
European Journal of Operational Research 252 (2016) 728–736

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A heuristic algorithm for container loading of pallets with infill boxes

Liu Sheng

a , b , ∗, Zhao Hongxia

a , b , Dong Xisong

a , b , Cheng Changjian

a , b

a State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b Qingdao Academy of Intelligent Industry, Qingdao 2660 0 0, China

a r t i c l e i n f o

Article history:

Received 26 August 2013

Accepted 16 January 2016

Available online 25 January 2016

Keywords:

Packing

Container loading

Heuristic algorithm

Tree search

Greedy algorithm

a b s t r a c t

We consider the container loading problem that occurs at many furniture factories where product boxes

are arranged on product pallets and the product pallets are arranged in a container for shipments. The

volume of products in the container should be maximized, and the bottom of each pallet must be fully

supported by the container floor or by the top of a single pallet to simplify the unloading process. To

improve the filling rate of the container, the narrow spaces at the tops and sides of the pallets in the

container should be filled with product boxes. However, it must be ensured that all of the infill product

boxes can be entirely palletized into complete pallets after being shipped to the destination. To solve this

problem, we propose a heuristic algorithm consisting of a tree search sub-algorithm and a greedy sub-

algorithm. The tree search sub-algorithm is employed to arrange the pallets in the container. Then, the

greedy sub-algorithm is applied to fill the narrow spaces with product boxes. The computational results

on BR1–BR15 show that our algorithm is competitive.

© 2016 Elsevier B.V. All rights reserved.

a

a

l

l

t

b

f

t

p

l

m
1. Introduction

Cutting and packing (Dyckhoff & Finke, 1992 ; Wäscher,

Haußner, & Schumann, 2007) are two classic combinatorial

optimization problems. Cutting problems address the best possible

utilization of materials, such as wood, steel and cloth, whereas

packing problems address the best possible capacity use of pack-

ing space. The effective use of material and transport capacities

is of great economic importance in production and distribution

processes. It also contributes to the economical utilization of

natural resources.

According to Wäscher et al. (2007) , cutting and packing prob-

lems have an identical structure in common. They can be summa-

rized as follows:

First, a set of large objects and a set of small items are given.

The large objects and the small items are defined exhaustively

in one, two, three or an even larger number of geometric di-

mensions. Select some or all of the small items, group them into

one or more subsets and assign each of the resulting subsets to

one of the large objects such that the geometric condition holds,
i.e.

∗ Corresponding author at: State Key Laboratory of Management and Control for

Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing

100190, China. Tel.: + 86 15910634676.

E-mail address: liusheng7801@163.com , sheng.liu@ia.ac.cn (L. Sheng).

w

p

S

p

b

w

p

http://dx.doi.org/10.1016/j.ejor.2016.01.025

0377-2217/© 2016 Elsevier B.V. All rights reserved.
• all small items of the subset lie entirely within the large object,

and

• the small items do not overlap,

nd a given objective function is optimized.

Container loading problems are sub-problems of the cutting

nd packing problems. In Bortfeldt and Wäscher (2013) , container

oading problems are interpreted as geometric assignment prob-

ems, in which three-dimensional small items (called cargo) have

o be assigned (packed into) to three-dimensional, rectangular (cu-

ic) large objects (called containers) such that a given objective

unction is optimized and two basic geometric feasibility condi-

ions hold, i.e.

• all small items lie entirely within the container, and

• the small items do not overlap.

In this paper, we consider a container loading problem for

allets with infill boxes (CLPIB), which is a special container

oading problem case. Given an empty rectangular container and

 rectangular product pallets, we determine a subset of pallets

ith maximal volume that can be placed in the container. Each

roduct pallet contains a single type of rectangular product boxes.

ome product pallets can be divided into product boxes for trans-

ortation. The product boxes can be placed in the narrow spaces

etween the pallets and the container after a container is filled

ith pallets. After the container is shipped to its destination, these

roduct boxes should be exactly palletized onto their original

http://dx.doi.org/10.1016/j.ejor.2016.01.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.01.025&domain=pdf
mailto:liusheng7801@163.com
mailto:sheng.liu@ia.ac.cn
http://dx.doi.org/10.1016/j.ejor.2016.01.025

L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736 729

Fig. 1. Four pallet arrangements in a container.

infill boxes

pallets

Fig. 2. An example solution for CLPIB.

p

t

o

m

s

s

o

a

m

i

v

f

p

2

t

t

t

i

t

t

c

i

s

i

b

p

I

e

s

a

s

t

t

a

p

e

fi

i

t

fi

p

a

allets. The pallets must be placed with their bottoms parallel to

he container, whereas the product boxes can be placed in all six

rthogonal orientations. Additionally, the bottoms of each pallet

ust be fully supported by the container floor or by the top of a

ingle pallet to simplify the unloading process and to ensure the

tability of the pallets. The product boxes can be easily fastened

n the pallets by adhesive tapes because they are relatively small

nd light. Thus they do not need to be fully supported.

Fig. 1 lists four pallet arrangements in a container. The arrange-

ents in Fig. 1 (a) and (b) are feasible, whereas the arrangements

n Fig. 1 (c) and (d) are not feasible.

An example solution for CLPIB is illustrated in Fig. 2.

The rest of this paper is divided as follows: Section 2 pro-

ides an overview of the literature, Section 3 presents the approach

or CLPIB, Section 4 describes the computational experiments and

resents the results, and Section 5 summarizes the paper.

. Literature overview

Bortfeldt and Wäscher (2013) introduced a scheme to categorize

he constraints of loading a container for the first time and found

hat the existing approaches have limited practical value because

hey do not pay sufficient attention to the constraints encountered

n practice. The problem discussed in this paper is a knapsack con-

ainer loading problem with several practical constraints (listed in

he Section 1). There are no published approaches that address the
ontainer loading problem with these practical constraints. Because

t is a knapsack container loading problem, we will briefly discuss

ome of the recent advances in three-dimensional container load-

ng.

The three-dimensional container loading problem (3D-CLP) can

e broadly characterized as type 3/B/O/-, according to the ty-

ology presented by Dyckhoff and Finke (1992) , or type 3D-R-

IPP/SLOPP/SKP, according to the typology presented by Wäscher

t al. (2007) . A consignment of goods wrapped up in boxes is as-

umed to be loaded into a single container of known dimensions,

nd the boxes and containers are assumed to have a rectangular

hape (Junqueira, Morabito, & Sato Yamashita, 2012).

