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a b s t r a c t

The fact that the linear estimators using the rank-based Wilcoxon approach in linear regression problems
are usually insensitive to outliers is known in statistics. Outliers are the data points that differ greatly
from the pattern set by the bulk of the data. Inspired by this fact, Hsieh et al. introduced the Wilcoxon
approach into the area of machine learning. They investigated four new learning machines, such as
Wilcoxon neural network (WNN), and developed four gradient descent based backpropagation algo-
rithms to train these learning machines. The performances of these machines are better than ordinary
nonrobust neural networks in outliers exist tasks. However, it is hard to balance the learning speed and
the stability of these algorithms which is inherently the drawback of gradient descent based algorithms.
In this paper, a new algorithm is used to train the output weights of single-layer feedforward neural
networks (SLFN) with input weights and biases being randomly chosen. This algorithm is called
Wilcoxon-norm based robust extreme learning machine or WRELM for short.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

It is reported that the modern age of neural network began with
the work of McCulloch and Pitts in 1943 [1]. Since then, some
popular and powerful artificial neural networks (ANN) have been
proposed, such as self organizing maps (SOM) [2], radial basis
function neural networks (RBF) [3], and support vector machines
(SVM) [4]. Several learning algorithms have been proposed in the
literature for training the aforementioned learning machines [2–6].
Among these machines, one simple structure is multilayer percep-
tron artificial neural networks (MLP). Some off-line algorithms have
been introduced to learn the weights and biases of MLP. One well-
known gradient descent based batch learning algorithm is back-
propagation (BP) [5]. In order to improve the convergence speed of
BP algorithm, several improvements were made in [6,7]. One pro-
blem associated with MLP is how to decide the stop criterion of
training process, and another problem is how to decide the number
of hidden layers and the number of neurons in each layer. It has
been proved that a single-hidden layer feedforward neural network
with additive hidden nodes and with a nonpolynomial activation
function can approximate any continuous function in a compact set
[8]. Huang et al. rigorously proved that SLFNs with randomly
,
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assigned input weights and hidden neurons' biases and with almost
any nonzero activation functions can universally approximate any
continuous function on any compact input sets [9,10]. Based on this
concept, the extreme learning machine (ELM) algorithm was pro-
posed for batch learning [9,11], which has attracted tremendous
attention from various fields for recent years [12–17]. ELM was also
extended to semi-supervised/unsupervised tasks [18] and online
sequential learning applications (OS-ELM)[19]. Most of these algo-
rithms are based on the principle of least square error minimiza-
tion, so the performances of these algorithms are easily affected by
outliers. In other words, these algorithms are not robust. Inspired by
different mechanisms, two robust algorithms were proposed,
namely least trimmed squares (LTS) [20–23] and rank-based Wil-
coxon neural networks (WNN) [24–26]. LTS and WNN have good
generalization capability in outliers existing tasks, but some vital
parameters, like learning rate, have to be decided by try and error.
In this paper, a new learning machine based on Wilcoxon norm is
proposed, then the generalization capability and training speed of
both robust and nonrobust algorithms will be compared.

This paper is organized as follows. Section 2 reviews the Wil-
coxon neural network proposed by Hsieh [20] and discusses some
related problems. Section 3 illustrates the basic background of ELM
and discusses the proposed WRELM in detail. The experimental
results are conducted in Section 4. Finally, some conclusions are
included in Section 5.
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2. Wilcoxon SLFN

2.1. Wilcoxon norm

The Wilcoxon norm of a vector will be used as the objective
function for Wilcoxon learning machines. In order to define the
Wilcoxon norm of a vector, a score function is introduced. The
score function is a nondecreasing function ϕ : ½0;1�-R1 which
satisfies

R 1
0 ϕðuÞ du¼ 0 and

R 1
0 ϕ

2ðuÞ du¼ 1.
The score aϕð�Þ associated with the score function ϕ is defined

by

aϕðiÞ ¼ϕ
i

Nþ1

� �
; i¼ 1;2;…;N ð1Þ

where N is a fixed positive integer. Hence aϕð1Þraϕð2Þr…r
aϕðNÞ. It can be shown that the following function is a pseudonorm
(seminorm) on RN:

