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Abstract—Accurate road centerline extraction from remotely
sensed images plays a significant role in road map generation
and updating. In the road extraction problem, acquisition of
labeled data is time-consuming and costly, thus there are only
a small amount of labeled samples in reality. In the existing
centerline extraction algorithms, the thinning based algorithms
always produce small spurs that reduce the smoothness and
accuracy of the road centerline; the regression based algorithms
can extract smooth road network, while they are time-consuming.
To solve the above problems, we propose a novel road centerline
extraction method, which is constructed based on semi-supervised
segmentation and multiscale filtering (MF) & multidirection non-
maximum suppression (M-NMS). Specifically, a semi-supervised
method, which explores the intrinsic structures between the la-
beled samples and the unlabeled ones, is introduced to obtain the
segmentation result. Then, a novel MF&M-NMS based algorithm
is proposed to gain smooth and complete road centerline network.
Experimental results on a public dataset demonstrate that the
proposed method achieves comparable or better performances by
comparing with state-of-the-art methods. In addition, our method
is nearly 10 times faster than state-of-the-art methods.

Index Terms—road centerline extraction, semi-supervised
segmentation, multiscale filtering (MF), multidirection non-
maximum suppression (M-NMS).

I. INTRODUCTION

ROAD centerline extraction from remotely sensed imagery
has been an active research due to its vital applications in

urban planning, vehicle navigation and intelligent transporta-
tion system, etc. Although various approaches [1], [2], [3] have
been proposed to address this task, it is still challenging to
obtain both smooth and complete road network.

For most existing road centerline extraction methods [4],
[5], [6], two steps are included to obtain the final road network.
First, different kinds of algorithms are employed to obtain
the homogenous road area result. Then a centerline extraction
algorithm is used to get the final road centerline network.

In the road area extraction problem, supervised classification
algorithms [4], [7], [8] were widely used. A support vector
machine (SVM) based road network extraction method was
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proposed by Shi et al. [4], in which spectral-spatial clas-
sification and shape features were employed. Cheng et al.
[7] presented a graph cuts based road extraction approach,
in which SVM based probability propagation and spatial
information were integrated. Mnih et al. [8] proposed a deep
neural network based method to extract urban road network
from high-resolution images. Although these supervised clas-
sification based methods have achieved great results, a large
amount of labeled samples are needed to train these classifiers.
However, manually labeled samples are expensive and difficult
to acquire. Actually, in most cases, we only have a small set
of labeled samples and a large collection of unlabeled ones.

For the road centerline extraction problem, morphological
thinning algorithm [5], [6] was widely used because it is
fast and easy to implement. However, the thinning based
algorithm always produces short spurs and brings in many
false positives, which reduce the smoothness and accuracy of
the road network. To alleviate these problems, some regression
based centerline extraction algorithms [4], [9] have been
introduced. Although these algorithms can extract smooth and
accurate road centerlines, they also have two shortcomings: 1)
they are ineffective to extract the centerlines around the road
intersections; 2) they are time-consuming.

To solve the problem of limited labeled samples, inspired
by Nie et al. [10], we propose a semi-supervised road area ex-
traction algorithm, which incorporates the information of both
labeled and unlabeled samples. Then, to overcome the above
shortcomings of centerline extraction algorithms, a multiscale
filtering & multidirection non-maximum suppression (MF&M-
NMS) algorithm is proposed. The main contributions of our
approach are highlighted as follows:

1. A new semi-supervised road area extraction algorithm
is proposed. By exploring the intrinsic structures between the
labeled samples and unlabeled ones, it greatly improves the
road extraction performance with limited labeled samples.

2. A novel MF&M-NMS based road centerline extraction
algorithm is proposed. On the one hand, this algorithm can
extract smooth road network with little processing time. On
the other hand, it can overcome the shortcoming of existing
regression based algorithms in the road intersections, thus it
can obtain complete road network.