3D-CLP is a typical NP-hard problem (Bischoff & Marriott, 1990)

hat cannot be solved optimally by an algorithm in polynomial

ime. When the number of box types increases, exact algorithms

re usually confronted with a situation called “combinatorial ex-

losion”. Thus, they can only solve problems with a weak het-

rogeneous box set. As a result, heuristic methods are usually the

rst selection for addressing the three-dimensional container load-

ng problem. Heuristic methods may not obtain the best of all of

he actual solutions to 3D-CLP, but they can usually produce suf-

ciently good solutions within acceptable times. Researchers have

rovided various heuristic methods.

Heuristic methods for 3D-CLP can be divided into two groups

ccording to the method type.

(1) Tree search methods: Tree search or graph search meth-

ods were successfully utilized in 3D-CLP. Morabito and Are-

nales (1994) suggested an And/Or graph search method. Eley

(2002) tried to fill the container with homogeneous blocks

made up of identical items. Hifi (2002) presented a tree

search method using hill-climbing strategies. Pisinger (2002)

proposed an algorithm that first divides the whole container

space into several vertical layers, then divides the layers

into a number of horizontal or vertical strips and then gen-

erates the strips by solving the one-dimensional knapsack

problem. Bortfeldt and Mack (2007) presented a heuristic

algorithm that was derived from a branch-and-bound ap-

proach. Fanslau and Bortfeldt (2010) proposed an effective

tree search algorithm based on the idea of a composite

block. Zhang, Peng, and Leung (2012) designed a heuristic

block-loading algorithm based on a multi-layer search. Liu,

Tan, Xu, and Liu (2014) presented a heuristic wall-building

algorithm. Araya and Riff (2014) proposed a beam search ap-

proach to the container loading problem.

(2) Non-tree search methods: Non-tree search methods include

classic heuristic methods and intelligent heuristic methods.

The former methods for solving 3D-CLP were presented by

Bischoff and Ratcliff (1995), Bischoff, Janetz, and Ratcliff

(1995) , and Lim, Rodrigues, and Wang (2003) , whereas the

730 L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736

C

z

x

y

o
L

H

W

Fig. 3. Container in 3D coordinates system.

b

i

w

t

α

o

p

t

l

s

m

q

w

m

q

m

q

t

s

a
latter methods have been the most used method types for

3D-CLP in recent years. Gehring and Bortfeldt (1997, 2002),

Hemminki (1994) , and Bortfeldt and Gehring (2001) utilized

genetic algorithms (GAs). Sixt (1996) and Mack, Bortfeldt,

and Gehring (2004) provided simulated annealing meth-

ods (SAs). Bortfeldt and Gehring (1998), Sixt (1996) , and

Bortfeldt, Gehring, and Mack (2003) suggested tabu search

algorithms (TSs). Faroe, Pisinger, and Zachariasen (2003) and

Mack et al. (2004) suggested local search methods. Moura

and Oliveira (2005) and Parreno, Alvarez-Valdes, Oliveira,

and Tamarit (2007) introduced a greedy randomized adap-

tive search procedure (GRASP).

In addition to classification according to method type, Pisinger

(2002) grouped the methods into five classes according to the

packing approaches: the wall building approach (suggested by

Bortfeldt & Gehring, 2001; George & Robinson, 1980; Pisinger,

2002); the block building approach (representatives of this ap-

proach are the TS methods from Bortfeldt et al., 2003 ; the tree

search methods from Eley, 2002; Fanslau & Bortfeldt, 2010; Zhang

et al., 2012; Zhu & Lim, 2012 ; and the SA/TS hybrid methods from

Mack et al., 2004); the horizontal layer building approach (real-

ized by Bischoff et al., 1995; Terno, Scheithauer, Sommerweiß, &

Rieme, 20 0 0); the stack building approach (presented by Bischoff

& Ratcliff, 1995; Gehring & Bortfeldt, 1997); and the guillotine cut-

ting approach (mixed with the graph search method by Morabito

and Arenales (1996)). Otherwise, Huang and He (2009) and He and

Huang (2011) proposed heuristic algorithms based on the idea of

caving degree. Lu and Cha (2014) proposed an algorithm on how

to pack small items onto a large rectangular pallet. Zhu, Huang,

and Lim (2012) proposed a prototype column generation strategy

for the multiple container loading problem. Wei, Zhu, and Lim

(2015) presented a goal-driven prototype column generation strat-

egy for the multiple container loading cost minimization problem.

Tian, Zhu, Lim, and Wei (2016) developed a two-phase algorithm

to solve the multiple container loading problem with preference.

The great majority of methods mentioned above obey the ori-

entation constraint and the support constraint as well. Several

mentioned methods also include additional constraints from the

packing context in the problem, e.g., a weight constraint for the

freight (Bortfeldt & Gehring, 2001; Terno et al., 20 0 0; Lim, Ma, Qiu,

& Zhu, 2013). The shipment priority constraint was considered by

Ren, Tian, and Sawaragi (2011) and Wang, Lim, and Zhu (2013) .

The remarkable paper by Egeblad, Garavelli, Lisi, and Pisinger

(2010) is one case study of and an application related to practical

container loading problems. It represents the type of publications

that are concerned with the systematic integration of several types

of constraints into solution approaches. The cargoes that will be

loaded consist of a mixture of regular and irregular items that re-

quire satisfying specific stacking and orientation constraints.

3. Our method for CLPIB

In practical applications, the pallets must be placed with their

bottoms parallel to the bottom of the container. To compare our

method with existing algorithms, we assume that the pallets may

have at most six admissible orthogonal orientations. It is easy to

adjust the orientation constraints to fit practical applications.

As shown in Fig. 3 , a container is placed in the first octant of a

3D coordinates system (3D-CS). Let

 = (L, W, H) (1)

denote a container. Symbols L , W and H denote the container

length, width and height, respectively.

