity and its stable property in 
3D space. A 3D rotation R can be obtained from q  by  

2 2 2 2
4 1 2 3 1 2 3 4 3 1 4 2

2 2 2 2
1 2 3 4 4 1 2 3 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 4 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

r r r r r r r r r r r r
r r r r r r r r r r r r
r r r r r r r r r r r r

 + − − + −
 

= − − + − + 
 + − − − + 

R . (5) 

Denoting the translation as ( )1 2 3, , Tt t t=t , then θ can be 

defined as ( )1 2 3 4 1 2 3, , , , , , Tr r r r t t t=θ  . When applying a rigid 
registration to the moving set M , the Gaussian mixture model 
of the registered point set can be derived as 

1
( ( , )) ( | , )Mn T

i i ii
gmm T xα φ

=
= +∑M θ Rμ t RΣ R .            (6) 

By applying (2), (3) and (6) to (4), our cost function 
( )

2
  , ,Ld M F θ  then can be expressed as 

2

2 2

1 1

1 1

1 1

( , , )

( ) 2 ( ) ( ( , )) ( ( , ))

(0 | , )

(0 | , ( ) )

2 (0 | , )

F F

M M

F M

L

n n
i j i j i ji j

n n T
i j i j i ji j

n n T
i j i j i ji j

d

gmm gmm gmm T gmm T dx

β β φ

α α φ

β α φ

= =

= =

= =

=

− +

= − + +

− + −

− − +

∫
∑ ∑

∑ ∑
∑ ∑

M F θ

F F M θ M θ

ξ ξ Γ Γ

Rμ Rμ R Σ Σ R

ξ Rμ t Γ RΣ R

.(7) 

The registration problem now comes to the optimization 
problem of ( )

2
, ,LMin d M F θ . The alignment of Gaussian 

mixture models can avoid establishing the explicit point 
correspondence, and thus is more robust to the missing or fault 
correspondences. In addition, by using continuous function to 
represent discrete point sets, the continuous optimization can be 
used to solve the cost function, which will improve the 
efficiency and simplicity of the matching algorithms. Generally, 
the ranges of the rotation and translation vary greatly, and to 
reduce this variation, a normalization of the moving set and the 
fixed set will be performed before the Gaussian mixture 
matching. A normalization of the moving set and the fixed set 
could be performed as: 𝐦′ = (𝐦− 𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝_𝐦)/𝑠𝑐𝑎𝑙𝑒_𝑚 
and 𝐟′ = (𝐟 − 𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝_𝐟)/𝑠𝑐𝑎𝑙𝑒_𝑓 , where 𝐦 and f 
respectively  denote the moving point set and the fixed point set, 
𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝_𝐦 and 𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝_𝐟 represent the geometric center 
of the moving and fixed sets, and 𝑠𝑐𝑎𝑙𝑒_𝑚 and 𝑠𝑐𝑎𝑙𝑒_𝑓 are the 
frobenius norms of the corresponding point sets. 
 
2) Parallel Optimization 

As mentioned above, we align the Gaussian mixture model 
to match the moving and fixed point sets which are extracted by 
the A-NSIFT, however, unfortunately, the registration results 
are not satisfactory when the large pose difference occurs 
between the two images. Lots of experiments show that the 
Gaussian mixture matching works well when the rotation of 
angle θ  about an arbitrary axis is less than 90 degree, but does 
not function well any more when θ  is beyond 90 degree. In 
order to deal with this problem, we propose a new algorithm 
PO-GMMREG based on the Gaussian mixture model matching, 
which could deal with the case of large pose difference 
(rotation angle larger than 90 degree). 

The key point of our algorithm is to find an initial spatial 
transformation set to ensure the rotation between the new 
moving set (the transformed point set from the moving set 
using the initial transformation) and the fixed set is less than 90 
degree. We first constructed an initial spatial transformation set 
represented by 12 quaternions  
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( ) ( ) ( ) ( )={ ,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( , , , ) , ( , , , ) , ( , , , ) , ( , , , )
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( , , , ) , ( , , , ) , ( , , , ) , ( , , , ) },
2 2