The remainder of this letter is arranged as follows. Section II
presents the proposed methodology. Experimental evaluations
and detailed comparisons are reported in Section III. Conclu-
sions are drawn in Section IV.
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II. THE PROPOSED METHODOLOGY

The proposed road extraction approach consists of three
steps: object-based feature extraction, semi-supervised seg-
mentation and MF&M-NMS based road centerline extraction.

A. Object-based Feature Extraction

In this letter, to reduce the side influence of occlusions and
to extract the geometric characteristics of road regions, the
object-oriented algorithm is employed to extract the contex-
tual features of road regions. Though other choices are also
feasible, here we use the Mean Shift [11] algorithm to generate
superpixels, which are treated as objects. Mean shift runs fast
and can preserve the road boundaries well.

In this letter, inspired by Cheng et al. [12], we utilize
three types of features: spectral features, geometric & texture
features, and contextual features. They are defined as follows.

Spectral features: As the pixels within one superpixel tend
to have similar spectral characteristics, thus we define the
spectral attribute of a superpixel as the average spectral value
within this superpixel.

Geometric & texture features: The extended multi-
attribute profile (EMAP) [13] was widely used to capture the
geometric and texture features in hyperspectral image analysis.
EMAP captures the spatial information via morphological
attribute filters, such as area, diagonal of the bounding box
of the region, etc. Here we extract the EMAP features for all
the pixels in the image, then we calculate the EMAP feature
of a superpixel as the mean value of the EMAP features in
this superpixel.

It should be noted that we normalize the above two features,
respectively. Then we concatenate them as the feature of the
superpixel. To enhance the discriminative power of each super-
pixel, the spatially adjacent superpixels should be considered,
which is defined as contextual information as follows.

Contextual features: Intuitively, road regions are connected
together. In most cases, for a road superpixel, there are at least
two road superpixels in its spatially neighboring superpixels.
Among all the spatially neighboring superpixels of the center
superpixel, we find out the two superpixels, which are the first
two closest superpixels to the center superpixel in concatenated
feature space. Then we concatenate them as the contextual
feature for the center superpixel.

B. Semi-supervised Segmentation

Suppose we have obtained N superpixels after oversegmen-
tation. For clarity, we denote the i-th superpixel by xi ∈ Rm

(i = 1, 2, ...N ), where m is the dimension of the features.
In semi-supervised learning, only limited labeled samples
are available. Without loss of generality, suppose the first l
samples x1,x2, ...xl are labeled and the others are unlabeled.
Denote X = [x1,x2, ...xN ] ∈ Rm×N as the feature matrix
for all the samples. For the two-class classification problem,
we denote the label of the positive samples (road class) as
1 and −1 for the negative samples (non-road class). Let
f(l) = [y1, y2, ...yl]

T denote the label vector of the labeled
samples. For those unlabeled samples, we denote its initial

label as 0. Let f(u) denote the predicted label vector for
those unlabeled samples. Denote the predicted label vector by

f =

[
f(l)
f(u)

]
∈ RN .

Problem formalization: In our method, the road segmen-
tation problem is studied in a semi-supervised framework via
regression based algorithm. The model can be described as
follows:

arg min
w,f ,b

l∑
i=1

||wTxi + b− yi||22 + λ

N∑
i=l+1

||wTxi + b− yi||22

+ α(fTLf) + β||w||22,
(1)

where w ∈ Rm and b are projection vector and bias scatter,
respectively; λ, α and β are hyperparameters, where λ con-
trols the relative significance of the labeled samples and the
unlabeled samples. L ∈ RN×N is a Laplacian matrix on the
graph, which is calculated by L = D − S. S is a similarity
matrix, which is calculated to encode the similarity between
sample pairs via k-nearest neighbor (k-NN) and heat kernel
function [14]. D is a diagonal matrix, whose i-th diagonal
element is calculated by dii =

∑
j sij . The first term and

the second term in Eq. 1 are regression errors for the labeled
samples and unlabeled ones, respectively. The third term is
a graph based manifold regularization, which is to enhance
the label smoothness between the samples. The regularization
term ||w||22 is used to avoid overfitting.