Let

P = { p 1 , p 2 , . . . , p m

} (2)
e the product pallet set that contains m pallets. p i is the i th pallet

n P that is defined as

p i = (l i , w i , h i , αi , βi , γi , d i , b l i , b w i , b h i) (3)

here l i , w i and h i are the length, width and height of p i , respec-

ively. The implications of αi , βi , γi and d i are listed:

i =

{
1 , if p i can be placed with l i paralled to H

0 , otherwise
,

βi =

{
1 , if p i can be placed with w i paralled to H

0 , otherwise
,

γi =

{
1 , if p i can be placed with h i paralled to H

0 , otherwise
, and

d i =

{
1 , if p i can be divided into product boxes

0 , otherwise
.

The symbols b l i , b w i and b h i are the length, width and height

f each product box in p i , respectively.

As described in Section 1 , CLPIB consists of two sequential sub-

roblems that regard how to load the product pallets into the con-

ainer and how to fill the narrow spaces between the product pal-

ets and the container with product boxes, respectively. The first

ub-problem can be written as:

ax

{

Z Q =

m ∑

i =1

q i l i w i h i | q i ∈ { 0 , 1 } i = 1 , 2 , . . . , m

}

 i =

{
1 , if p i is placed as a whole in the container

0 , otherwise
(4)

hereas the second sub-problem can be expressed as:

ax

{

Z R =

m ∑

i =1

r i l i w i h i | r i ∈ { 0 , 1 } r i ≤ 1 − q i ,

d i = 1 i = 1 , 2 , . . . , m

}

 i =

{
1 , if p i is placed as product boxes in the container

0 , otherwise
(5)

In both Formulas (4) and (5), two basic geometric constraints

ust be satisfied:

• all small items lie entirely within the container, and

• the small items do not overlap.

A feasible solution for CLPIB is denoted as (Q = { q 1 , q 2 , . . . ,
 m

} , R = { r 1 , r 2 , . . . , r m

}) .
We design a heuristic algorithm for CLPIB which is referred

o as HCLPIB. HCLPIB consists of a tree search sub-algorithm that

olves the sub-problem defined in Formula (4) and a greedy sub-

lgorithm that solve the sub-problem defined in Formula (5). The

L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736 731

y-
lay

er
1

x-layer 2

x-layer 3y-
lay

er
2

y-
lay

er
3

y-
lay

er
4

x-layer 1

Fig. 4. An example solution for QTS.

t

S

(

i

3

b

s

o

l

a

i

t

o

a

p

F

r

R

d

b

I

l

l

i

i

W

c

t

F

t

F

ree search sub-algorithm is referred to as QTS (Quaternary Tree

earch), whereas the greedy sub-algorithm is referred to as GIB

Greedy Algorithm for Infill Boxes). QTS and GIB will be described

n detail in Sections 3.1 and 3.2 , respectively.

.1. QTS – the tree search sub-algorithm of HCLPIB

QTS places multiple pallets into the container by using the wall

uilding strategy. Thus, the obtained container loading plan con-

ists of a set of pallet layers, and each pallet layer consists of a set

f pallet strips. The pallets in a strip are stacked along a line paral-

el to the z -axis in 3D-CS. The strips in a layer are arranged along

 line that is parallel to the x -axis or y axis in 3D-CS. If the strips

n a layer are along a line parallel to the x -axis, the layer is called

he x-layer. Otherwise the layer is called the y-layer. The surfaces

f each pallet must be parallel to one of the three planes: xy , xz

nd yz in 3D-CS. An example solution for QTS is shown in Fig. 4.

Let ls and ws be the length and width (generally ls ≥ ws) of a

allet strip s (see Fig. 5 (a)). The filling rate of s is defined as:

RS (s) =

m ∑

i =1

l i w i h i q i / (ls ∗ ws ∗ H)

q i =

{
1 , if p i is placed in s

0 , otherwise
, i = 1 , 2 , . . . , m (6)

Let ll and thickl denote the length and width of layer l ,

espectively.
(a) strip (b) x-l

z

o

H

ls

ws

H

ll

Fig. 5. Strip, x-laye
Let

 = (lr, wr, H) (7)

enote the rectangular residual space of a container. The sym-

ols lr , wr and H are its length, width and height, respectively.

f a residual space is not completely rectangular, we consider the

ength, width and height of the maximum cuboid inside it as its

ength, width and height, respectively. When no layers are placed

n the container, R = (L, W, H) . When an x-layer, which is shown

n Fig. 5 (b), is placed in an empty container, R = (L, W − thickl, H) .

hen a y-layer, which is shown in Fig. 5 (c), is placed in an empty

ontainer, R = (L − thickl, W, H) .

If l is the x-layer, which is shown in Fig. 5 (b), and l is placed in

he residual space (lr, wr, H) , the filling rate of l is defined as:

RL(l) =

m ∑

i =1

l i w i h i q i / (lr ∗ thickl ∗ H)

q i =

{
1 , if p i is placed in l

0 , otherwise
, i = 1 , 2 , . . . , m (8)

If l is the y-layer, which is shown in Fig. 5 (c), and l is placed in

he residual space (lr, wr, H) , the filling rate of l is defined as:

RL(l) =

m ∑

i =1

l i w i h i q i / (wr ∗ thickl ∗ H)

q i =

{
1 , if p i is placed in l

0 , otherwise
, i = 1 , 2 , . . . , m (9)
ayer

x

y

thickl

H

ll

thickl

(c) y-layer

r and y-layer.

732 L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736

r

t

I

fi

w

s

l

p

a

L

m

w

n

c

K

d

l

p

l

L

c

l

r

L

c

w

r

L

s

s

s

l

v

“

W

o

t

s

{

t

i

Let

S = { s 1 , s 2 , . . . , s n } (10)

be a strip sequence, which contains n strips.

The length and width of a strip are determined before the strip

is created. Length ls and width ws are always equal to two dimen-

sions of the length, width and height of one pallet in P , respec-

tively. To explain how to create strips one by one using P , we in-

troduce several definitions.

H αi (ls, ws) =

⎧ ⎨

⎩

l i , if (max { w i , h i } ≤ ls, min { w i , h i } ≤ ws,

and αi = 1)

+ ∞ , otherwise

(11.1)

Eq. (11.1) means the height of the envelope cuboid of p i in a strip

with length ls and width ws if the length of p i is parallel to the

z -axis.