1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0,1

2 2 2 2 2 2 2 2 2 2 2 2 2 2

T T T

T T T

T T

T

T

T T

− − − − −

− − − − − − −

Ω

，

which is proven to be able to guarantee the rotation angle 
between the new moving and the fixed sets less than 90 degree. 
The problem of constructing the initial spatial transformation 
set Ω  is shown in Fig.2 and reformulated in (8), in which 

, ,F M Tr  respectively indicate the fixed point set, moving 
point set and transformed point set (or the new moving point set) 
and (, )Θ  is the rotation computation operator to calculate the 
angle between two point sets. T  is a spatial transformation 
represented by a quaternion that transforms the moving point 
set to the transformed set. All the transformations that satisfy (8) 
compose the initial spatial transformation set Ω , which is 
composed by the twelve quaternions above 

, . . ( , )
2 2

,
( , )

Construct s t

T T

π π

π π

 − ≤ Θ ≤


= ∈
− ≤ Θ ≤


Ω F Tr

Tr M Ω
F M
 .                             (8) 

 
Fig. 2.  Reformulation of the initialization problem. R indicates the rotation 
between the moving point set and the fixed point set, while the corresponding 
rotation angle is between –π and π. R2 represents the rotation between the 
optimal transformed point set and the fixed point set, and its corresponding 
rotation angle is between –π/2 and π/2. Our objective is to find the optimal 
transformation from our constructed 12-quaternion set to obtained the optimal 
transformed point set. 
 

Proposition: If we have two point sets, fixed point set F , 
moving point set M , a rotation R is needed to register the 
moving point set to the fixed point set F . The rotation angle 

realα  (corresponding to R ) is ( , ]π π− . The initialization 
process is to find a transformation initialq to transform the 
moving point set F to the transformed point set Tr . We 
construct a quaternion transformation set Ω , in which there 
exists at least one quaternion transformation which can 
guarantee the rotation angle α (corresponding to 2R ) between 

the fixed set F and the transform set Tr to be ( , ]
2 2
π π

−  . 

Proof:Let , , , ,′ ′ ′m f m f p  respectively represent the moving 
point set, the fixed point set, the normalized moving set, the 
normalized fixed set and the transformed set. Let 1 2, , realR R R   
denote the rotation matrix between the normalized moving set 
and the transformed set, the rotation between the transformed 
set and the normalized fixed set, and the rotation between the 
normalized fixed and the normalized moving set, respectively. 
Then the rotation between the normalized fixed set and the 
normalized moving set can be calculated by combining the 
rotation between the normalized moving set and the 
transformed set and the rotation between the transformed set 
and the normalized fixed set by 2 1real =R R R . Since the 
rotation matrix can be represented by quaternions, we use 

( ),0 ,1 ,2 ,3, , ,
T

initial initial initial initial initialq q q q=q ,

( ),0 ,1 ,2 ,3, , ,compute compute comput

T

e compute computeq q q q=q and 

( )real real,0 real,1 real,2 real,3, , ,
T

q q q q=q  to indicate the unit 

quaternion corresponding to rotation  
1R , 2R  and realR , 

respectively. Then, we can get real compute initial=q q q . A 
quaternion can also be represented as 

sin ,sin ,sin ,cos
2 2 2 2

T

x y z
α α α αω ω ω =  

 
q , which 

geometrically corresponds to a rotation about an arbitrary axis 

( ), ,
T

x y zϖ ω ω ω=  with an angle α . Therefore, to prove that 

the rotation of angle θ  about an arbitrary axis (through the 
origin) is less than 90 degree between the transformed set and 
the fixed set, we just need to prove the rotation angle 
represented by computeq  is less than 90 degree, that is 

,3
90 2| | cos
2 2computeq °

≥ = . Based on the notation above, we can 

get 1
compute real initial

−=q q q , where 

( )-1 -1 -1 -1 -1
,0 ,1 ,2 ,3, , ,

T

initial initial initial initial initialq q q q=q  is the inverse of initialq . 

Therefore, the ,3computeq   can be calculated as 
1 1 1 1

,3 ,0 ,0 ,1 ,1 ,2 ,2 ,3 ,3| | | |compute real initial real initial real initial real initialq q q q q q q q q− − − −= − − − . (9)  
To ensure that, with our constructed initial transformation set 

Ω , the rotation angle between the new moving set (or the 
transformed set) and the fixed set is less than 90 degree, we just 

need to guarantee ,3
2| |

2computeq ≥ . 
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Assuming that ,0 ,1 ,2 ,30, 0, 0, 0real real real realq q q q≥ ≥ ≥ ≥ , for a 
unit quaternion, there always exists one of the following five 
formulas (a) (b) (c) (d) (e) in (10) which is tenable. 