JeJW ¼
XN
i ¼ 1

aðRðeiÞÞei ¼
XN
i ¼ 1

aðiÞeðiÞ ð2Þ

where e¼ ½e1;…; eN �T ARN , RðeiÞ denotes the rank of ei among
e1;…; eN , eð1Þr…reðNÞ are the ordered values of e1;…; eN ,
aðiÞ ¼ϕ½i=ðNþ1Þ�, and ϕðuÞ ¼

ffiffiffiffiffiffi
12

p
ðu�0:5Þ. We call ej jW defined in

Eq. (2) the Wilcoxon norm of the vector e.
It is easy to show that the proposed Wilcoxon norm above

satisfies the following properties for a pseudonorm:

(a) JeJW Z0 for all eARN , if and only if e1 ¼⋯¼ eN , ej jW ¼ 0.
(b) JαeJW ¼ jαj JeJW for all αAR1 and eARN .
(c) e1þe2j jW r e1j jW þ e2j jW for all e1; e2ARN .

2.2. Wilcoxon neural network

In this part, just the core concept of WNN will be illustrated,
more details on WNN can refer to [24]. Consider the single-hidden
layer Wilcoxon neural network with nþ1 nodes in its input layer,
m nodes in its hidden layer, and p nodes in its output layer.

Let the input vector be x¼ ½x1; x2;…; xn;1�T ARnþ1, and let vij
denote the connection from the ith input node to the jth hidden
node. The input uj and output rj of the jth hidden node are
respectively given by

uj ¼
Xnþ1

i ¼ 1

vjixi; rj ¼ f ðujÞ; for j¼ 1;2;…;m ð3Þ

where f is the activation function of hidden nodes.
Let wkj denote the connection weight from the output of the jth

hidden node to the kth output node. Then, the output of kth
output node tk and final output yk are respectively given by

tk ¼
Xm
j ¼ 1

wkjrj; yk ¼ tkþbk; for k¼ 1;2;…; p ð4Þ

where bk is the bias of the kth output node.
Assume that the training data set is f xi; dið ÞgN1 with xiARnþ1

and diARp, where N is the number of training data, xi ¼
½x1i;…; xni;1�T is the ith input vector, and di is the desired output
for the input xi. In the WNN, the approach is to choose network
weights (v and w) that minimize the Wilcoxon norm of the total
residuals of training data

Dðv;wÞ ¼
Xp
k ¼ 1

XN
i ¼ 1

aðRðei;kÞÞei;k ¼
Xp
k ¼ 1

XN
i ¼ 1

aðiÞeðiÞ;k ð5Þ

where ei;k ¼ di;k�ti;k, Rðei;kÞ denotes the rank of the residual ei;k
among e1;k;…; eN;k and eð1Þ;kr…reðNÞ;k are the ordered values of
e1;k;…; eN;k.
The neural network used above is the same as the one used in
the traditional artificial neural network, except the bias terms at
the output node. The main reason is that the Wilcoxon norm is a
pseudonorm rather than the usual norm. JeJW ¼ 0 implies that
e1 ¼⋯¼ eN , not implies that e1 ¼⋯¼ eN ¼ 0. Therefore, without
the bias terms, the resulting predictive function with small Wil-
coxon norm of total residuals may deviate from the desired
function by constant offsets. The bias term bk is estimated by the
median of the residuals at the kth output node, i.e.,
bk ¼med1r irNfdki�tkig.

The proposed gradient descent based algorithm in [24] can
train WNN effectively, however, there is one practical issue
involved in real application. The speed of convergence depends
highly on the magnitude of the learning rate parameter which is
highly task dependant. To guarantee the network convergence,
and avoid oscillations during training, the learning rate parameter
must be set to a relatively small value, which clearly affects the
speed of the algorithm [1]. In this paper, we use an algorithm in
linear regression to train WNN, and it will be discussed in the
following section.
3. Wilcoxon-norm-based robust extreme learning machine

In this section, a brief description of the ELM algorithm
developed by Huang et al. in [9] is given first. Then the WRELM
algorithm is introduced.