H βi (ls, ws) =

⎧ ⎨

⎩

w i , if (max { l i , h i } ≤ ls, min { l i , h i } ≤ ws,

and βi = 1)

+ ∞ , otherwise

(11.2)

Eq. (11.2) means the height of the envelope cuboid of p i in a strip

with the length ls and width ws if the width of p i is parallel to the

z -axis.

H γi (ls, ws) =

⎧ ⎨

⎩

h i , if (max { l i , w i } ≤ ls, min { l i , w i } ≤ ws,

and γi = 1)

+ ∞ , otherwise

(11.3)

Eq. (11.3) means the height of the envelope cuboid of p i in a strip

with the length ls and width ws if the height of p i is parallel to the

z -axis. The value + ∞ in Formulas (11.1)–(11.3) means that the cor-

responding orientations are prohibited or that the pallet exceeds

the boundary of the envelope cuboid of the strip.

Therefore, it is obvious that

H i (ls, ws) = min { H αi (ls, ws) , H βi (ls, ws) , H γi (ls, ws) } (12)

is the height of the envelope cuboid of p i in a strip with length ls

and width ws .

Let

K S strip (H, ls, ws) = max

{

m ∑

i =1

l i w i h i q i

∣∣∣∣∣∣
Q = { q 1 , q 2 , . . . , q m

} is a f easible solution,

q i ∈ { 0 , 1 } ,
m ∑

i =1

q i ∗ H i (ls, ws) ≤ H, i = 1 , 2 , . . . , m

⎫ ⎬

⎭

(13)

denote a one-dimensional knapsack model to generate a strip with

length ls and width ws , where q i means that p i is placed in the

strip (q i = 1) or is not placed in the strip (q i = 0).

When we group a pallet set into a strip sequence S , we utilize

two of the three sizes (length, width and height) of each pallet as

the length and width to create a strip. Thus, we obtain a candi-

date strip sequence S_CAN . Then, we select a strip from S_CAN and

insert it into S . If we select the first (or the last or the middle)

strip with a filling rate higher than a given value (called strip fill-

ing rate threshold, sfrt for short, usually in [0.9, 1]) from S_CAN ,

we can usually obtain a better solution than by selecting the strip

with the highest filling rate. The three strip selecting types (sst for

short) are defined as “FIRST”, “LAST” and “MID”. Therefore, we de-

fine the function:

SelectStrip

sst
≥s f rt (S _ CAN) (14)
If sst = “FIRST”, Formula (14) returns the first strip whose filling

ate is not less than sfrt in S_CAN . If sst = “LAST”, Formula (14) re-

urns the last strip whose filling rate is not less than sfrt in S_CAN .

f sst = “MID”, Formula (14) returns the middlemost strip whose

lling rate is not less than sfrt in S_CAN . If no strip exists in S_CAN

hose filling rate is not less than sfrt , Formula (14) returns the

trip with the highest filling rate in S_CAN .

If we create a layer from a strip sequence S , the thickness of a

ayer is always equal to the length or width of one strip in S . To ex-

lain how to create a layer using the strips in S , several definitions

re presented.

 (s i , thickl) =

⎧ ⎨

⎩

l s i , if (l s i > t hickl and w s i ≤ t hickl)

w s i , if (l s i ≤ thickl and w s i ≤ thickl)

+ ∞ otherwise

⎫ ⎬

⎭

(15)

eans the length of the envelope cuboid of the strip s i in a layer

ith thickness thickl . The strip must be placed such that it does

ot exceed the boundary of the layer. The value + ∞ means that s i
annot be placed in a layer with thickness thickl .

Let

 S layer (H, l l , thickl) = max

{

n ∑

i =1

V i

∣∣∣∣∣∣∣
Q = { q 1 , q 2 , . . . , q n } is a f easible solution, q i ∈ { 0 , 1 } ,

n ∑

i =1

q i ∗ L (s i , thickl) ≤ l l , i = 1 , 2 , . . . , n

⎫ ⎪ ⎬

⎪ ⎭

(16)

enote a one-dimensional knapsack model to generate a layer with

ength ll and thickness thickl . Herein, V i is the total volume of the

allets in the strip s i and q i indicates whether s i is included in the

ayer (0 not included; 1 included).

The mathematical model

AYE R x (lr, S) = { K S layer (H, lr, l s i) , K S layer (H, lr, w s i) | i = 1 , 2 , . . . , n }
(17)

reates a set of candidate x-layers whose lengths equal to the

ength of the current residual space. lr is the length of the current

esidual space.

The mathematical model

AYE R y (wr, S)

=

{
K S layer (H, wr, l s i) , K S layer (H, wr, w s i) | i = 1 , 2 , . . . , n

}
(18)

reates a set of candidate y-layers whose lengths equal to the

idth of the current residual space. wr is the width of the current

esidual space.

The mathematical model

 2 = SORT (L 1) = { l 2 1 , l 2 2 , l 2 3 , . . . } (19)

orts the layers in the layer set L1 and obtains a layer sequence L2

uch that FRL (l 2 1) ≥ FRL (l 2 2) ≥ FRL (l 2 3) ≥ · · · .

QTS loads pallets into a container with two different priority

tyles. For the first style, QTS loads undividable and dividable pal-

ets with the same priority. For the second style, QTS loads undi-

idable pallets prior to the dividable pallets. We call the first style

SAME_PRIORITY” and the second style “DIFFERENT_PRIORITY”.

The main procedure for QTS is described in Procedure 1 . L ,

 , H , P , and prior_style represent the length, width, and height

f the container, the pallet set, and the priority style, respec-

ively. We find that we can keep a good balance between the

olution quality and the computation time if we use SFRT =
0.9,0.904,0.908,0.912,…,1} as the sfrt value set. We consider all

hree sst values, which are “FIRST”, “LAST” and “MID” in QTS. The

nvoked procedure FillCuboidSpace is described in Procedure 2 .