,1 ,1 ,2 ,3

,1 ,1 ,2 ,3

,1 ,1 ,2 ,3

,1 ,1 ,2 ,3

,1 ,1

21 0 0 0 ( )
2
20 1 0 0 ( )

2
20 0 1 0 ( )

2
20 0 0 1 ( )

2
1 1
2

real real real real

real real real real

real real real real

real real real real

real real

q q q q a

q q q q b

q q q q c

q q q q d

q q

∗ + ∗ + ∗ + ∗ ≥

∗ + ∗ + ∗ + ∗ ≥

∗ + ∗ + ∗ + ∗ ≥

∗ + ∗ + ∗ + ∗ ≥

∗ + ∗ ,2 ,3
1 1 2 ( )

2 2 2 2real realq q e















+ ∗ + ∗ ≥


.     (10) 

For example, if one of the formulae (a)-(d) is correct, 1
initial
−q  

can be chosen as one of 

( ) ( ) ( ) ( ){ }, ,1,0,0,0 0,1,0,0 0 ,,0,1,0 0,0,0,1T T T T  , then we can 

easily obtain  

1 1 1 1
,0 ,0 ,1 ,1 ,2 ,2 ,3 ,3

2| |
2real initial real initial real initial real initialq q q q q q q q− − − −− − − ≥ .   (11) 

If (a) (b) (c) (d) are all incorrect, then there exists 

,0 ,1 ,2 ,3
2 2 2 2, , ,

2 2 2 2real real real realq q q q< < < < . Since  

2 2 2 2
,0 ,1 ,2 ,3 1real real real realq q q q+ + + = , one can readily obtain (e). In 

this situation, 1
initial
−q  can be chosen as one of  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1{( , , , ) ,( , , , ) , ( , , , ) , ( , , , ) ,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( , , , ) ,( , , , ) , ( , , , ) , ( , , , ) },
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

T T T T

T T T T

− − −

− − − − − − − − −
 

and then we can get the inequation (11).  
It follows that there exists at least one point set in the twelve 

transformed sets which can guarantee the rotation angle 
between the transformed set and the fixed set less than 90 
degree.  

The proof can be performed similarly in other 15 cases 

besides ,0 ,1 ,2 ,30, 0, 0, 0real real real realq q q q≥ ≥ ≥ ≥ .                      ■ 
Based on GMMREG algorithm, the cost function 

optimization of our proposed PO-GMMREG can be 
represented as 

2 ,

1 2 3 4 1 2 3

1 2 3 4

1 2 3

,

2 1

( , , , )

( , , , , , , )

( , , , )

( , , )

i L initial i

T

T

T

initial i

Min Min d

r r r r t t t

r r r r

t t t




=
 =


=
 ∈ Ω
 =

M F θ q

θ

q

t
q
R R R

.                           (12) 

Then, our PO-GMMREG algorithm can be completed by the 
steps shown in Algorithm 2.  
 

 
Algorithm 2. Outline of our parallel optimization algorithm based on 

Gaussian mixture model registration. 
Input: the moving image, the fixed image and an initial parameterized rigid 
transformation θ . 
Output: the matched image and the optimal transformation between the 
moving image and the fixed image. 
1 Begin: 
2    use the A-NSIFT on the moving image and fixed image, and get the 

interest point set called the moving set M  , the fixed set F  . 
3   normalize the ,M F , and get the normalized moving set ′M , the 

normalized fixed set ′F . 
4     foreach( quaternion in 𝛀 ) 
5           use the quaternion to rotate the normalized moving set ′M , then get 

the middle set ′′M   
6       estimate an initial scale 𝜎 from the ′′M  and ′F , specify an initial 

parameter θ  of a rigid registration. 
7           repeat: 
              Set up the cost function ( )f θ  as the 2L  distance between the 

Gaussian mixtures constructed from the transformed middle set 
′′M  and the normalized fixed set ′F . 