In Eq. 1, the first two terms can be combined, thus a concise
formulation can be defined as

L = (XT
a wa− f)TΛ(XT

a wa− f)+α(fTLf)+βwT
a wa, (2)

where Xa = [X;1T ] ∈ R(m+1)×N is an augmented ma-
trix, in which 1 is a vector with all the elements as one;
Accordingly, wa = [w; b] ∈ Rm+1 is an augmented vector;
Λ = diag{1, 1, ...λ, λ} ∈ RN×N is a diagonal weight matrix
for all the samples.

The objective function in Eq. 2 is convex and differentiable
with respect to f and wa. Thus, the optimum is expected
to be achieved. In this letter, an iterative update algorithm
is employed to find the optimal solution.

Optimization: Fixing f , taking the derivative of L with
respect to wa, we obtain

∂L
∂wa

= 2XaΛXT
a wa − 2XaΛf + 2βwa. (3)

Let ∂L/∂wa = 0, we get

wa =
(
XaΛXT

a + βI(m+1)

)−1

XaΛf (4)

where I(m+1) is a (m+ 1)× (m+ 1) identity matrix.
Fixing wa, taking the derivative of L with respect to f , we

obtain
∂L
∂f

= −2ΛXT
a wa + 2Λf + 2αLf . (5)

Let ∂L/∂f = 0, we obtain

f =
(
Λ + αL

)−1

ΛXT
a wa. (6)
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Algorithm 1 : Semi-supervised road segmentation.
Input:

The object-based feature matrix of the image Xa;
The label vector for the labeled instances f(l);
Parameter λ, α and β.

Output:
Pixel-based road segmentation result.

1: Initialize f and wa.
2: Calculate the graph based Laplacian matrix L.
3: repeat
4: Update wa by the updating rule (4).
5: Update f by the updating rule (6).
6: until Convergence
7: Obtain the object-based label via Eq. (7).
8: Obtain the pixel-based label according to the rule (II-B).
9: return Pixel-based road segmentation result.

By iteratively updating wa and f , when the changes of the
two values lie within a very small scope, the optimization
process converges.

After the iterative update, we get the predicted label matrix.
Then we classify an unlabeled sample xi (l + 1 < i < N)
with a threshold τ (usually we set τ = 0) according to the
following rule:

l(xi) =

{
1 if f(xi) ≥ τ
−1 else

. (7)

After obtaining the final labels for all the superpixels, all
the pixel labels are obtained according to the rule II-B: All the
pixels in the same superpixel are given the same label value
as the superpixel. The semi-supervised road segmentation
algorithm is summarized in Algorithm 1.

After the segmentation, many road-like segments (i.e. roofs
and parking lots, etc) are also included in the final segmen-
tation result. To distinguish between potential road segments
and road-like segments, the elimination algorithm with road-
geometrical prior [7] is employed. After this process, only the
road segments are remained.

C. Road Centerline Extraction via Multiscale Filtering &
Multidirection Non-maximal Suppression

In the road centerline extraction problem, traditional mor-
phological thinning algorithm was widely used, because it
is fast and easy to implement. However, it always produces
short spurs and brings in many false positives. To overcome
this shortcoming, regression based algorithms [4], [9] were
performed to obtain smooth road centerlines, while they are
time-consuming. To solve above problems, an MF&M-NMS
based road centerline extraction algorithm is proposed. It has
two strengths: a) It does not produce spurs. b) It is fast and
easy to be realized.