L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736 733

Procedure 1

QTS (L, W, H, P, pr ior _ style)

// L _ temp and L _ best are 2 layer sets , V L and U V L denote the volume of the

// pallets and the volume of the undividable pallets in the layer set L, respectively

for each s f rt ∈ { 0 . 9 , 0 . 904 , 0 . 908 , 0 . 912 , · · · , 1 }
for each sst ∈ { “FIRST ”, “LAST ”, “MID ”}

L _ emp := FillCuboidSpace (L, W, H, B, sst, s f rt, pr ior _ style)

if (pr ior _ style = “SAME _ PRIORITY ”)

if (V L _ temp > V L _ best)

L _ best : = L _ temp

else if (pr ior _ style = “DIFFERENT _ PRIORITY ”)

if (U V L _ temp > U V L _ best or (U V L _ temp = U V L _ best and V L _ temp > V L _ best))

L _ best : = L _ temp

return L _ best

Procedure 2

FillCuboidSpace (lr, wr, H, P, sst , s f rt , pr ior _ style)

if (no pallets in P can be placed in the residual space lr × wr × H)

return ∅
// L 1 , L 2 , L 3 and L 4 are 4 layer sets

// XL = { x l 1 , x l 2 , · · ·} and Y L = { y l 1 , y l 2 , · · ·} are 2 layer sequences

XL : = CreateCandidateLayers (lr, wr, H, P, sst , s f rt , “X _ LAYER ”)

Y L : = CreateCandidateLayers (wr, lr, H, P, sst , s f rt , “Y _ LAY ER ”)

L 1 : = x l 1 + FillCuboidSpace (lr, wr − thickness of x l 1 , H, P − pallets in x l 1 ,

sst , s f rt , pr ior _ style)

L 2 : = y l 1 + FillCuboidSpace (lr − thickness of y l 1 , wr, H, P − pallets in y l 1 ,

sst , s f rt , pr ior _ style)

if (FRL (x l 2) ≥ FRL (y l 1))

L 3 : = x l 2 + FillCuboidSpace (lr, wr − thickness of x l 2 , H, P − pallets in x l 2 ,

sst , s f rt , pr ior _ style)

if (FRL (y l 2) ≥ FRL (x l 1))

L 4 : = y l 2 + FillCuboidSpace (lr − thickness of y l 2 , wr, H, P − pallets in y l 2 ,

sst , s f rt , pr ior _ style)

if (pr ior _ style = “SAME _ PRIORITY ”)

return the one in { L 1 , L 2 , L 3 , L 4 } with the highest pallet volume

else if (pr ior _ style = “DIFFERENT _ PRIORITY ”)

return the one in { L 1 , L 2 , L 3 , L 4 } with the highest undividable pallet volume

or return the one with the highest pallet volume in a subset of { L 1 , L 2 , L 3 , L 4 }
where the layers have the same highest undividable pallet volume

Procedure 3

CreateCandidateLayers (l l , max _ thickl , H, P, sst, s f rt, layer _ type)

// S _ C and S _ D are 2 strip sequences , s is a strip

// L _ SET is a layer set , L _ SEQ is a layer sequence

while (P � = ∅)
S _ C : = CreateCandidateStrips (l l , thickl , H, P)

s : = SelectStrip
sst
≥ s f rt (S _ C)

S _ D : = S _ D + s

remove the pallets in s from P

if (layer _ type = “X _ LAY ER ”) L _ SET : = LAYE R x (l l , S _ D)

elseif (layer _ type = “Y _ LAY ER ”) L _ SET : = LAYE R y (l l , S _ D)

L _ SEQ : = SORT (L _ SET)

return L _ SEQ

t

t

o

p

p

a

s

a

s

t

t

I

r

e

v

Procedure 4

CreateCandidateStrips (lr, wr, H, P)

// S is a strip sequence, s is a strip

for each pallet p i in P

if (p i can be placed in the space lr × wr × H with h i ‖ H)
s := KS strip (H, l i , w i) ; S := S + s

if (p i can be placed in the space lr × wr × H with l i ‖ H)
s := KS strip (H, w i , h i) ; S := S + s

if (p i can be placed in the space lr × wr × H with w i ‖ H)
s := KS strip (H, l i , h i) ; S := S + s

return S

Procedure 5

GIB (P,C _ SPACE)

while (P contains at least 1 pallet that can be divided and placed in C _ SPACE)

select the pallet p that can be divided and placed in C _ SPACE with largest volume

divide p and palce the obtained product boxes into C _ SPACE

remove used cuboid spaces from C _ SPACE

remove p from P

return null

d

s

b

P

r

x

c

a

r

m

L

C

s

w

w

d

c

s

e

3

a

fi

b

i

o

t

s

g

s

c

s

i

a

t

t

p

i

2
As shown in Procedure 2 , FillCuboidSpace is invoked recursively

o create and place new layers into the residual space of the con-

ainer. The symbols lr , wr and H are the length, width and height

f the residual space. The symbols P , sst , sfrt, and prior_style are the

allet set, strip selecting type, strip filling rate threshold, and the

riority style, respectively. If the residual space (lr × wr × H) cannot

ccommodate any pallet in P , Procedure 2 returns an empty layer

et. Otherwise, an x-layer sequence and a y-layer sequence are cre-

ted using CreateCandidateLayers (described in Procedure 3), re-

pectively. The first x-layer and the first y-layer will be placed in

he container. If the filling rate of the second x-layer is no less than

he filling rate of the first y-layer, the second x-layer is considered.

f the filling rate of the second y-layer is no less than the filling

ate of the first x-layer, the second y-layer is considered. In the

nd, Procedure 2 returns the layer set with the maximum pallet

olume or with the maximum undividable pallet volume.
CreateCandidateLayers (Procedure 3) creates a sequence of can-

idate layers that can be placed in the corresponding residual

pace. The symbols ll , max_thickl and H are the length, the upper

ound of the thickness and the height of the layers. The symbols

 , sst and sfrt are the pallet set, strip selecting type and strip filling

ate threshold, respectively. The symbol layer_type indicates that

-layers or y-layers will be created. First, a strip sequence S_D is

reated by circularly invoking CreateCandidateStrips (Procedure 4)

nd SelectStrip

sst
≥s f rt () (Formula (14)). With ll and S_D as the pa-

ameters, a layer set L_SET is created by invoking LAYE R x () (For-

ula (17)) or LAYE R y () (Formula (18)). By arranging the layers in

_SET , a layer sequence L_SEQ is obtained. L_SEQ is the solution for

reateCandidateLayers (Procedure 3).