3.1. ELM algorithm

In supervised batch learning applications, learning algorithms
use a finite number of input-output samples for learning networks'
parameters. For N arbitrary distinct samples ðxi; yiÞARn � Rp,
standard SLFNs with m hidden neurons and activation function (or
radial basis function) g(x) are modeled as

Xm
j ¼ 1

wjGðaj; bj; xiÞ ¼ yi; for i¼ 1;…;N ð6Þ

where aj and bj are the learning parameters of hidden neurons and
wj is the weight connecting the jth hidden node to output neu-
rons. For additive hidden neuron with the activation function g(x)
(e.g., sigmoid or threshold), Gðaj; bj; xÞ is given in [19]

Gðaj; bj; xÞ ¼ gðaj � xþbjÞ; bjAR: ð7Þ
For RBF hidden neuron with Gaussian activation function g(x),

Gðai; bi; xÞ is given by Gðaj; bj; xÞ ¼ g Jx�aj J
2b2j

� �
; bjAR:

Eq. (6) can be written compactly as

H �W ¼ Y ð8Þ
where

H¼
Gða1; b1; x1Þ ⋯ Gðam; bm; x1Þ

⋮ ⋯ ⋮
Gða1; b1; xNÞ ⋯ Gðam; bm; xNÞ

2
64

3
75;W ¼

wT
1

⋮
wT

m

2
64

3
75
m�p

and Y ¼
yT1
⋮
yTN

2
64

3
75
N�p

:

H is called the hidden layer output matrix of the network [9].
The ith column of H is the ith hidden node's output vector with
respect to inputs x1; x2;…;xN .

By minimizing the objective function JH �W�Y J22, the esti-
mation of output weights of hidden layer can be calculated by

W ¼ arg min
wk

JH �W�Y J22 ¼HþY ð9Þ
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where Hþ is the Penrose–Moore pseudo inverse of H. More details
on ELM can refer to [27,28].

3.2. Description of the proposed WRELM

Like ELM algorithm, if the weights and biases of the input layer
of WNN are randomly chosen, the dimension of the parameters to
be learned in WNN could be greatly reduced. Based on this prin-
ciple, the WRELM algorithm is proposed.

After the input weights and the hidden layer biases are ran-
domly chosen (independent of the training data), single-layer
Wilcoxon neural network can be simply considered as a linear
system

yi;k ¼ bkþHi �wkþei;k; for i¼ 1;…;N; k¼ 1;…; p ð10Þ
where Hi is the ith row of hidden layer output matrix H, and wk

ARm�1 to be learned is the weight connecting the hidden neurons
to the kth output neuron, and ei;k is a random variable with density
fk and distribution function Fk. In its general form, Jaeckel's rank
dispersion function can be stated as

DRðekÞ ¼
Xn
i ¼ 1

ei;k a½Rðei;kÞ� ð11Þ

where að1Þrað2Þr…raðNÞ is a set of scores generated by aðiÞ ¼
φði=ðnþ1ÞÞ and ei;k ¼ yi;k�Hi �wk. One usually used score function
is ϕðuÞ ¼

ffiffiffiffiffiffi
12

p
ðu�0:5Þ. Some other forms of score functions can

been found in [29–31]. It is easy to prove that DR(e) is an even
ðDRðeÞ ¼DRð�eÞÞ and location free ðDRðeÞ ¼DRðe�γIÞÞ dispersion
function. Jaeckel shows that DR(e) is a nonnegative continuous,
and convex function of W ¼ w1;…;wp

� �
which attains its mini-

mum with bounded W if X has full rank [30].
We denote the rank based estimator of wk by ~wk, which is

~wk ¼ arg min
wk

DR Yk�H �wkð Þ ð12Þ

~wk ¼ arg min
wk

JYk�H �wk JW ð13Þ

where J � JW is the pseudo-norm defined in (2).
In order to minimize DR Yk�H �wkð Þ, we need to compute its

partial derivative with respect to wk which exists almost every-
where [32,33]

∇DR ¼
∂DR

∂wk
¼ �S Yk�H �wkð Þ ¼ �HTa R Yk�H �wkð Þð Þ: ð14Þ

Thus ~wk is the solution to the following R-normal equations

HTa R Yk�H �wkð Þð Þ ¼ 0N ð15Þ
Let wk0 denote the true parameters which satisfy R-normal

equations and the scale factor

τk ¼
ffiffiffiffiffiffi
12

p Z þ1

�1
f 2k ðxÞ dx

� ��1

; k¼ 1;…; p ð16Þ

where fk is the probability density function of the noise ek. If the
following requirements are satisfied, the dispersion function DRð�Þ
can be approximated by a quadratic function Q ð�Þ [34]

Q ðYk�H �wkÞ ¼
1
2τk

wk�wk0ð ÞTHTH wk�wk0ð Þ� wk�wk0ð ÞTS Ykð
�H �wk0ÞþD Yk�H �wk0ð Þ: ð17Þ

(a) The density fk is absolutely continuous and its Fisher infor-
mation Iðf kÞ ¼

R þ1
�1 f 0kðxÞ

� �2
=f kðxÞ dxo1.