8              optimize the cost function f  using a numerical optimization engine, 
with θ . 

9            update θ  ← arg min f
θ

  

10          decrease the scale 𝜎 as an annealing step 
11         until some stopping criterion is satisfied 
12    endforeach 
13    find the min in all arg min f

θ
  

14    update θ  ← min arg min f
θ

  

15    compute the rigid registration from θ  and the mapping quaternion. 
16  transform the moving image with the rigid registration, then get the 
matched image. 
17END 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
To evaluate the performance of our fast rotation-free feature 

based rigid registration algorithm, experiments are performed 
on range data from Stanford 3D scanning repository 
(http://graphics.stanford.edu/data/3Dscanrep/), real medical 
images downloaded from Kitware 
(http://public.kitware.com/pub/itk/Data/BrainWeb/) and RIRE 
(http://www.insight-journal.org/rire/download.php), and 
clinical cardiac diffusion tensor MRI (DTMRI) data from 
Peking Union Medical College Hospital. 

Range data: the range data concerns two categories of 3D 
scanning range data with a range of different poses, including 
the “bunny” range data set and the “dragon” range data sets 
[27,33,36]. For the “bunny” range data, two subsampled 
models of 4100× 3 points with 45 degree rotation angle 
difference in pose were used for algorithm performance 
evaluation. For the “dragon” range data, 15 subsampled models 
of 2500×3 points with in-plane rotation angles from 0 to 336 
degree evenly spaced by 24 degrees were used. 

Real brain MRI data: the real data sets contains 6 groups of 
PD-MR, T1-MR and T2-MR images with different rotation 
angles and translation and 18 groups PD-MR images with 
artificial rotations from 0 to 180 degree with the same 

http://graphics.stanford.edu/data/3Dscanrep/
http://www.insight-journal.org/rire/download.php
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resolution 1mm×1mm×1mm. 
Clinical Cardiac DTMRI data: five formalin-fixed healthy 

human heart samples were acquired at room temperature on a 
Siemens 3.0T MAGNETOM Skyra MR scanner in Peking 
Union Medical College Hospital, with the acquisition 
parameters as: TE=67 ms, TR=6500 ms, FOV=200× 200 mm, 
slice thickness= 2.0 mm, number of slices=40~45, 100×100 
pixels for each slice, diffusion sensitivity b=1000 s/mm2, accel 
factor=2, gradient directions=20, slice gap=0 mm. Total image 
acquisition time was about 20 min per sample. Since these 
hearts were acquired ex-vivo, the position and orientation of 
each sample would have large difference. In our experiment, 
we focus on the b0 image registration, which is the basis of 
other diffusion weighted image registration or the registration 
of corresponding diffusion tensor fields [34].  

Performance evaluation: the performance of the proposed 
registration algorithm were qualitatively and quantitatively 
assessed using the convergence range, the capability to handle 
the large pose differences, the computation cost, the accuracy 
of registration, 3D visualization, etc.. Four registration methods 
were used in this paper: LM-ICP [35], CPD [36], GMM [27] 
and our proposed algorithm.  

To evaluate the convergence range of the proposed 

registration algorithm, “dragonStandRight_72” was selected 
and rotated from 0 to 2π , and the rotated data sets were then 
registered to the “dragonStandRight_72” using different 
registration methods. Then the Stanford “dragon stand” data 
sets were selected to evaluate the performance of these 
algorithms to handle the large pose differences. The registration 
accuracy of a 3D rotation is evaluated by first representing 
rotations in unit quaternions and then taking the absolute value 
of the dot product between the two unit quaternions. The closer 
this dot product is to 1, the more accurate the 3D registration is. 
If the accuracy value is greater than 0.99, we say this 
registration is successful, and then the success rate can be 
calculated by the ratio of the number of successful registrations 
and the total number of registration. 