Procedure 4 describes how to create a sequence of candidate

trips from a pallet set P . The symbols lr , wr , and H are the length,

idth and height of the residual space where the candidate strips

ill be placed. P is the pallet set. With the dimensions of the three

ifferent surfaces of each pallet in P as the lengths and widths, we

reate three strips by invoking K S strip () (Formula (13)). All of these

trips form a strip sequence S . S is the solution for CreateCandidat-

Strips (Procedure 4).

.2. GIB – the greedy sub-algorithm of HCLPIB

After a container is filled with pallets, narrow spaces often exist

t the tops and sides of the pallets in the container. To improve the

lling rate, some of the remaining pallets are divided into product

oxes and are placed in these narrow spaces. After the container

s shipped to its destination, these product boxes will be palletized

nto their original pallets.

To fill the narrow spaces with product boxes, we divide all of

he narrow spaces in the container into multiple cuboid spaces. As

hown in Fig. 6 , there is only one cuboid space on the top of each

ood strip and one cuboid space between the right side (or back

ide) of each good layer and the right side (or back side) of the

ontainer. Additionally, the back right corner contains one cuboid

pace.

Procedure 5 describes how GIB fills the gaps with product boxes

n a loaded container. P is a set of dividable pallets. C_SPACE is

 set of cuboid residual spaces (to denote the narrow spaces in

he container). GIB tries to divide each pallet and insert the ob-

ained product boxes into the residual spaces. The algorithm for

acking identical small items into a large empty box (character-

zed as the Identical Item Packing Problem, IIPP, by Wäscher et al.,

007 and implemented by George, 1992) is employed to insert the

734 L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736

Residual spaces

Residual spaces

Fig. 6. Residual spaces in a loaded container.

Table 1

The computational results of CBGAT, HBTS and QTS for BR1–BR15.

Case Number of Filling rate (percent) Time (seconds)

box types CBGAT HBTS QTS QTS

BR1 3 85 .80 90 .57 90 .99 72

BR2 5 87 .26 91 .46 91 .92 24

BR3 8 88 .10 92 .39 92 .84 63

BR4 10 88 .04 92 .33 92 .79 89

BR5 12 87 .86 92 .42 92 .85 121

BR6 15 87 .85 92 .35 92 .86 153

BR7 20 87 .68 92 .11 92 .69 224

BR8 30 – 91 .93 92 .46 361

BR9 40 – 91 .61 92 .13 459

BR10 50 – 91 .39 91 .98 642

BR11 60 – 91 .13 91 .74 674

BR12 70 – 90 .96 91 .39 940

BR13 80 – 90 .59 91 .73 966

BR14 90 – 90 .25 90 .39 1127

BR15 100 – 89 .79 90 .13 1561

Mean 87 .51 91 .42 91 .90 498

m

9

t

Q

s

p

i

c

4

H

B

s

b

a

t

B
product boxes into an individual residual space. Typically, more

than one pallet can be divided and completely inserted into the

residual spaces. Only the pallet with the highest volume will be

divided to fill the residual spaces. We repeat the process until

there are no pallets that can be divided and placed in the resid-

ual spaces.

4. Computational experiments and results

HCLPIB was implemented in C# and run on an Intel Q9400

@2.66 gigahertz with Microsoft Windows XP Professional. The

compiling environment was Microsoft Visual Studio 2005.

First, we test QTS using the cases in BR1–BR15. Then, we test

HCLPIB using the cases that are generated from the cases in BR1–

BR15.

4.1. Computational experiments and results of QTS

Many algorithms for solving 3D-CLP have been published in

recent years. H_BR (Bischoff & Ratcliff, 1995), GA_GB (Gehring &

Bortfeldt, 1997), PT_SA (Bortfeldt et al., 2003), CLTRS (Fanslau &

Bortfeldt, 2010), ID-GLTS (Zhu & Lim, 2012), HBMLS (Zhang et al.,

2012) and HBTS (Liu et al., 2014) meet the orientation constraint

and the full support constraint, whereas GRASP (Moura & Oliveira,

2005), MSA (Parreno et al., 2007), A2 (Huang & He, 2009), VNS

(Parreno, Alvarez-Valdes, Oliveira, & Tamarit, 2010) and FDA (He &

Huang, 2011) obey the orientation constraint only. To our knowl-

edge, CBGAT by Gehring and Bortfeldt (1997) and HBTS by Liu et

al. (2014) may satisfy the support constraint and the orientation

constraint in this paper. We used the same data cases as the ones

utilized by CBGAT and HBTS. To compare QTS with CBGAT and

HBTS, we obeyed the orientation constraints defined for the boxes

in BR1–BR15. Thus, there are at most six admissible orientations

for one box.

Table 1 reports the computational results of CBGAT, HBTS and

QTS for BR1–BR15 (CBGAT was only tested with BR1–BR7). QTS

outperforms the other two algorithms for all of the test data. The

computation time of QTS increases when the number of box types

increases. The computation time of QTS for each case is acceptable,

with the longest one requiring less than 30 minutes.
We briefly give the results of several famous algorithms. The

ean filling rates for BR1–BR15 by CLTRS, ID-GLTS and HBMLS are

1.89 percent, 92.40 percent and 92.81 percent, respectively, when

he orientation constraint and the full support constraint are met.

TS with an average filling rate of 91.90 percent for BR1–BR15 is

lightly weaker than ID-GLTS and HBMLS on the filling rate. This is

artly because of the need to satisfy the extra constraint (as shown

n Fig. 1 , the bottom of each pallet must be fully supported by the

ontainer floor or by the top of a single pallet).

.2. Computational experiments and results of HCLPIB

Due to the lack of universally acknowledged test data for

CLPIB , we generated 1500 cases from the 1500 cases of BR1–

R15 by considering that some box types can be divided into

mall rectangular boxes if their serial numbers are even num-

ers. The length, width and height of each small box are 1/2, 1/2,

nd 1/3 of the length, width and height of the corresponding box

ype, respectively. Accordingly, we call the obtained case groups

R1p, BR2p,…, BR15p. The undivided boxes in BR1p–Br15p obey

L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736 735

Table 2

The computational results of HCLPIB for BR1p–BR15p.