(b) limN-1N�1XTX ¼Σ, where X is an N �m design matrix and Σ
is a m�m positive definite matrix.

(c) limN-1max1r irNx2iq=
PN

j ¼ 1 x
2
jq-0 for all q¼1,…,m.
The following estimate minimizes Q ð�Þ in Eq. (17) [35]

~wkðtþ1Þ ¼ ~wkðtÞþτkðtÞðHTHÞ�1HTaðRðYk�H � ~wkðtÞÞÞ: ð18Þ
The scale factor τkðtÞ in (18) needs to be estimated. One esti-

mate of
R þ1
�1 f 2k ðxÞ dx is by Schuster who first obtained a kernel

type of estimate of fk(x) [36]

~f kðxÞ ¼
1
Nh

XN
i ¼ 1

K
x�ei;k

h

� �

where h is the kernel bandwidth and Kð�Þ is a uniform kernel
function

KðxÞ ¼
1; xA ½�1=2;1=2�
0; otherwise

(
ð19Þ

Then δk ¼
R þ1
�1 f 2k ðxÞ dx can be estimated by

δ̂k ¼ 1=N2h
XN
i ¼ 1

XN
j ¼ 1

I ei;k�ej;k
		 		oh=2

 �

: ð20Þ

A modified version of the above estimate, δ̂k;c is proposed to
ease the computation [32,37]

δ̂k;c ¼
1
Nc

þ 1
NðN�1Þh

XN
i ¼ 1

XN
ja i

K
ei;k�ej;k

h

� �
ð21Þ

where c is a fixed constant. When h¼ c=
ffiffiffiffi
N

p
, the modified δ̂k;c is

consistent of δk [32]. Finally, the proposed WRELM algorithm is
described in the following.

Step (1) Set t¼1 and stop criterion (the maximum epoch number
Tmax). Randomly assign the input weights V, and output
weights Wm�pðtÞ.

Step (2) Compute the hidden layer output matrix of the network H
by using Eq. (8) and calculate its Penrose–Moore pseudo
inverse Hþ .

Step (3) Obtain residuals eN�pðtÞ and δ̂kðtÞ by

δ̂kðtÞ ¼
1
Nc

þ 2ffiffiffiffi
N

p
ðN�1Þc

XN
i ¼ 2

XN
jo i

I ei;k�ej;k
		 		o c

2
ffiffiffiffi
N

p
� �

: ð22Þ

Step (4) Compute the scale factor τkðtÞ by

τkðtÞ ¼
1ffiffiffiffiffiffi

12
p

δ̂kðtÞ
: ð23Þ

Step (5) Update the kth column of output weights Wðtþ1Þ by
wkðtþ1Þ ¼wkðtÞþτkðtÞHþaðRðekÞÞ: ð24Þ

Step (6) If t4Tmax, then stop; otherwise go to Step (3).
Step (7) Compute the bias of the kth output neuron by

bk ¼med1r irNfek;ig.
4. Illustrative examples

In this section, we compare the performances of five neural
networks for both artificial regression problem and some other real
world benchmark nonlinear regression examples. In those exam-
ples, in order to test the generalization capability of these learned
machines, the machines are tested by another set of testing data
without noise or outliers. Five learning machines compared here
include two nonrobust neural networks, namely standard ANN and
ELM in [9], three robust neural networks, namely LTS in [20], ori-
ginal Wilcoxon neural network in [24] and WRELM introduced in
this paper. The root mean square error (RMSE) is used to quantify
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the performance of the learned machines for both the training
errors and the generalization errors.

For a fair comparison, each neural network's hidden layer
nodes have the same number of hidden nodes, and the same
activation functions.

Before demonstrating those simulation results, the outlier
models used here are introduced. In the simulation, two kinds of
outlier models are considered. One is called the gross error model,
and another is the artificial outlier model. In a gross error model,
outliers are actually generated form another distribution with a
longer tail or with larger variance. Usually, a gross error model can
be written as [38]

Dε ¼ fDjD¼ ð1�εÞGþεH;0rεr1g ð25Þ
where ε is the probability of occurrence of an outlier, G is a usual
distribution (noise), H is a symmetric long tailed distribution
(outliers).