To evaluate the speed and the computation cost of our 
registration algorithm, 6 groups of real medical images were 
used to compare our proposed method with the conventional 
NSIFT method, the conventional GMM method and ICP 
algorithm. In order to demonstrate the accuracy of our 
registration algorithm, the registration error generated by 
A-NSIFT-GMM registration, A-NSIFT-ICP registration, and 

 

 

 
                                                                     (a)                                                         (b)                                                           (c) 
Fig. 3.  Qualitative registration results of our proposed method on Stanford “bunny” range data. (a) and (b) correspond to the Stanford “bun000” model and “bun045” 
model, respectively. (c) is the transformed “bun000” using the 3D rigid motion obtained with our proposed registration algorithm. Each model consists of a large 
number of points, and the color from dark to white indicates the brightness of the figure, which reflects the points scanned from this model. The brighter the figure 
is, the less the density of the point is. Since the “bun000” model and “bun045” model were rotated first in different poses and then scanned to images, the 
distributions of the points are different, and thus their brightness are different. 

 
                                           (a)                                                     (b)                                            (c)                                   (d) 

Fig. 4.  Qualitative registration results on Stanford “dragon” range data. (a) and (b) indicate the Stanford “dragonStandRight_144” model and 
“dragonStandRight_240” model, respectively. (c) and (d) are the transformed “dragonStandRight_240” using the 3D rigid motion obtained from the GMM 
algorithm and our proposed registration algorithm, respectively. 

 
                               (a)                                            (b)                                                   (c)                                              (d)                        

Fig. 5.  Qualitative registration results on Stanford “dragon” range data. (a) and (b) are the Stanford “dragonStandRight_216” model and “dragonStandRight_312” 
model, respectively. (c) and (d) demonstrate the transformed “dragonStandRight_312” using the 3D rigid motion obtained from the GMM algorithm and our 
proposed registration algorithm, respectively. 
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our registration method was calculated, which is defined as 

            
8

1
( ) ( )
8

real i ii
T v T v

ε =
−

= ∑  

,                          (13) 

where ( )T •  indicates the transformation calculated with 

different methods, ( )realT •  denotes the real transformation 

between the moving image and fixed image, and iv  (i=1,2…8) 
is the eight vertices of a 3D image. Since the error in the 
vertices is the biggest among all of the voxels, it is reasonable 
to measure the registration error in the eight vertices.  

All of the experiments were performed on a PC with 6GB of 
RAM, 3.07GHz Intel CPU and a graphics card NVIDIA 
Geforce GTX 480. 

A. Range data 
Fig. 3 shows the results of registration between two 3D range 

scan data sets with 45 degree rotation difference in pose. The 
“bun000” model and “bun045” model were scanned from the 
same bunny while the laser scanner was rotated 45 degree about 
a 3D axis. The CPD registration algorithm, the LM-ICP 
registration algorithm, the GMM registration algorithm and our 
proposed PO-GMMREG method were used to align the 
“bun000” model to the “bun045” model. It is observed that all 
the four algorithms achieve the registration successfully, and 
only the result using the proposed algorithm is shown in Fig. 3. 

In Fig. 6 are plotted the registration errors of the convergence 
range when using the CPD registration, the LM-ICP 
registration, the GMM registration and our proposed 
PO-GMMREG method to register “dragonStandRight_72” to 
the original one with respect to different rotation angles from 0 
to 2π . It is observed that CPD and GMM algorithms perform 
well when the initial rotation (degrees) of initial misalignment 
is less than 90 degree, whereas ICP gets trapped into a local 
minimum with rotations beyond 60 degree. In contrast, our 
proposed algorithm can work well no matter how large the 
rotation difference is. 

 
Fig. 6.  Profile of registration errors with respect to the initial rotation (degrees) 
differences in pose using the four methods. 
 

In order to quantitatively evaluate the performance of these 
algorithms with respect to the pose differences, we chose the 
Stanford “dragon stand” data set, which contains 15 scans with 
in- plane rotation angles from 0 to 336 degree evenly spaced by 
24 degrees. Experiments were conducted on each 30 pairs with 

different ration angles. In Table I are summarized the success 
rates when using the four registration methods on the pairs with 
pose difference being ± 24, ± 48, ± 72, and ± 96 degree, 
respectively. According to the results, all of these four 
algorithms achieve good performance when the pose difference 
between the 3D scans is less than 72 degree. However, when 
the pose difference is larger than 72 degree, GMM, CPD, and 
LM-ICP exhibit a poor success rate, which could be obviously 
well improved by the proposed method. 

