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Abstract—An ontology hierarchically encodes concepts and
concept relationships, and has a variety of applications such as
semantic understanding and information retrieval. Previous work
for building ontologies has primarily relied on labor-intensive
human contributions or focused on text-based extraction. In this
paper, we consider the problem of automatically constructing
a folksonomy-based visual ontology (FBVO) from the user-
generated annotated images. A systematic framework is proposed
consisting of three stages as concept discovery, concept relationship
extraction, and concept hierarchy construction. The noisy issues of
the user-generated tags are carefully addressed to guarantee the
quality of derived FBVO. The constructed FBVO finally consists
of 139 825 concept nodes and millions of concept relationships
by mining more than 2.4 million Flickr images. Experimental
evaluations show that the derived FBVO is of high quality and
consistent with human perception. We further demonstrate the
utility of the derived FBVO in applications of complex visual
recognition and exploratory image search.

Index Terms—Knowledge discovery, ontology, visual
recognition.

I. INTRODUCTION

AN ONTOLOGY typically contains a set of concepts and
the relationships between concepts. The concept rela-

tionships are encoded to organize the concepts in a coarse-
to-fine semantic hierarchy. Examples include WordNet [1] and
LSCOM [2]. The ontology is recognized to compactly capture
how people perceive and understand the world, and has been
successfully used as a kind of high-level supervision to facili-
tate many difficult tasks, such as natural language processing [3],
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visual object recognition [4], video concept detection [5], [6],
video search [7], [8], multimedia information retrieval [9], and
health information system [10].

Regarding the significance of ontology in solving practical
problems, extensive efforts have been undertaken in ontology or
semantic hierarchy construction. One line of efforts is human-
based, which relies on heavy human intervention from well-
trained experts (e.g., WordNet [1] and LSCOM [2]) or crowd-
sourcing annotators (e.g., ImageNet [11]). While the obtained
ontology has a guaranteed high quality, these approaches need
significant human workload and have limited scalability to gen-
eralize to specific domains or update from importing new in-
formation. Another line is automatic or semi-automatic based,
which collects and analyzes the data available on the Web to
discover concepts and extract concept relationships [12]–[14].
Currently, most of the efforts in this line focus on utilizing the
textual information and exploit the co-occurrence of the dis-
covered concepts in textual documents. This can harvest rich
concepts and relationships. However, the concept relationship
only depends on the co-occurrence of these concepts in the tex-
tual documents on the Web, which cannot accurately describe
the metonymy or concurrence relationship of two concepts. For
example, “car” and “wheel” have close relationship according
to human perception, but may deserve a low relevance score
as they are not usually used simultaneously in the same textual
document. The ontology constructed only with texts may not be
consistent with human cognition. According to [15], 80% of the
human perception comes from visual information, it is more rea-
sonable to incorporate visual information for ontology construc-
tion rather than by concept co-occurrence in textual documents.
With the constructed visual ontology, users can better under-
stand concepts and harvest more knowledge by exploring the
images along with concept hierarchy. In this work, we propose
to automatically construct a folksonomy-based visual ontology
(FBVO) by exploiting the large-scale user-generated images.

Typical photo sharing folksonomies, e.g., Flickr and Insta-
gram, allow users to share personal photos and annotate them
with textual descriptions like tags. This has resulted in huge
number of weakly tagged images available online. Exploiting
these folksonomy-based images for visual ontology construc-
tion generally enjoys two advantages: 1) the user-generated
tags provide a natural correspondence between the visual con-
tent and the textual semantics. This visual-textual correspon-
dence is more compact than that extracted from the surrounding
text [16]–[19]; and 2) users are likely to embed their perception
of the real-world objects and semantics in the associated tags.
Fig. 1 shows an example image from Flickr and its associated
tags. We can see that both synonym concepts (e.g., “portrait”
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Fig. 1. Example image from Flickr.

with “portraiture”) and subsumption concepts (e.g., “people”
with “man” and “woman”) are annotated. This collective knowl-
edge is of significance and can be exploited to facilitate the
ontology construction.

Despite the advantages, building FBVO from weakly labeled
user-generated images also presents a number of challenges.
In this paper, we identify and address three of them detailed
as follows. 1) The user-generated raw tags suffer problems of
imprecise, subjective, and incomplete, which prevents from di-
rect utilization. For example, in Fig. 1, tags like “photographer”
record the context of the image and do not well describe the vi-
sual content included. Also, some tags are missing, like “trees,”
“lake,” etc. 2) Both the textual and visual information need to be
considered to extract the concept relationships, where a concept
hierarchy is expected as the final output. This requires to dis-
tinguish between the synonym and subsumption relationships
from textual-visual co-occurrences. 3) A fully automatic FBVO
is capable of updating over time by incorporating new images
and concepts. Therefore, the FBVO construction solution needs
to entail self-learning in a never-end way.

Our proposed framework for FBVO construction is illustrated
in Fig. 2, which contains three key stages: (A) concept discovery,
(B) concept relationship extraction, and (C) concept hierarchy
construction. We call concept any tag that has a Wikipedia page.
At the first stage, we first conduct Wikipedia-based identifica-
tion to select the concept sets from Flickr tags. For the identified
concept, we exploit the associated Flickr images and adopt max-
margin hard instance learning [20] to learn concept models. This
enables the automatic update of the constructed ontology by im-
porting and recognizing new images. With the learned concept
models, concept instance enrichment is conducted to refine the
raw tags of the associated image instances. At the second stage,
the undirected co-occurrent relationships between concepts are
first extracted by exploiting both the visual exemplar similarity
and tag co-occurrences. The directed subsumption relationships
are then obtained by examining the frequency discrepancy,
which measures the differences in the occurrence frequency
distribution of concept tags and is calculated by the conditional
probability between concepts. At the third stage, concept en-
tropy is calculated to estimate the concept semantic broadness.
An algorithm is introduced to traverse all the concepts from the
highest entropy and transfer the concept-concept subsumption
relationships to construct a directed acyclic graph (DAG).
Associating each concept node with textual descriptions and

exemplary image instances, the concept DAG well represents
the semantic hierarchy and constitutes the final FBVO.