4.1. Artificial problem

In this simulation, the true function is given by the Hermite
function [24]

y¼ 1:1 � ð1�xþ2x2Þ � e� x2=2; xA ½�5;5�: ð26Þ
A training data set ðxi; yiÞ with 100 data is generated, where xi's are
uniformly randomly distributed in the interval ½�5;5�. The gross
error model used for modeling outliers is Dε ¼ 0:85 � Gþ0:15 � H,
where G∽Nð0;0:1Þ and H∽Nð0;1Þ. For all the machines concerned,
the number of hidden layer nodes is 20 and the activation func-
tions of the hidden nodes are sigmoid functions.

The learning rate η used in BP training algorithm of ANN is
0.008, in LTS algorithm is 0.003, and in BP algorithm of WNN is
0.001. The number of training epochs for ANN is 8000, and for LTS
is 80,000, and for WNN is 8000. The trainings of the above three
algorithms are time consuming, while the WRELM is trained only
5 rounds in neglectable time.

The simulation results are shown in Fig. 1. For highly corrupted
data as shown in Fig. 1(a), LTS, WNN and WRELM are robust to
outliers, that means they are not affected by outliers. While the
performances of least square based ANN and ELM as shown in
Fig. 1(b) are severely affected by outliers. In this example, the
performance of WRELM is almost as good as other two robust
Fig. 1. Simulation resu
algorithms, but WRELM converges pretty faster and it is easier to
apply from a practical point of view.

4.2. Real world benchmark regression problems

Example (1) Fuel Consumption Prediction of Automobiles: In this
example [39], a regression benchmark problem is studied, namely,
auto-mpg. This problem is to predict city-cycle fuel consumption
of different models of car by 3 multivalued discrete and 4 con-
tinuous input attributes and one continuous output attributes. The
dataset contains 392 data. In our simulation, about 3/4 of the total
data are randomly chosen to form the training data set and the
remaining data to form the testing data set. The corrupted training
data set is formed by keep the normalized input attributes
unchanged but with 5% randomly chosen output attribute values
replaced by random values from a uniform distribution defined on
[�100, 100]. The testing data set remains unchanged. For simpli-
city, the eight input attributes are normalized to the range [�1, 1].

In this simulation, the learning rate which is chosen by trial and
error, in BP algorithm of WNN is 0.01, in BP algorithm of ANN is
0.001, and in LTS algorithm is 0.001.

Fig. 2 verifies that compared with ELM and ANN, the three
robust algorithms LTS, WNN and WRELM achieve good general-
ization performance when there exist outliers.

From Fig. 2, we can see that RMSEs of training data of traditional
ANN and WNN trained by backpropagation algorithm decrease as
training epochs increasing, but the RMSE curves of testing data of
the two machines form a “V” shape. At the beginning stage of
training process, the RMSEs of testing data decrease as training
epochs increasing, after some epochs of training, they increase as
training epochs increasing. So it is hard to determine the proper
number of training epochs which makes application of these algo-
rithms difficult. Compared with ANN and WNN, the RMSEs of
training/testing data of LTS algorithm and WRELM algorithm con-
verge as the number of training epochs increases. It can be further
seen from Fig. 2(b) that WRELM algorithm archives least RMSE for
the testing data in just a few training epochs in this application.

Example (2) Abalone Age Prediction: This problem has 4177
cases predicting the age of abalone from physical measurements
[39]. The age of abalone is determined by cutting the shell through
the cone, staining it, and counting the number of rings through a
microscope which is a boring and time-consuming task. Other
8 measurements, which are easier to obtain, are used to predict
lts of Example 1.



Fig. 2. Performance comparison of the concerned algorithms in Example 2 (the training epochs for ANN and LTS should be multiplied by 25, and for WNN should be
multiplied by 50).

Table 1
Performances of both nonrobust and robust algorithms in abalone age prediction.

Algorithms Time(Seconds) Training Testing η Epochs #Nodes

Mean Dev Mean Dev Mean Dev

ANN 28.9195 0.4107 6.8668 0.0002 2.5747 0.0734 0.0002 600 20
ELM [9] 0.0142 0.0001 6.8065 0.0566 2.5983 0.0114 – 1 20
LTS [20] 283.9649 55.9718 7.2171 0.0037 2.2730 0.0207 0.0002 5000 20
WNN [24] 24.9874 0.6430 7.0637 0.0699 2.0355 0.0151 0.001 500 20
WRELM 1.3656 0.0001 7.0506 0.0674 2.0028 0.0149 – 5 20