Case Number of Number of SAME_PRIORITY DIFFERENT_PRIORITY

box types undividable Filling rate Time Filling rate Time

box types (percent) (seconds) (percent) (seconds)

BR1p 3 1 92 .24 73 91 .41 75

BR2p 5 2 93 .09 25 92 .31 26

BR3p 8 4 94 .20 66 93 .29 67

BR4p 10 5 93 .95 94 93 .04 101

BR5p 12 6 93 .79 129 92 .90 130

BR6p 15 7 93 .95 169 93 .09 173

BR7p 20 10 93 .76 241 92 .93 244

BR8p 30 15 93 .53 391 92 .69 392

BR9p 40 20 93 .01 479 92 .12 485

BR10p 50 25 93 .27 667 92 .36 669

BR11p 60 30 92 .87 691 92 .02 695

BR12p 70 35 92 .20 972 91 .32 977

BR13p 80 40 91 .77 989 91 .06 994

BR14p 90 45 91 .53 1203 90 .95 1211

BR15p 100 50 91 .32 1619 90 .71 1630

Mean 92 .97 520 92 .15 525

t

e

c

B

p

d

a

t

f

r

5

t

i

a

c

b

a

a

c

t

p

p

t

r

t

p

v

A

r

F

a

R

A

B

B

B

B

B

B

B

B

D

E

E

F

F

G

G

G

G

H

H

H

H

J

L

L

L

L

M

M

M

M

P

P

P

R

S

T

T
he same orientation constraints as the ones in BR1–BR15. How-

ver, if one box is divided, the obtained small rectangular boxes

an be placed on six admissible orientations.

Table 2 reports the computational results of HCLPIB for BR1p–

R15p. The mean filling rates for BR1p–BR15p by HCLPIB are 92.97

ercent when the undividable boxes have the same priority as the

ividable boxes. The mean filling rates for BR1p–BR15p by HCLPIB

re 92.15 percent when the undividable boxes are loaded prior to

he dividable boxes. It is obvious that the same loading priority

or both undividable boxes and dividable boxes may provide better

esults than the different loading priorities.

. Conclusions

The container loading of pallets with infill boxes occurs at many

ypical furniture factories. There are many pallets of different sizes

n these factories. We would like to load as many of these pallets

s possible into a container. Usually, a certain number of pallets

annot be completely loaded into a container. Some pallets should

e divided into product boxes to fill the narrow spaces at the sides

nd tops of the pallets placed in the container. We should guar-

ntee that all of these infill boxes can be entirely palletized into

omplete pallets. We utilize a heuristic algorithm that consists of a

ree search sub-algorithm and a greedy sub-algorithm to solve this

roblem. The tree search sub-algorithm is employed to arrange the

allets in the container. Then, the greedy sub-algorithm is applied

o fill the narrow spaces with product boxes. The computational

esults on BR1–BR15 show that our algorithm is competitive under

he proposed conditions. We also conclude that the same loading

riority for both undividable boxes and dividable boxes may pro-

ide better results than the different loading priorities for them.

cknowledgments

The authors would like to thank the editors and the anonymous

eviewers. This work was supported by the National Nature Science

oundation of China (Grant nos. 61104054 , 71232006 , 61233001

nd 61203166).

eferences

raya, I. , & Riff, M. C. (2014). A beam search approach to the container loading prob-

lem. Computers & Operations Research, 43 (4), 100–107 .
ischoff, E. E. , & Ratcliff, M. S. W. (1995). Issues in the development of approaches

to container loading. Omega, 23 (4), 377–390 .
ischoff, E. E. , Janetz, F. , & Ratcliff, M. S. W. (1995). Loading pallets with non-

identical items. European Journal of Operational Research, 84 (3), 681–692 .
ischoff, E. E. , & Marriott, M. (1990). Comparative evaluation of heuristics for con-
tainer loading. European Journal of Operational Research, 44 (2), 267–276 .

ortfeldt, A. , & Gehring, H. (1998). A tabu search algorithm for weakly heteroge-
neous container loading problems. OR Spectrum, 20 (4), 237–250 .

ortfeldt, A. , & Gehring, H. (2001). A hybrid genetic algorithm for the container
loading problem. European Journal of Operational Research, 131 (1), 143–161 .

ortfeldt, A. , Gehring, H. , & Mack, D. (2003). A parallel tabu search algorithm for
solving the container loading problem. Parallel Computing, 29 (5), 641–662 .

ortfeldt, A. , & Mack, D. (2007). A heuristic for the three dimensional strip packing

problem. European Journal of Operational Research, 183 (3), 1267–1279 .
ortfeldt, A. , & Wäscher, G. (2013). Constraints in container loading – A state-of-

the-art review. European Journal of Operational Research, 229 (1), 1–20 .
yckhoff, H. , & Finke, U. (1992). Cutting and packing in production and distribution .

Heidelberg: Physica-Verlag .
geblad, J. , Garavelli, C. , Lisi, S. , & Pisinger, D. (2010). Heuristics for container loading

of furniture. European Journal of Operational Research, 200 (3), 881–892 .

ley, M. (2002). Solving container loading problems by block arrangement. European
Journal of Operational Research, 141 (2), 393–409 .

anslau, T. , & Bortfeldt, A. (2010). A tree search algorithm for solving the container
loading problem. INFORMS Journal on Computing, 22 (2), 222–235 .

aroe, O. , Pisinger, D. , & Zachariasen, M. (2003). Guided local search for three-
dimensional bin-packing problem. INFORMS Journal on Computing, 15 (3), 267–

283 .

ehring, H. , & Bortfeldt, A. (1997). A genetic algorithm for solving the container
loading problem. International Transactions in Operational Research, 4 (5–6), 401–

418 .
ehring, H. , & Bortfeldt, A. (2002). A parallel genetic algorithm for solving the con-

tainer loading problem. International Transactions in Operational Research, 9 (4),
497–511 .

eorge, J. A. (1992). A method for solving container packing for a single size of box.

Journal of the Operational Research Society, 43 (4), 307–312 .
eorge, J. A. , & Robinson, D. F. (1980). A heuristic for packing boxes into a container.