The proposed framework is implemented to generate a large-
scale FBVO from more than 2.4 million Flickr images. The
resultant FBVO contains 139,825 concepts, 12,433,209 con-
cept co-occurrent relationships, and 1,545,854 subsumption re-
lationships. We evaluate the quality of the derived FBVO by
quantitatively examining the performance of both the concept
models in concept recognition and the concept relationships
versus human-based ontology. Moreover, two applications are
designed to investigate the potentials of the derived FBVO, i.e.,
concept feature-based visual recognition and ontology-based
exploratory image search. In concept feature-based visual recog-
nition, the derived concept models are utilized to identify the
involved concepts in the examined images, which then serve
as the mid-level features for supervised visual recognition. In
ontology-based exploratory image search, the derived concept
hierarchy is incorporated to expand the user query and enable
image search in an exploratory and interactive fashion. Exper-
imental results have validated the quality of the derived FBVO
as well as the effectiveness of the proposed FBVO construction
framework.

We summarize the main contributions of this paper as follows.
1) We propose a simple framework to automatically con-

struct a visual ontology from folksonomy-based images.
The framework is capable of effectively leveraging user-
generated noisy tags, exploiting both textual and visual
information, and updating in a never-end way.

2) A large-scale visual ontology is constructed and evaluated
with extensive experiments. The potential of the derived
ontology is further examined with two novel applications.

II. RELATED WORK

A. Visual Concept Modeling

Concept modeling has been extensively studied in multi-
media [2] and computer vision (usually referred to as “at-
tribute”) [21] communities. The concepts being modeled are
mostly objects [22], scenes [23], sentiments [24], locations [25],
and events [26]. In benchmarks like TRVECVID [27] and PAS-
CAL [28], researchers have investigated a variety of features and
statistical learning models towards the task of concept model-
ing. Mylonas et al. [29] proposed to use visual context and
region semantics for high-level concept detection on TRECVID
and Corel data sets. Uijlings et al. [30] presented an evaluation
of fast Bag-of-Words components for real-time visual concept
classification. A key problem in visual concept modeling is
to collect the training samples for the large number of con-
cepts. One way is to issue the concepts as queries to the image
search engines. For example, Ewerth et al. [31] proposed an
incremental and scalable web-supervised learning system with
heterogeneous appearance models for long-term learning of vi-
sual concepts from Web images. Zhu et al. [32] proposed to
maximize relevancy and coverage to generate training images
for visual concept learning from Web noisy images. Li et al.
[11] proposed a multiple instance learning algorithm to learn
mid-level visual concepts from Google and Bing image search
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Fig. 2. Proposed framework for automatic construction of FBVO from weakly labeled Flickr images.

results. LEVAN [33] extracted keywords from Google Ngram
to construct structured queries and retrieved the relevant im-
age instances for each concept. Alternatively, there also exist
approaches of collecting samples from user-generated weakly
labeled images. [34] discovered concepts from images and the
associated textual descriptions collected from a shopping web-
site. Borth et al. [24] proposed SentiBank, a visual concept
detector for visual sentiment analysis by exploiting Flickr im-
ages. Along with this research line, our approach also exploits
the user-generated images with weakly-labeled tags. A series
of techniques are developed to address the noisy tag issues and
facilitate the concept model learning (CML) and concept in-
stance enrichment. The images with associated refined tags are
leveraged to extract co-occurrent and subsumption relationships
between tags, and the derived concept models are utilized for
automatic ontology update.

B. Visual Ontology Construction

In multimedia and computer vision fields, researchers have
made extensive efforts to construct the visual ontology. Fan
et al. [18] proposed a novel algorithm for mining multilevel
image semantics via hierarchical classification. ImageNet [35]
is an image database organized according to the WordNet hier-
archy using Amazon Mechanical Turk,1 in which each node of
the hierarchy is depicted by hundreds and thousands of images.
However, as discussed in the introduction, these human-based
ontologies are labor-intensive and have limited scalability. The
availability of huge amounts of web images provides the op-
portunity for automatic visual ontology construction. Recently,
there have been growing interests in exploiting the returned
images from image search engines to help visual ontology
construction. Lu et al. [36] developed a novel framework to
identify high-level concepts with small semantic gaps from
a large-scale web image dataset. Wang et al. [16] proposed a
bottom-up and top-down approach to build an image knowl-
edge base called ImageKB from Bing image search engine.
Zhang et al. [37] constructed an attribute-augmented semantic
hierarchy from the web images associated with ImageNet for
interactive image retrieval. NEIL [17] is a never ending learning
system for visual ontology construction from image search

1[Online]. Available: http://aws.amazon.com/mturk/

engines, which iterates between concept relationship extraction,
image instance recognition, and concept classifier/detector
learning. With the popularity of social media and photo sharing
folksonomies, users contribute to huge number of images with
associated tags. We believe that the user-generated tags encode
more compact visual-textual correspondences and provide an
alternative solution for visual ontology construction. In this
paper, several techniques are introduced to exert the potential
of these user-generated tags in CML, concept relationship
extraction, and concept hierarchy construction.