ANN 36.8601 1.0196 6.4117 0.0020 2.4861 0.1030 0.0002 600 30
ELM [9] 0.0237 0.0001 6.3159 0.0001 2.4635 0.0010 – 1 30
LTS [20] 356.6765 145.3539 6.6625 0.0023 2.1135 0.0025 0.0002 5000 30
WNN [24] 32.2266 1.1770 6.5274 0.0002 1.9847 0.0002 0.001 500 30
WRELM 1.3780 0.0001 6.5198 0.0002 1.9727 0.0004 – 5 30
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the age. The 8 measurements are sex, length, diameter, height,
whole weight, viscera weight, shell weight and rings. For simpli-
city, the eight input attributes are normalized to the range [�1, 1].
In this regression problem, about 75% of the total data are ran-
domly chosen to form the training data set with 10% of the total
training data are corrupted by keep the input attributes unchan-
ged but output values are replaced by random values from a uni-
form distribution defined on [0, 50].

Table 1 summarizes the results for this benchmark regression
problem in terms of training time, training RMSE and testing RMSE
for each network with different number of nodes. We run each of the
concerned five algorithms 10 times. The learning rates of BP algo-
rithm of ANN, LTS and WNN are chosen by trial and error in con-
sideration of converge speed and stability. The input weights and
biases of hidden layer nodes of ELM and WRELM are of the same at
each simulation, and they are chosen randomly in range [�1, 1].

From Table 1, we can see that although the training time of ELM
is neglectable and the RMSE of training uncorrupted data set of
ELM is the smallest among the five algorithms, however, RMSE of
testing data of this machine is pretty large, in other words, ELM
has bad generalization performance when outliers exist. WRELM
algorithm has fastest convergence speed with smallest RMSE of
testing data among the other four algorithms.

Example (3) Electrical Energy Output Prediction of Combined
Cycle Power Plant: A combined cycle power plant (CCPP) is com-
posed of gas turbines, steam turbines and heat recovery steam
generators. In a CCPP, the electricity is generated by gas and steam
turbines, which are combined in one cycle, and is transferred from
one turbine to another. The net hourly electrical energy output of
the plant can be predicted by four hourly average ambient vari-
ables, namely, temperature, ambient pressure, relative humidity
and exhaust vacuum [39].

In this example, the data set contains 9568 data points col-
lected from a combined cycle power plant over 6 years (2006–
2011), when the power plant was set to work with full load. For
simplicity, both four input features and the output are normalized
to the range [0, 1]. In this regression problem, 75% of the total data
are randomly chosen to form the training data set with about 10%
of the total training data are corrupted by keep the input features
unchanged but corresponding outputs are replaced by random
values between 0 and 1.

The performances of all concerned algorithms for this bench-
mark regression problem are listed in Table 2. The parameters of
each algorithm are configured using the same way as it is used in
Example (2). From Table 2, we can see the algorithm proposed in
this paper achieves smallest prediction error and costs less time
compared with other robust algorithms.

5. Conclusion

In this paper, a robust ELM-like learning machine was proposed,
which called Wilcoxon-norm based robust extreme learning



Table 2
Performances of both nonrobust and robust algorithms in power plant's electrical energy output prediction.

Algorithms Time(Seconds) Training Testing η Epochs #Nodes

Mean Dev Mean Dev Mean Dev

ANN 6.88 0.05 0.4406 0.0265 0.4251 0.0349 2.00e�4 600 30
ELM [9] 0.03 0.001 0.1258 1.53e�8 0.0600 2.00e�08 – 1 30
LTS [20] 63.13 4.00 0.2092 0.0258 0.1541 0.0351 2.00e�4 5000 30
WNN [24] 5.81 0.04 0.1282 4.08e�06 0.0586 8.07e�7 0.001 500 30
WRELM 4.37 0.01 0.1274 1.22e�08 0.0557 1.71e�08 – 5 30
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machine or WRELM for short. Like ELM algorithm, after the input
weights and the hidden layer biases are chosen randomly, single-
layer WNN can be simply considered as a linear system, so the
output weights can be tuned by robust linear regression methods.
Based on this principle, the new robust algorithm called WRELM
was introduced. Performance of WRELM was compared with ANN,
ELM, LTS, and WNN on both artificial regression problem and some
real world benchmark regression problems. The results indicate
that WRELM algorithm, like WNN algorithm and LTS algorithm, is
robust to outliers, but with no additional vital parameters, such as
learning rate in gradient descent based algorithms, to been decided.
The WRELM algorithm can converge fast (usually about 5 epochs),
and is stable with good generalization capability.
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