Multiscale filtering: For the segmentation result, we contin-
uously filter the image with different kernel size. Specifically,
at the first, we filter the image with larger filter size, then
we use the filters in the declining size. This is behind the
motivation that after above continuous filtering, the real road

（a） （b）

（c）（d）

Multiscale filtering

M-NMS

Combination

Fig. 1. The flowchart of the proposed road centerline extraction method. (a)
Road segmentation result. (b) Result after multiscale filtering. (c) Result after
multidirection non-maximum suppression. (d) Final centerline result.

centerline positions tend to have local maximum values. Thus
the multiscale filtering can be defined as

I(s+1) = I(s) ∗ F(s+1), (8)

where s denotes the s-th filtering, I(0) denotes the segmen-
tation result without any filtering; ∗ denotes the convolution
operation; F denotes the convolution kernel, here we use the
gaussian kernel. Intuitively, the maximal kernel size should be
larger than the road width, and then we decrease the kernel
size to 3 at the step of 2. After that, local maximum values
accumulate to road centerline positions. As Fig. 1(b) shows,
the centerline positions are lighter than the surrounding areas.
Thus, it demonstrates that the multiscale filtering algorithm is
effective to accumulate the maximum values to road centerline
positions.

Multidirection non-maximum suppression: To get the
complete and smooth road centerline network, non-maximum
suppression (NMS) algorithm is applied. The NMS only
remains those locations, which are the local maximum a-
long a line perpendicular to the local orientation within a
neighborhood of width. We found that the road network is
incomplete when only using one certain orientation. Thus, in
our experiments, we use the NMS in 8 different orientations
(0, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦). As Fig. 1(c) shows,
we obtain road centerline results from 8 different NMS ori-
entations. As we can see, though some centerline parts are
detected more than once, these 8 centerline extraction results
complement with each other.

Combination: After we have obtained 8 road centerline
extraction results, a combination rule should be proposed to
integrate these results. Here we combine the results according
to the following rules:

1) We eliminate the centerlines with less than T pixels.
Because roads are continuous and connected with each
other, thus short centerlines tend to be non-road part.

2) Only those locations, which are detected more than twice,
are remained on the final road centerline network.

After the above process, we get the final road centerline
network. As Fig. 1(d) shows, the centerline network is smooth
and complete by employing the MF&M-NMS algorithm.
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Fig. 2. Visual comparisons of road centerline extraction results. From left to right: (a) original image, (b) result of Huang [5], (c) result of Miao [9], (d)
result of Shi [4], (e) result of Cheng [12], (f) result of Proposed, (g) the reference map. (Due to the space limit, we only display three images)

III. EXPERIMENTAL RESULTS

To verify the effectiveness of our method, visual and quan-
titative performances are compared with other state-of-the-art
methods. Due to the space limit, we only display three images.

A. Datasets

We use the road centerline extraction dataset provided by
Cheng et al. [12] to test the proposed method. In this dataset,
there are 30 images with the spatial resolution of 1.2m per
pixel. Most of the images are under complex backgrounds and
occlusions of cars and trees.

B. Compared Methods

To test the performances of the proposed method, we
compared our approach with state-of-the-art road centerline
extraction methods. They are Huang’s method (Huang) [5],
Miao’s method (Miao) [9], Shi’s method (Shi) [4] and Cheng’s
method (Cheng) [12].

C. Quality Evaluation

To evaluate the performance of road centerline extraction
methods, completeness (com), correctness (cor) and quality
(q) [15] are used in this letter. Due to the deviation between
the manually labeled centerline and the real centerline, “buffer
width” [16] is introduced to calculate these metrics. In the
experiments, we set the buffer width as 2 pixels.

D. Parameter Setting

For mean shift, we set (hs, hr,M) = (7, 5, 100), where
hs and hr are bandwidth parameters in the spatial and range

TABLE I
QUANTITATIVE COMPARISONS AMONG DIFFERENT METHODS, WHERE THE

VALUES IN BOLD TEXT ARE THE BEST AND THE VALUES IN BOLD ITALIC
TEXT ARE THE SECOND BEST. IT SHOULD BE NOTED THAT THE LAST

COLUMN IS THE AVERAGE PERFORMANCE OF ALL IMAGES IN DATASET.