III. FBVO CONSTRUCTION

A. Concept Discovery

The first stage consists of three substages, i.e., concept iden-
tification, CML, and concept instance enrichment. The goal
of concept identification is to determine the concept sets from
Flickr tags. Concept models are then learned to enable auto-
matic ontology update with consideration of the noisy issues of
the tags. Based on the learned concept models, the raw image
tags are refined and enriched to facilitate the following concept
relationship extraction at the next stage.

1) Concept Identification: Preprocessing. The open contri-
bution mechanism leads to the user-generated tag usage in
a very causal way. For example, users may combine two or
more words within a single tag, e.g., “bridge of lift”, “Rocky-
Mountains”,“black & white”. These types of tags are usually
created by bridging words that include prepositions of “at”,
“of”, “in”, conjunctions of “and”, “or”, or special characters
such as ‘&’, ‘:’, ‘ ’, ‘,’, ‘-’. Therefore, a pre-filtering process
is needed. We start by tokenizing the associated tags on these
prepositions, conjunctions and special characters. White space
is not tokenized to avoid breaking up proper names like “North
America”. The tags composed by only the non-alphanumeric
characters or frequently-used common words like “the”, ’and’
and “myself” are also removed. The resultant tags are then nor-
malized into the lower case.

Concept Identification. We call concept any tag that has a
Wikipedia page. After pre-filtering, we match the remained tags
with the entries in a Wikipedia thesaurus.2 The tags that have a
Wikipedia page are kept and constitute the final concept sets.

2[Online]. Available: https://en.wikipedia.org/wiki/Main_Page
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2) CML: The goal of this substage is to equip the concept
nodes with a recognition capability, i.e., to recognize and import
new images to enrich the concept descriptions and improve
the performance of concept relationship extraction. We refer to
concept model as a type of classifiers that has this recognition
capability.

Positive Image Selection. Due to the imprecise issue of the
user-contributed tags, it is impractical to directly use the images
with associated concept tags as the positive training samples.
To this end, we develop a neighborhood voting approach to
select the reliable training images. Specifically, the classical
Kernel Density Estimation (KDE)[38] is utilized to measure
the relatedness between concept tags and images. Denote Xc

as the set of images that originally contain concept tag c. The
probability of image xi belonging to concept c is defined as3

p(xi |c) =
1

|Xc |
∑

xj ∈Xc

Kσ (xi − xj ) (1)

where image xj belonging to concept c is from Xc and |Xc | is
the cardinality of Xc and Kσ is the Gaussian kernel function
with the radius parameter σ, i.e.

Kσ (xi − xj ) = exp
(
−‖ xi − xj ‖2

2σ2

)
(2)

where ‖ · ‖ denotes the l2 norm, σ is the kernel radius and adap-
tively assigned as the median value of all pair-wise Euclidean
distances between images. We can see that p(xi |c) measures the
confidence that concept c is presented in image xi . We select
the images with highest p(xi |c) to construct the positive image
set Tc for concept c.

Concept Model Training. In addition to removing the noisy
images, for the same concept, especially some general concepts,
the selected positive images may reflect different aspects of the
concept and exhibit significant visual variations. For example,
the concept “vehicle” may involve with images of car, bicycle,
bus, train, ship, aircraft, etc. In this case, treating all the positive
images as a whole for training may result in models of weak
discriminative capability. Therefore, we propose to learn several
models corresponding to the subcategories of the same concept.
For approach, for concept c and the positive image set Tc , we
run Affinity Propagation [40] using the image visual features to
identify the underlying clusters {Xc

m}M
m=1 . The number of clus-

ters is adaptively determined by AP. The derived clusters repre-
sent different views or subcategories related to the concept c.

For each concept subcategory, we learn a classifier. For the
mth subcategory of concept c, the positive training set includes
all the images from Xc

m . However, it is non-trivial to determine
the negative training set as: 1) The number of negative samples
is much larger than that of positive samples if we simply use all
the images without concept c to construct the negative training
set. This will lead to the imbalanced problem [41]. 2) Since
the user-generated tags suffer from issue of incomplete, many
images without concept c may serve as good candidates for the

3In this work, for each Flickr image, we extract its deep feature for represen-
tation: 4096 dimensional feature vector from the Fully Connected Layer (FC) 7
layer of Caffe reference network [39].

Algorithm 1: CML

Input: Positive image clusters {Xc
m}M

m=1 for concept c,
images {S} without concept c
Output: Concept models for concept c.

1: for each cluster m do
Concept Model Training

2: P train
c ⇐ {Ii |Ii ∈ Xc, Ii ∈ cluster m}

3: |N train
c | = β|P train

c |
4: N train

c ⇐ rand sample {S}
5: while N train

c is updated do
6: Ψc ⇐ svm train (P train

c ,N train
c )

7: (N hard
c ,N easy

c ) ⇐ filter (Ψc ,N train
c )

8: N train
c ⇐N hard

c ∪ rand sample
{S −N easy

c }
9: end while

Concept Subcategory Description
10: compute tag relevance score s(tj ) to cluster m;
11: select the tags with highest s(tj ) to construct the

concept subcategory description Vc
m .

12: end for

positive samples. Equally treating these images will deteriorate
the training process and lead to inferior classifier. To address
these problems, we utilize hard negative mining [22] to select
the difficult instances as negative training samples during the
model learning process. This method will iteratively seek the
max-margin decision boundary that separates difficult negative
samples and the positive training samples.