 
TABLE I  

SUCCESS RATES OF OUR PROPOSED REGISTRATION ALGORITHM, THE GMM 
ALGORITHM, THE CPD ALGORITHM AND THE LM-ICP ALGORITHM ON THE 

STANFORD “DRAGON STAND” DATA SET 
Pose difference Our method GMM CPD LM-ICP 

24± ° [0.978] 30/30 29/30 26/30 28/30 

48± ° [0.913] 24/30 20/30 18/30 19/30 

72± ° [0.809] 16/30 13/30 14/30 13/30 

96± ° [0.669] 12/30 2/30 3/30 1/30 
 

In fact, we also did the same experiments using the proposed 
method for the pairs with the pose difference respectively being 
± 120, ± 144, and ± 168 degree, and the success rates are 8/30, 
9/30, and 16/30, separately. The registration success rates of 
GMM, CPD, and LM-ICP algorithms are almost zero in such 
situations. It is observed that the success rate of our proposed 
method is still low for the large pose difference cases, which is 
due to two main reasons. First, the fixed model and the moving 
model of “Dragon” data with large different pose have original 
significant different appearances. Second, we downsampled 
both the fixed and moving model from the original one more 
than 20000 points to 2000-3000 points using the random 
down-sample scheme, which may result in uncorrelated point 
pairs. In Fig. 4 are shown the registration results using the 
proposed method and the GMM method with the 
“dragonStandRight_144” model and “dragonStandRight_240” 
model that have significant outliers respectively chosen as the 
fixed and moving models. We can see that both the proposed 
method and GMM method failed. We performed the similar 
experiment with the “dragonStandRight_216” model and 
“dragonStandRight_312” model (see Fig. 5). We can see that 
the GMM method failed to align them, whereas our method can 
register them well. From the convergence range experiments 
and pose difference experiments, we can conclude that our 
proposed method performs well even when the rotation angle is 
large, however, when the outliers and unrelated point pairs are 
significant in the fixed and moving models, our proposed 
method may not work well as other algorithms. 

B. Real brain medical data 
Experiments on the computation cost of point extraction with 

the conventional NSIFT algorithm and our method are 
performed on real brain medical datasets PD-MR, T1-MR and 
T2-MR. Image information and the average computation time 
of each algorithm are listed in Table II. It is observed in Table II 
that the extraction of interest points is obviously accelerated by 
our proposed A-NSIFT method with an accelerated rate more 
than 200 compared to the conventional NSIFT algorithm. The 
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acceleration is due to the CUDA-programming and the 
replacement of constructing the interest points’ descriptor by 
only preserving location information.  

 
TABLE II 

 AVERAGE COMPUTATION TIME FOR INTEREST POINT EXTRACTION WITH THE 
CONVENTIONAL NSIFT AND OUR A-NSIFT ALGORITHMS. THE LAST COLUMN 

IS THE ACCELERATION RATE 
Image size NSIFT A-NSIFT Acceleration  

ratea 
181 217 180× ×  1307547ms 5165ms 253x 
256 256 26× ×  391578ms 1534ms 255x 
256 256 128× ×  1153358ms 5258ms 219x 

a Note: the acceleration rate is obtained by dividing the computation time of 
NSIFT by that of A-NSIFT. 

 
To evaluate the speed of our point registration algorithm 

PO-GMMREG, we compare the registration time using three 
matching methods ICP, GMM and our PO-GMMREG but all 
combined with the same point extraction algorithm A-NSIFT 
for the three datasets. Each dataset has two groups of moving 
images and fixed images. In the first group, the rigid 
transformation between the moving image and the fixed image 
is 10° on rotation and 15mm on translation. In the second group 
the rigid transformation is 20 °  on rotation and 20mm on 
translation. The computation time of each group for the three 
datasets is given in Table III. 

It is noted in Table III that our method is much faster than the 
A-NSIFT-ICP method, but slower than the A-NSIFT-GMM 
method. In the six group experiments, the average computation 
time of the NSIFT-ICP method, the NSIFT-GMM method and 
our method are 34.086s, 9.148s and 13.406s respectively. The 
GMM is a special case of our PO-GMMREG algorithm, 
whereas our algorithm manages to solve the problem of image 
registration with an arbitrary rotation at the price of more 
computation. 