Huang Miao Shi Cheng Proposed

Image1
com 0.9763 0.9064 0.9204 0.9651 0.9885
cor 0.6362 0.7801 0.9791 0.9370 0.9212
q 0.6265 0.7219 0.9027 0.9063 0.9114

Image2
com 0.9732 0.7532 0.8250 0.9891 0.9967
cor 0.5714 0.6014 0.9762 0.9442 0.9236
q 0.5625 0.5024 0.8087 0.9345 0.9208

Image3
com 0.9911 0.9701 0.9250 0.9592 0.9935
cor 0.7421 0.9151 0.9534 0.9382 0.9184
q 0.7372 0.8900 0.8850 0.9022 0.9129

Avg(dataset)
com 0.9353 0.8578 0.8973 0.9228 0.9427
cor 0.6827 0.8176 0.9109 0.9078 0.8946
q 0.6505 0.7200 0.8249 0.8437 0.8485

2

domains, and M is the minimum size of each superpixel.
In our experiments, we set β = 1. Intuitively, the relative
importance of the unlabeled samples should be smaller than
the labeled samples, thus we set λ = 0.6. We tune the
parameter α via cross validations. In the MF step, we employ
the filtering window size from 19 to 3 at the interval of 2
pixels. In the M-NMS step, we set the window size of NMS
as 20 and T = 10 for all the experiments.

E. Performance Evaluation

Visual comparisons: Fig. 2 shows the comparing results
of different methods in visual performance. Cheng’s method
and the proposed method gain better performance than other
three methods. Huang’s method produces more small spurs
than other methods. Miao’s method produces some false
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TABLE II
TIME COMPARISONS OF DIFFERENT METHODS, HERE THE TIME IS

MEASURED IN SECONDS. Ct REFERS TO THE AVERAGE CLASSIFICATION
tIME, AND Et REFERS TO THE AVERAGE CENTERLINE EXTRACTION tIME.

Image3 Image4 Image5 Image6

Metrics COM COR Q COM COR Q COM COR Q COM COR Q

Huang 0.976 0.636 0.627 0.943 0.802 0.765 0.906 0.783 0.724 0.973 0.571 0.562

Miao 0.906 0.780 0.722 0.965 0.853 0.828 0.939 0.913 0.862 0.753 0.601 0.502

Shia 0.960 0.873 0.843 0.948 0.631 0.610 0.985 0.820 0.810 0.983 0.791 0.780

Shib 0.920 0.979 0.903 0.740 0.976 0.727 0.811 0.974 0.794 0.825 0.976 0.809

Proposed1 0.969 0.921 0.894 0.979 0.913 0.895 0.942 0.950 0.897 0.976 0.937 0.917

Proposed3 0.965 0.937 0.906 0.974 0.917 0.896 0.957 0.950 0.910 0.989 0.944 0.934

1
1
1

Methods
Image3 Image4 Image5 Image6

COM COR Q COM COR Q COM COR Q COM COR Q

Huang 0.976 0.636 0.627 0.943 0.802 0.765 0.906 0.783 0.724 0.973 0.571 0.562

Miao 0.906 0.780 0.722 0.965 0.853 0.828 0.939 0.913 0.862 0.753 0.601 0.502

Shia 0.960 0.873 0.843 0.948 0.631 0.610 0.985 0.820 0.810 0.983 0.791 0.780

Shib 0.920 0.979 0.903 0.871 0.967 0.846 0.871 0.971 0.849 0.891 0.968 0.865

Proposed1 0.969 0.921 0.894 0.979 0.913 0.895 0.942 0.950 0.897 0.976 0.937 0.917

Proposed3 0.965 0.937 0.906 0.974 0.917 0.896 0.957 0.950 0.910 0.989 0.944 0.934