The detailed steps for CML are summarized in Algorithm 1.
For a concept cluster, the algorithm starts with an initial cache
of training instances, where the positive set is fixed as Xc

m ∈ Tc

and the negative set is generated by randomly sampling images
without concept c. In each iteration, easy negative instances are
removed from the cache and additional randomly selected neg-
ative images are added. LIBLINEAR SVM [42] is retrained on
the new cache of training instances. β is the ratio of the number
of negative samples to that of positive samples. To avoid the
imbalanced training set problem, we keep β = 1 ∼ 5. For each
concept subcategory, we further assign relevant tags for seman-
tic description. The relevance of tag tj to the mth subcategory
of concept c is estimated as s(tj ) =

∑
xk ∈X c

m
p(xk |tj ), where

p(xk |tj ) is calculated using Equation (1). The semantic descrip-
tion is represented as a tag set Vc

m = {tj}J
j=1 constituted by the

tags with highest relevance scores.
3) Concept Instance Enrichment: With the derived concept

models and semantic descriptions, concept instance enrichment
is conducted to facilitate the following concept relationship ex-
traction. Since tag co-occurrence plays an important role in
extracting the concept relationships, in this substage, we design
approaches to enrich new tags as well as filtering out imprecise
tags.

Given an image without raw tags, we leverage the learned
models corresponding to the C most frequent concepts to score
the image. Both the concepts with the highest confidence score,
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Fig. 3. Examples of concept instance enrichment results.

and the semantic tags describing the concept subcategories that
achieve the highest confidence scores are added as the new tags
for the image. Fig. 3(a) shows such an example. The classifier
for subcategory “bread breakfast” of the concept “food” obtains
the highest confidence score on this image. Therefore, the sub-
category descriptive tags as well as the concept are assigned
as the new tags. Given an image with L raw tags, we lever-
age both the concept models corresponding to the raw tags and
the learned models corresponding to the C most frequent con-
cepts to score the image. The concept models with the highest
confidence scores are recorded, and the corresponding subcat-
egory tags and concepts are assigned. In Fig. 3(b), we can see
the raw tag “hope” is removed as the concept models corre-
sponding to the “hope” achieve low score. Therefore, concept
instance enrichment is effective in both adding missing tags and
filtering imprecise tags. In our experimental dataset, the aver-
age number of raw tags for each image is 12.1. After concept
instance enrichment, the number increases to 17.7. The exper-
imental evaluation results validate the effectiveness of concept
instance enrichment in extracting concept relationships and thus
in improving the quality of the derived FBVO.

B. Concept Relationship Extraction

To organize the concepts into a semantic hierarchy, the pair-
wise concept relationships need to be first extracted. In this
stage, we introduce how to exploit the associations between im-
ages and concept tags to automatically extract the co-occurrent
and subsumption relationships between concepts.

1) Co-Occurrent Concept Relationship Extraction: The co-
occurrent relationship generally measures the semantic close-
ness between concepts. To construct the visual ontology, both
visual and textual information are leveraged. We first compute
the visual similarity between concepts. Recall that we have ob-
tained image clusters of concepts in CML. The visual distance
between a cluster Xci

m of concept ci and a cluster X
cj
m of con-

cept cj is estimated by aggregating the discrepancies between
the included images

d(Xci
m ,X

cj
m ) =

1
|Xci

m | · |Xcj
m |

∑

x∈X
c i
m ,y∈X

c j
m

Kσ (x − y) (3)

where {Xci
m }Mc i

m=1 and {Xcj
m }Mc j

m=1 denote the image clusters

of concept ci and cj , Kσ (x − y) = exp(−‖x−y‖2

2σ 2 ) is the
Gaussian kernel function similar to Equation (2). The visual
similarity between cluster Xci

m and cluster X
cj
m is defined as

f(d(Xci
m ,X

cj
m )), where f(·) is standard sigmoid function, i.e.,

f(x) = (1 + e−x)−1 . Max-pooling is then conducted on the
cluster similarities to obtain the visual similarity φv (ci, cj )
between concept ci and cj .

The textual similarity between concepts is estimated by ex-
amining the co-occurrence of the concept tags. Specifically, the
distance between concept ci and cj is calculated by Google
distance [43]

d(ci, cj ) =
max(log N(ci), log N(cj )) − log N(ci, cj )

log Ntotal − min(log N(ci), log N(cj ))
(4)

where N(ci) and N(cj ) are the number of images containing
tag ci and tag cj respectively, N(ci, cj ) is the number of images
containing both ci and cj , and Ntotal is the total number of
images. The textual similarity between concept ci and cj is then
calculated as φt(ci, cj ) = (1 + exp(−d(ci , cj )))

−1 .
Finally, we linearly combine the visual and textual similarity

to obtain the concept co-occurrent score as

s(ci, cj ) = λφv (ci, cj ) + (1 − λ)φt(ci, cj ) (5)

where λ is the weighting parameter and λ ∈ [0, 1].
2) Subsumption Concept Relationship Extraction: We fur-

ther explore the directed subsumption relationships between
concepts. Inspired by [12], the subsumption relationship be-
tween concept ci and cj is defined as follows: if ci subsumes cj ,
then wherever cj is used, ci can be used without ambiguity. The
subsumption relation between ci and cj is denoted as ci →s cj .
For example, fruit→sapple indicates that for any image anno-
tated with apple, we can also annotate it with fruit. We discover
the concept subsumption relations by estimating a conditional
probability p(ci |cj ). The basic idea is that, if ci →s cj , ci will
have a wider coverage and higher usage frequency than cj . In
other words, if cj is used, it will be very likely to see ci as
well, but not vice versa. Therefore, p(ci |cj ) is calculated via the
concept co-occurrent score as

p(ci |cj ) =
s(ci, cj )∑
z s(cj , cz )

. (6)

We can see that p(ci |cj ) measures the extent that concept
ci subsumes concept cj . With the subsumption probability, we
can connect all the concepts into a directed graph G = (V,E),
where V is the set of concept nodes, and E is the set of directed
edges. An edge eci ,cj

from ci to cj indicates the subsumption
relationship ci →s cj . The weight of each edge w(eci ,cj

) is
defined as the subsumption probability p(ci |cj ).