 
TABLE III 

COMPUTATION TIME OF 3D IMAGE REGISTRATION RESPECTIVELY BY 
A-NSIFT-ICP, A-NSIFT-GMM, AND OUR A-NSIFT-PO-GMM METHODS. THE 

FIRST COLUMN INDICATES THE IMAGE MODALITY, AND THE LAST THREE 
COLUMNS SHOW THE COMPUTATION TIME WITH THE THREE DIFFERENT 

METHODS 
  A-NSIFT-ICP A-NSIFT-GMM Our method 
PD-MR group1 36453ms 9188ms 16297ms 

group2 42704ms 9328ms 14156ms 
T1-MR group1 14250ms 8750ms 9813ms 

group2 26172ms 8782ms 9656ms 
T2-MR group1 38313ms 9281ms 15000ms 

group2 46625ms 9563ms 15515ms 
 

Evaluation of the performance with respect to the pose 
difference (i.e. the rotation between the two images) is also 
performed on the PD-MR brain images with in-plane rotation 
angles from 10°  to 180°  which are evenly spaced by 10° . If 
the registration error is less than 5mm, the result is recorded. 
The registration error with different methods and different 
rotations is shown in Fig. 7. It is observed that the error of our 
method is much smaller than those of the A-NSIFT-ICP and 
A-NSIFT-GMM methods. In all the experiments, the error of 
our method is less than 0.6mm and the average registration 

error is 0.16mm. The average error of the A-NSIFT-ICP 
method is 1.51mm and the average error of the A-NSIF-GMM 
method is 0.18mm. It should be noticed that both A-NSIFT-ICP 
and A-NSIFT-GMM fail to register the images when a large 
pose difference (rotation larger than 60°  for the ICP method 
and larger than 90°  for the GMM method) emerges. Moreover, 
the registration error of our proposed method can be maintained 
at a low level. Since the A-NSIFT-GMM algorithm is a special 
case of our algorithm, it is not surprising that the error is the 
same when the rotation degree is less than 90° .  

In order to visually demonstrate the performances of 
different registration methods with real brain data, 
experimental results are shown in Figs. 8-10 for the PD-MR 
dataset with the A-NSIFT-ICP method, A-NSIFT-GMM 
method and our method when the rotation angles between the 
fixed image and moving image are 60° , 90°  and 120°  
respectively. We use the chessboard difference evaluation 
method which combines two images in a checkerboard pattern 
by alternating the blocks with the corresponding pixels of the 
two images to visualize the difference between the fixed image 
and the registered image.  

 
Fig. 7.  The registration error using A-NSIFT-ICP, A-NSIFT-GMM and our 
method on the PD-MR brain image dataset with in-plane rotation angles 
varying from 10°  to 180°  which are evenly spaced by 10° . 

 
From Fig. 8(c), we can see that the fixed image and the 

moving image have substantial difference. From Fig. 8(d)-(f), it 
is observed that the images are visually well registered using 
A-NSIFT-ICP, A-NSIFT-GMM and our method, which can be 
validated by results in Fig. 8(g)-(i) that the fixed image and the 
three registered image’s chessboard differences with the three 
methods are all small when the rotation is 60° .  

Substantial chessboard differences between the registered 
image and the fixed image have been observed in Fig.9(g), 
which implies that the A-NSIFT-ICP does not function well in 
the case of 90°  rotation. In contrast, the chessboard differences 
of the A-NSIFT-GMM and our method are small in the case of 
90°  rotation shown in Fig. 9(h) and (i). 

It is observed in Fig. 10(g) and (h) that, when the rotation 
angle is up to 120° , both A-NSIFT-ICP and A-NSIFT-GMM 
generate substantial chessboard differences, whereas almost 
few difference is produced by our method shown in Fig. 10(i). 
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                                                          (a)                                   (b)                                   (c)                                     (d)                                    

 
                                          (e)                                    (f)                                   (g)                                        (h)                                 (i)                               
Fig. 8.  Registration results with A-NSIFT-ICP, A-NSIFT-GMM and our method for the PD-MR dataset when the rotation angle between the fixed image and the 
moving image is 60° . (a), (b) and (c) separately represent the slice of the fixed image, moving image, and the chessboard differences between the moving image 
and the fixed image. (d), (e) and (f) are the registered images when using A-NSIFT-ICP, A-NSIFT-GMM and our method. (g), (h) and (i) are the chessboard 
differences of the registered image and the fixed image when using A-NSIFT-ICP, A-NSIFT-GMM and our method. 