Computers and Operations Research, 7 (3), 147–156 .
e, K. , & Huang, W. (2011). An efficient placement heuristic for three-dimensional

rectangular packing. Computers & Operations Research, 38 (1), 227–233 .
emminki, J. (1994). Container loading with variable strategies in each layer. In Pre-

sented at ESI-X, July 2–15 . Jouy-En-Josas, France: EURO Summer Institute .

ifi, M. (2002). Approximate algorithms for the container loading problem. Interna-
tional Transactions in Operational Research, 9 (6), 747–774 .

uang, W. , & He, K. (2009). A caving degree approach for the single container load-
ing problem. European Journal of Operational Research, 196 (1), 93–101 .

unqueira, L. , Morabito, R. , & Sato Yamashita, D. (2012). Three-dimensional container
loading models with cargo stability and load bearing constraints. Computers &

Operations Research, 39 (1), 74–85 .

im, A. , Ma, H. , Qiu, C. , & Zhu, W. (2013). The single container loading problem with
axle weight constraints. International Journal of Production Economics, 144 (1),

358–369 .
im, A. , Rodrigues, B. , & Wang, Y. (2003). A multi-faced buildup algorithm for three-

dimensional packing problems. Omega, 31 (6), 471–481 .
iu, S. , Tan, W. , Xu, Z. , & Liu, X. (2014). A tree search algorithm for the container

loading problem. Computers & Industrial Engineering, 11 (5), 20–30 .
u, Y. , & Cha, J. (2014). A fast algorithm for identifying minimum size instances

of the equivalence classes of the pallet loading problem. European Journal of

Operational Research, 237 (3), 794–801 .
ack, D. , Bortfeldt, A. , & Gehring, H. (2004). A parallel hybrid local search algorithm

for the container loading problem. International Transactions in Operational Re-
search, 11 (5), 511–533 .

orabito, R. , & Arenales, M. (1996). Staged and constrained two-dimensional guil-
lotine cutting problems: An AND/OR-graph approach. European Journal of Oper-

ational Research, 94 (3,8), 548–560 .

orabito, R. , & Arenales, M. (1994). An AND/OR-graph approach to the
container loading problem. International Transactions in Operational Research,

1 (1), 59–73 .
oura, A. , & Oliveira, J. F. (2005). A GRASP approach to the container-loading prob-

lem. IEEE Intelligent Systems, 20 (4), 50–57 .
arreno, F. , Alvarez-Valdes, R. , Oliveira, J. F. , & Tamarit, J. M. (2007). A maximal space

algorithm for the container loading problem. INFORMS Journal on Computing,

20 (3), 412–422 .
arreno, F. , Alvarez-Valdes, R. , Oliveira, J. F. , & Tamarit, J. M. (2010). Neighborhood

structures for the container loading problem: AVNS implementation. Journal of
Heuristics, 16 (1), 1–22 .

isinger, D. (2002). Heuristics for the container loading problem. European Journal
of Operational Research, 141 (2), 143–153 .

en, J. , Tian, Y. , & Sawaragi, T. (2011). A tree search method for the container loading

problem with shipment priority. European Journal of Operational Research, 214 (3),
526–535 .

ixt, M. (1996). Dreidimensionale Packprobleme. Losungsverfahren basierend auf den
Meta-Heuristiken Simulated Annealing und Tabu-Suche . Frankfurt am Main: Eu-

ropaischer Verlag der Wissenschaften .
erno, J. , Scheithauer, G. , Sommerweiß, U. , & Rieme, J. (20 0 0). An efficient approach

for the multi-pallet loading problem. European Journal of Operational Research,

123 (2), 372–381 .
ian, T. , Zhu, W. , Lim, A. , & Wei, L. (2016). The multiple container loading prob-

lem with preference. European Journal of Operational Research, 248 (1), 84–
94 .

http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0001
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0003
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0004
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0005
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0006
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0007
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0008
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0009
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0010
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0011
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0012
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0013
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0014
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0015
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0016
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0017
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0018
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0019
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0020
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0021
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0021
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0022
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0022
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0023
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0025
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0027
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0028
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0030
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0031
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0032
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0032
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0032
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0032
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0032
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0053
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0053
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0053
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0053
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0035
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0035
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0035
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0035
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0036
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0036
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0036
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0036
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0037
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0038
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0039
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0039
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0040
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0040
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0040
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0040
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0040
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0041
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0041
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0042
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0043

736 L. Sheng et al. / European Journal of Operational Research 252 (2016) 728–736

Z

Z

Z

Wang, N. , Lim, A. , & Zhu, W. (2013). A multi-round partial beam search approach
for the single container loading problem with shipment priority. International

Journal of Production Economics, 145 (2), 531–540 .
Wäscher, G. , Haußner, H. , & Schumann, H. (2007). An improved typology of cutting

and packing problems. European Journal of Operational Research, 183 (3), 1109–
1130 .

Wei, L. , Zhu, W. , & Lim, A. (2015). A goal-driven prototype column generation strat-
egy for the multiple container loading cost minimization problem. European

Journal of Operational Research, 241 (1), 39–49 .
hang, D. , Peng, Y. , & Leung, S. (2012). A heuristic block-loading algorithm based on
multi-layer search for the container loading problem. Computers & Operations

Research, 39 , 2267–2276 .
hu, W. , & Lim, A. (2012). A new iterative-doubling Greedy–Lookahead algorithm for

the single container loading problem. European Journal of Operational Research,
222 (3), 408–417 .

hu, W. , Huang, W. , & Lim, A. (2012). A prototype column generation strategy for
the multiple container loading problem. European Journal of Operational Re-

search, 223 (1), 27–39 .

http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0044
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0044
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0044
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0044
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0044
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0045
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0045
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0045
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0045
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0045
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0046
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0046
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0046
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0046
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0046
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0047
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0047
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0047
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0047
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0047
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0048
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0048
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0048
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0048
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0049
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0049
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0049
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0049
http://refhub.elsevier.com/S0377-2217(16)00054-0/sbref0049

	A heuristic algorithm for container loading of pallets with infill boxes
	1 Introduction
	2 Literature overview
	3 Our method for CLPIB
	3.1 QTS - the tree search sub-algorithm of HCLPIB
	3.2 GIB - the greedy sub-algorithm of HCLPIB

	4 Computational experiments and results
	4.1 Computational experiments and results of QTS
	4.2 Computational experiments and results of HCLPIB

	5 Conclusions
	 Acknowledgments
	 References