C. Concept Hierarchy Construction

The goal of concept hierarchy construction is to turn the di-
rected graph G into a DAG. A DAG is a graph structure with no
closed chains where a node can have multiple parents. It is ap-
propriate to represent a folksonomy-based ontology, where the
concepts are organized in a coarse-to-fine semantic hierarchy.
To estimate the semantic broadness for each concept to con-
struct the DAG, we further define the entropy for each concept
ci by utilizing the subsumption probability

H(ci) = −
∑

z

p(ci |cz ) log(p(ci |cz )). (7)

The premise here is that, a concept with high entropy is expected
to have broad semantics and wide out-links to other concepts.
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Algorithm 2: DAG Construction Algorithm

Input: Concepts with entropy O = {H(ci), ci ∈ C};
weighted relations
R = {ci →s cj , ci ∈ C, cj ∈ C,wci →cj

> 0}.
Output: A DAG of concepts G∗ = {V ∗, E∗}.

1: for ci ∈ C in descending concept entropy order do
2: V ∗ ⇐ ci

3: choose the top-ranked subsumption relation pairs
of ci, Rci

= {ci →s cj , cj ∈ C}
4: if H(ci) ≥ H(cj ) then
5: E∗ ⇐ ci →s cj , V

∗ ⇐ cj

6: end if
7: end for
8: output G∗

While, the concept with low entropy is more likely concentrated
on specific semantics.

With the discovered subsumption relationships and the calcu-
lated entropy for each concept, we introduce a DAG construction
algorithm to discover the concept hierarchy, as summarized in
Algorithm 2. The algorithm traverses the concept nodes in the
directed graph G and greedily adds the concept with the high-
est entropy and its selected subsumption relationships into the
DAG. For each concept node in the derived DAG, we add the
representative image instances discovered from AP-based clus-
tering and the concept subcategory descriptions, to obtain the
final FBVO.

In this section we have introduced the three stages in auto-
matically constructing a FBVO from Flickr images with user-
generated tags. Note that sequentially conducting the three
stages only finishes one round of FBVO construction. The pro-
posed framework is capable of updating by importing new im-
ages and self-enhancement in a never-end learning fashion: 1)
Equipped with the concept models, the derived FBVO is ready
to accept new images with or without user-generated tags. An
online processing of the new images will contribute to improved
extraction of concept relationships and dynamic update of the
FBVO. 2) The derived concept hierarchy in the FBVO serves as
high-level supervision to facilitate concept model enhancement
in the next round. For example, knowing that “fruit” subsumes
“apple” from the derived FBVO, we are confident to add the pos-
itive images of “apple” as the positive training samples when
learning models for “fruit,” and avoid using the positive images
of “fruit” as the negative training samples when learning models
for “apple.” Since this paper focuses on introducing the basic
FBVO construction framework, we leave the further implemen-
tation details, experimental evaluation and more discussions of
FBVO update for future work.

IV. EXPERIMENTS

A. Overview of the Constructed FBVO

We use Flickr as the example photo sharing folksonomy and
the weakly labaled Flickr images to construct the dataset. We
downloaded images with their associated tags from the Flickr

TABLE I
STATISTIC OF THE CONSTRUCTED FBVO

#concepts #co-occurrent relation #subsumption relation

139,825 12,433,209 1,545,854

groups via the public Flickr API. The selected Flickr groups
cover a wide range of topics, including photograph, people,
nature, experience, world, travel, beautiful capture, etc. The
collected dataset contains 2 414 341 images with 1 173 730
unique tags.

Tag preprocessing is first conducted to filtered out the tags of
non-alphanumeric characters, stop word, and usage frequency
less than 10. This results in 499 532 tags. These tags are issued
to Wikipedia and 139 825 concepts are identified to construct
the concept set in the final FBVO. For each identified concept,
the top 1000 images (if there has) with the highest relevance
score as computed from Equation (1) are selected in the posi-
tive image set Tc , which are leveraged to identify the concept
subcategories. To obtain reliable concept models trained with
sufficient training images, we select concept subcategories that
contain more than 50 positive images to learn the corresponding
concept models. This leads to a total of 44 970 concept models.
We select top 1000 concepts with the highest tag frequencies as
the most frequent concepts and use the learned concept models
corresponding to these concepts for concept instance enrich-
ment.