 

 
                                                                  (a)                                   (b)                                   (c)                                   (d)                                    

 
                                           (e)                                    (f)                                   (g)                                    (h)                                    (i)                              

Fig. 9.  Registration results with A-NSIFT-ICP, A-NSIFT-GMM and our method for the PD-MR dataset when the rotation angle between the fixed image and the 
moving image is 90° . (a), (b) and (c) separately represent the slice of the fixed image, moving image, and the chessboard differences between the moving image 
and the fixed image. (d), (e) and (f) are the registered images when using A-NSIFT-ICP, A-NSIFT-GMM and our method. (g), (h) and (i) are the chessboard 
differences of the registered image and the fixed image when using A-NSIFT-ICP, A-NSIFT-GMM and our method. 

 

 
                                                               (a)                                   (b)                                      (c)                                   (d)                                    

 
                                          (e)                                    (f)                                   (g)                                     (h)                                    (i)                              

Fig. 10.  Registration results with A-NSIFT-ICP, A-NSIFT-GMM and our method for the PD-MR dataset when the rotation angle between the fixed image and the 
moving image is 120° . (a), (b) and (c) separately represent the slice of the fixed image, moving image, and the chessboard differences between the moving image 
and the fixed image. (d), (e) and (f) are the registered images when using A-NSIFT-ICP, A-NSIFT-GMM and our method. (g), (h) and (i) are the chessboard 
differences of the registered image and the fixed image when using A-NSIFT-ICP, A-NSIFT-GMM and our method. 
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C. Clinical Cardiac DTMRI data 
The performance of our proposed algorithm is also validated 

by a set of ex-vivo cardiac diffusion tensor MRI data which was 
acquired from 5 patients with different orientation, size and 
shape. Especially, their orientations vary greatly, some of 
which are with almost 180 degree differences. Since our 
algorithm focus on rigid registration, we conducted 
experiments on each 10 pairs and compared their orientation. 
When the orientation difference between the registered image 
and the fixed image is less than 10 degree, we consider it as a 
successful registration. It is found that the success rates of the 
A-NSIFT-ICP, the A-NSIFT-GMM, and our proposed 
algorithm are respectively 4/10, 3/10, and 8/10 without any 
denosing preprocessing. In Fig. 11 is shown a qualitative 
comparison with the A-NSIFT-ICP method, the 
A-NSIFT-GMM method and our method on two ex-vivo 
cardiac b0 images, whose orientation difference is almost 180 
degree. We can see from Fig. 11 (c) and (d) that the 
A-NSIFT-ICP and the A-NSIFT-GMM do not work at all in 
this case. However, using our proposed method, the moving 
image and the fixed image are well aligned in the orientation. 

 

 
(a)                                (b) 

 
(c)                              (d)                               (e) 

Fig. 11.  Qualitative comparison on registration results with the A-NSIFT-ICP, 
the A-NSIFT-GMM and our proposed method on clinical cardiac DTMRI 
dataset. (a) and (b) separately represent the slice of the fixed image and moving 
image. (c), (d) and (e) are the registered images obtained from the 
A-NSIFT-ICP, the A-NSIFT-GMM and our method. 
 

IV. CONCLUSION 
In this paper, we propose a fast rotation-free feature based 

rigid registration algorithm based on the proposed A-NSIFT 
and PO-GMMREG algorithms. We first introduce a new 
A-NSIFT algorithm to speed up the interest point extraction. 
By using the A-NSIFT method, the speed is 200 times faster 
than the conventional NSIFT method. Then, the matching of 
the interest point sets is converted into the alignment of the 
Gaussian mixture models by representing the probability 
density estimation with the Gaussian mixture model, while the 
accuracy of the alignment on large pose differences is 
ameliorated by the proposed PO-GMMREG algorithm. 
Experimental results have validated that our proposed method 
is reliable for fast alignment of 3D scans even when they 
exhibit a poor initialization. Though the present work focuses 
on the improvement of the GMM method, our proposed 

quaternion initialization can be readily applied to most rigid 
point set registration algorithms to handle rigid registration 
problems with large pose differences. 
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