Image1 Image2 Image3

Metrics com cor q com cor q com cor q
Huang 0.9763 0.6362 0.6274 0.9732 0.5714 0.5630 0.9911 0.7421 0.7372
Miao 0.9064 0.7801 0.7223 0.7532 0.6014 0.5023 0.9701 0.9151 0.8900
Shi 0.9204 0.9791 0.9032 0.8250 0.9762 0.8091 0.9250 0.9534 0.9037

Cheng 0.9651 0.9370 0.9060 0.9891 0.9442 0.9341 0.9592 0.9382 0.9108
Proposed 0.9985 0.9132 0.9112 0.9967 0.9236 0.9230 0.9935 0.9184 0.9135

ˆ
Huang Miao Shi Cheng Proposed

size Ct(s) Et(s) Ct(s) Et(s) Ct(s) Et(s) Ct(s) Et(s) Ct(s) Et(s)
Image1 1316*738 251.76 0.08 22.72 298.54 80.72 305.42 249.70 247.51 45.89 22.73
Image2 999*692 115.18 0.06 14.58 240.32 60.27 245.37 197.35 190.35 35.53 19.35
Image3 1232*735 253.51 0.07 19.56 246.87 68.35 253.61 235.73 195.73 42.95 29.10

ˆ
Image1 Image2 Image3

size 1316*738 999*692 1232*735

Ct(s) Et(s) Ct(s) Et(s) Ct(s) Et(s)
Huang 251.76 0.08 115.18 0.06 253.51 0.07
Miao 22.72 298.54 14.58 240.32 19.56 246.87
Shi 80.72 305.42 60.27 245.37 68.35 253.61

Cheng 249.70 247.51 197.35 190.35 235.73 195.73
Proposed 45.89 22.73 35.53 19.35 42.95 29.10

1
positives, because it is hard for this method to distinguish the
homogenous areas from real road areas. In addition, Miao’s
method and Shi’s method are not effective to extract the
centerlines in the road intersections.

Quantitative comparisons: Table I shows the quantitative
performance of the sample images and average performance
of all the 30 images in the dataset. As we can see, the
proposed method is comparable to or better than Cheng’s
method, which gains best performance among the comparing
methods. Huang’s method and Miao’s method obtain relatively
poor results because there are a lot of false positives.

In the experiments, the number of labeled samples used
in Huang’s method and Cheng’s method are 200 and 100,
respectively. While the proposed method only need 60 labeled
samples. Shi’s method utilizes 5% of the number of all the
pixels. It demonstrates that our semi-supervised based method
can achieve better performance with less labeled samples.

F. Time Comparison

The average running time among different methods in the
classification stage and the centerline extraction stage are
illustrated in Table II. All the experiments are conducted on a
computer with Intel Core i5-3470 3.20GHz CPU and 8GB
RAM using Matlab 2013. The result does not include the
cross validation time. As can be seen from the table, Miao’s
method and the proposed method take less time than other
three methods in the classification stage. Huang’s method and
Cheng’s method take more time in this stage, this is because
they are multiscale based methods. In the road centerline
extraction stage, Huang’s method takes the least time. While it
produces short spurs around the centerline, thus reducing the
smoothness and accuracy of the centerline. Miao’s method,
Shi’s method and Cheng’s method cost more than 10 times
running time of the proposed method. Thus, it demonstrates
that the proposed method acieves relatively better performance
with less running time than other state-of-the-art methods.

IV. CONCLUSIONS

In this letter, a fast and easily implemented method has
been proposed to extract road centerlines from remotely sensed
imagery. In terms of both visual and quantitative performances,
the proposed method achieves better results than all the other
comparing methods. Moreover, the proposed road centerline
extraction algorithm was 10 times faster than those regression
based algorithms.

Actually, the proposed method can be also applied to
other images, such as multispectral or hyperspectral images.
However, there are some limits to the proposed method. First,
the proposed method has good performance on rural roads and
suburban roads, while as with other methods, the performance
may decrease on the urban road images. Second, although the
proposed method can connect the short discontinuity, it can
not effectively infer or connect the long discontinuity, which
is an open question in the centerline extraction task.
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