For concept relationship extraction, calculating the pairwise
distance between all the 139 825 concepts is not necessary and
will lead to a high computational complexity. Instead, we ex-
tract the concept relationships only on the concepts that have tag
co-occurrences in the collected dataset. by considering the ex-
isting concept tag co-occurrence pairs, which can significantly
reduce the cost and guarantee the quality of concept relation-
ships. This results in 12 433 209 co-occurrent relationships.
In the derived FBVO, 1 545 854 subsumption relationships are
remained and construct the final concept hierarchy. Table I sum-
maries the basic statistics of the constructed FBVO. In Fig. 4,
we show a part of the FBVO for illustration. Three subgraphs
on “nature,” “city” and “food,” with some of their subsuming
concept nodes and the corresponding representative images are
presented. The numeric in the concept rectangle indicates the
number of connected concepts. It is shown that the constructed
FBVO is consistent with human perception and well captures
the hierarchical structure among concepts. In the following, we
conduct experiments to quantitatively evaluate the quality of the
derived FBVO.

B. Evaluation of Concept Models

We first evaluate the quality of the discovered nodes in the de-
rived FBVO, i.e., the performance of the learned concept models
in visual concept classification. Specifically, two evaluation sets
are utilized, a subset of the collected Flickr images with user-
generated tags (denoted as “WLTS”), and a well labeled image
set MIRFlickr25K [44].
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Fig. 4. Illustration for a part of the constructed FBVO.

TABLE II
ILLUSTRATION FOR PART OF THE TEST CONCEPTS ON WLTS

Concept list

portrait landscape nature travel people water sky street girl light sunset city white blue
beautiful woman black clouds green sea beach asian woods food drink football interesting
mono fire plant butterfly fish sexy young old festival concert dance kid hiking dusk man
woman walking boy cafe sun flower architecture beach wildlife river asian fashion dog
horse cat snow bird park tree ocean life love mountain face fruit cake ...

To evaluate the performance on WLTS, 1024 concepts are
selected from FBVO with the highest tag frequencies. A portion
of the 1024 testing concepts are listed in Table II for illustra-
tion. For training we randomly select 80% of positive images
for each concept and twice as many negative images using the
sampling scheme described in Algorithm 1. For testing, we use
the remaining 20% of positive images as the positive test set
and randomly sampled twice as many negative images as the
negative test set (except those selected in the training set). The
MIRFlickr25K dataset contains 24 concepts and 25 000 well
labeled images. We locate the 24 concepts in the derived FBVO
and directly use the learned concept models to evaluate the im-
age classification performance on the 25 000 images.

We train concept models using Algorithm 1. Parameter tuning
of SVM is performed by cross-validation optimizing Average
Precision at rank 20 (AP@20), which is a evaluation metric
concentrating on the top ranked samples. For the concepts with
multiple concept subcategory models, we use all these models
to score a test image and choose the maximum response as the
confidence score for this concept. The performance of proposed
CML is compared with the following baselines:

1) concept models learned from Random Images (CRI). Con-
cept models are learned using a randomly chosen subset
of images associated with the concept tag without positive
image selection; and

TABLE III
MEAN AP@20 OF THE DIFFERENT CONCEPT MODELS

ON TWO DATASETS OF WLTS AND MIRFLICKR25K

CRI CPI CML

WLTS 0.3643 0.5602 0.7235
MIRFlickr25K 0.3892 0.5642 0.7864

2) concept models learned from all Positive Images (CPI).
Subcategory separation is skipped. For each concept, we
use all the selected positive images to train one concept
model.

The evaluation results in terms of mean AP@20 on the two
test sets are shown in Table III. AP@20 for each examined con-
cept on MIRFlickr25K is shown in Fig. 5. We can see that by se-
lecting positive images and discovering concept subcategories,
the learned concept models obtain an obvious improvement
in the recognition capability. On both test sets, CPI achieves
about 50% improvement over CRI, while CML achieves another
30% improvement over CPI. This demonstrates the advantage
of our introduced approaches to address the noisy issues of
user-generated tags in learning concept models. Note that we do
not quote and compare the performance on MIRFlickr25K with
state-of-the-art approaches is that: We learn the concept mod-
els on the collected images with user-generated tags, which are
only weakly labeled. This is different with the other approaches
that use the well labeled training set. Moreover, the number of
training images used in MIRFlickr25K is larger than that used
in our approach. Simply listing the reported performances in
literatures leads to unfair comparison.

C. Evaluation of Concept Relationships

In this subsection, we evaluate the quality of the identified
subsumption relationships in the derived semantic hierarchy.
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Fig. 5. Detailed performance for different concept learning approaches on MIRFlickr25K.

Fig. 6. Comparison of concept relationship extraction in terms of precision and recall.

WordNet is an ontology generated by well-trained experts.
We take the concept relationship in WordNet as ground truth.
We use a Python API for WordNet in NLTK [45], and se-
lected 1000 shared concepts between our constructed FBVO
and WordNet for quantitative evaluation. Specifically, we use
NLTK API to obtain the similarity value of two concepts and
then calculate their subsumption score using (6). For each con-
cept, we remain the concept pairs whose subsumption scores
are above the average level as the ground-truth subsumption
relationship.

Recall@k and Precision@k are used as the evaluation met-
rics. Denote Sk (c) as the top k identified subsumption rela-
tionships of concept c in the derived FBVO, Q as the set of
test concepts, and Struth(c) as the ground-truth relationship set
generated by WordNet. The evaluation metrics are calculated
by

Recall@k =
1
|Q|

∑

c∈Q

|Sk (c) ∩ Struth(c)|
|Struth(c)|

Precision@k =
1
|Q|

∑

c∈Q

|Sk (c) ∩ Struth(c)|
k

. (8)

The final performance is obtained by averaging the above met-
rics calculated from five independent trails. Fig. 6 illustrates
the performance as k increases. text+visual (enriched) indicates
the performance of the proposed approach. For comparison, we
extracted the concept relationships based only on visual sim-

ilarity (visual only) and tag co-occurrence (text only) as the
baselines. To examine the advantage of concept instance en-
richment, concept relationships extracted based on the raw tags
are also evaluated, which is denoted as text+visual (original).

From the results we can see the following. 1) The tag co-
occurrence based method outperforms visual similarity based
method. This is probably due to the semantic gap between
low-level visual features and high-level semantic concepts. 2)
Combining visual and textual information has achieved the best
performance (the precision@10 and recall@10 are 0.6004 and
0.0118, respectively). This indicates that textual and visual in-
formation play complementary role for concept relationship ex-
traction. 3) Without concept instance enrichment, even com-
bined with visual information, text+visual (original) achieves
inferior performance than text only (enriched). This shows the
necessity of filtering out imprecise tags and adding new tags
before extracting concept relationships, and the advantage of
the proposed concept instance enrichment solution.

We further conduct experiment to analyze the sensitivity of
the proposed approach with respect to the weighting parameter
λ in (5). The parameter λ is a tradeoff parameter to balance
the contributions of tag co-occurrence and visual similarity. λ

is set to range from 0 to 1.0. λ = 0, 1 reduces the approach
to text only and visual only, respectively. Fig. 7 shows the
results. It is observed that the performance remains steadily
when λ ∈ [0.1, 0.6], with the optimal performance achieved
when λ = 0.1. This suggests that in practical applications, λ
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Fig. 7. Sensitivity of the concept relationship extraction performance to the
weighting parameter λ.

may be set as around 0.3 to slightly emphasize the contribution
from textual information.

V. APPLICATIONS

In this section, we investigate the potential of the constructed
FBVO in two applications as: 1) leveraging the discovered con-
cept nodes as mid-level features for complex visual recognition
task; and 2) leveraging the constructed concept hierarchy to ex-
pand user queries for serendipity and exploratory image search.

A. Concept Feature-Based Visual Recognition

The learned concept models in the FBVO can be directly
used for visual recognition. Given an image with extracted deep
feature, we leverage the concept models to obtain the response
scores over all concepts. The concepts with high response scores
are expected to present in the image. However, this approach suf-
fers from two problems. 1) Each new image needs to be scored
through all the concept models (44 970 models in our derived
FBVO), which is very time consuming and impractical in real-
world applications. 2) In the derived FBVO, both concept mod-
els and concept relationships are available. Conducting recogni-
tion without consideration of the concept relationship may lead
to bad performance, especially for some complex visual recog-
nition tasks, such as event concepts, location concepts, etc.

To address these problems, we propose to first find each
complex concept its most S relevant concepts from the FBVO,
then score the image with the S concept models and utilize these
concept response scores as the mid-level feature. Representing
images in a semantic space has shown promising performances
in recent studies to tackle with visual recognition tasks [11],
[46]. The constructed FBVO contains various types of concepts
related to attributes, objects, scenes, etc. The extracted concept
relationships can be used to map a specific concept onto the
concept spaces for representation. Specifically, given a visual
recognition task consisting of W categories, for each of the
W categories, we find its S most relevant concepts in our
constructed FBVO according to the concept co-occurrent
relationships. Then we leverage the W × S concept models to
score each image, and use the response scores to construct a
W × S dimensional feature vector. With the concept response
scores as mid-level features, we can train any supervised model
as the visual recognition classifier.

We evaluate this application in the tasks of scene and event
recognition. Two benchmark image sets, Scene-15 [48] and
UIUC-Sport event [26] are utilized. Scene-15 has 15 natural
scene categories, and UIUC-Sport has eight complex event

classes. For each examined scene and event, we locate it in
the concept space from the FBVO and find its most relevant 32
concepts. This results in 480 concept models for Scene-15 and
256 concept models for UIUC-Sport. In Fig. 8, we shows one
category example for each of the image sets and several most
relevant concepts in the constructed FBVO. We can see that, the
categories to be recognized are very difficult. FBVO plays role
of mapping the difficult scene and event concepts onto many
simple and easy-for-recognition concepts.

For each training and testing image, the 4096 dimensional
deep feature is extracted. The selected concept models are used
to score the image into a 480 dimensional or 256 dimensional
concept feature vector. Lib-linear SVM [42] is used for classifier
training and testing where the penalty coefficient is set to 1.
The results compared with other reported work are shown in
Table IV. CNN feature indicates the classification performance
directly using the 4096 dimensional deep feature. As shown,
CNN feature shows impressive performance on the both image
sets, which is consistent with the conclusion in recent work
and validates our motivation to use deep feature for concept
model training. We can see that, the proposed concept feature-
based method has achieved comparable results on Scene-15 with
state-of-the-art method in [11], which uses 14 200 concepts for
mid-level representations. In contrast, we use a small subset
of 256 concept models for image representation, which has
the advantage of computational efficiency. on UIUC-Sport, the
proposed concept feature outperforms all other methods. This
demonstrates the effectiveness of the constructed FBVO, and its
potential to serve as a concept vocabulary for complex visual
recognition tasks.

B. Ontology-Based Exploratory Image Search

Exploratory search is recognized as an important way for in-
formation discovery, which indicates the activities users carry
out when they have no specific search goals and do not yet
know exactly what they want. Recent studies [49] show that
image/multimedia search on the Web tends to be more “ex-
ploratory” than “deterministic” and requires heavy interactivity.
A typical exploratory search starts when a user has interest
in finding information on a topic with vague queries or broad
search terms [50]. The search engine needs to understand the
vague queries and help users clarify their intents via the inter-
active operations between search and browse.

Therefore, using the constructed FBVO, we design a solution
for exploratory image search with two functions: 1) expanded
query-based search, and 2) relevant query browse. Specifically,
when a user inputs a concept query, we first locate the query in
the FBVO and extract its top-k (in the experiment, we set k to 50)
relevant concept nodes according the co-occurrent relationship
score. The basic idea is to use the relevant concepts for query
expansion. To determine the weight of each relevant concept in
ranking the returned images, a lazy random walk with restart
to the input concept is conducted in the concept hierarchy. Our
method takes the relevant concept nodes as a graph, a self-loop
probability β, and a start vector defined on the nodes of the
graph. The random walk starts in the node corresponding to the
query concept. At each step, it either remains in the current node
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Fig. 8. Example categories of Scene-15 and UIUC Sport event and the relevant concepts in our FBVO. (a) Scene-15: Street. (b) UIUC-Sport: Polo.

TABLE IV
CLASSIFICATION ACCURACIES ON SCENE-15 AND UIUC-SPORT DATASETS

Scene-15 UIUC-Sport

Object Bank [26] 80.9% 76.3%
LScSPM [47] 80.28% 82.74%
KSPM [48] 81.4% –
Li et al. [11] 85.4% 88.4%
CNN feature 84.23% 92.83%
The proposed concept feature 85.05% 94.06%

Fig. 9. Examples of returned concepts and images for query “architecture”
and “animal.”

with probability β, or moves with one of the out-links with prob-
ability 1 − β. In the latter case, the links are followed with proba-
bility proportional to the weights of the edge we between the two
concepts. Self-transitions are allowed to reinforce the impor-
tance of the starting node, by slowing diffusion to other nodes.
The value of the self loop probability is set to β = 0.9, following
the previous work [51]. The random walk is stopped after achiev-
ing a maximum iterations and we obtain the score weight(c) for
each relevant concept node c. To generate the returned images
for the input query, we extract top-k relevant images for each
concept node and calculate the relevant score for image I as
RW (I) = Ψc(xI ) · weight(c), where Ψc(xI ) is the response
score of concept model Ψc on image I . Finally, the relevant con-
cepts as well as the images are returned to the users in a descend-
ing order according to weight(c) and RW (I), respectively.
Fig. 9 shows the examples to two concept queries. We can see
that the returned images are both relevant to the query and hav-
ing an adequate diversity. If the user clicks a presented relevant
concept, the above search algorithm is to be conducted with the

new concept as the input query and to return new relevant con-
cepts and images. This process can be interactively performed
along with the user’s search-browse exploratory search activity.

For evaluation, ten common concepts are selected as the test
queries, i.e., architecture, animal, bird, flower, food, people,
sports, sunset, travel, portrait. To obtain the ground truth of the
relevant orders of the returned images, we resort to a manual
labeling procedure. Specifically, each image is labeled as three
relevance levels with respect to the query: Highly Relevant
(score 2), Relevant (score 1), and Irrelevant (score 0). We
invite five subjects to manually label the relevance levels of
the returned images. Each image is labeled by at least three
subjects. The ground truth is obtained through the majority
voting of subjects’ labeling. For evaluation metric, we use
normalized discounted cumulative gain (NDCG), where NDCG
at position k is defined as

NDCG@k =
1
Z
×

k∑

i=1

2ri − 1
log2(i + 1)

(9)

where ri is the relevance score of the sample at rank i. Z is
a normalization term so that NDCG@k ∈ [0, 1]. We compare
our lazy random walk based method with the three baseline
methods: 1) Random search, searching images randomly from
original images associated with the input concept tag; 2) Rel-
evant search, returning images from the positive image set Tc ;
3) Concept model based search, scoring relevant images using
the responses from the learned concept models. The average
NDCG results with different search depths K are illustrated in
Fig. 10. It is shown that equipped with the constructed FBVO,
we can understand the initial query with relevant concepts and
return diversified images to meet the exploratory intents.

Moreover, users are allowed to browse and move to other
concepts along the constructed concept hierarchy to explore in-
teresting images. We further conduct a small-scale user study to
evaluate the user experience of the proposed exploratory image
search solution. The five labeling subjects are asked to assess
the relevance, diversity of the search results, and the exploratory
usability of the search system. The rate has a scale of 1 to 5,
where 1 is the worst and 5 is the best. The averaged results are
shown in Table V. It is shown that the five subjects generally
gave positive feedbacks to the proposed exploratory search so-
lution. This validates the potential of the constructed FBVO in
advanced image search tasks.
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Fig. 10. Comparison of NDCG@K using different image search methods.

TABLE V
USER STUDY RESULTS FOR EXPLORATORY IMAGE SEARCH

Search Relevance Search Diversity Exploratory Usability

3.8 4.2 4.3

VI. CONCLUSION

In this paper, we have introduced a systematic solution for
automatically constructing a visual ontology from folksonomy-
based images. The constructed visual ontology consists of rich
concept set, pairwise concept relationships and hierarchical
structure of concepts. The learned models corresponding to the
concept nodes are capable of recognizing new images to update
the ontology. The extracted concept relationships and semantic
hierarchy is demonstrated to be consistent with human cogni-
tion. The utility and potential of the constructed visual ontology
are further examined and validated through two carefully de-
signed applications. Our future work includes: 1) implementing
an online never-end version of the proposed FBVO framework;
2) integrating other data source to form a multimodal knowl-
edge base; and 3) applying FBVO in more applications such as
multimedia question-answering.
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