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ABSTRACT
In this paper,we concentrate on investigatingbipartite output consensus in networkedmulti-agent systems
of high-order power integrators. Systems with power integrator are ubiquitous among weakly coupled,
unstable and underactuated mechanical systems. In the presence of input noises, an adaptive disturbance
compensator and a technique of adding power integrator are introduced to the complex nonlinear multi-
agent systems to reduce the deterioration of system performance. Additionally, due to the existence of
negative communication weights among agents, whether bipartite output consensus of high-order power
integrators can be achieved remains unknown. Therefore, it is of great importance to study this issue. The
underlying idea of designing the distributed controller is to combine the output information of each agent
itself and its neighbours, the state feedbackwithin its internal systemand input adaptivenoise compensator
all together. When the signed digraph is structurally balanced, bipartite output consensus can be reached.
Finally, numerical simulations are provided to verify the validity of the developed criteria.

1. Introduction
In the last decade, the issues about multi-agent systems have
drawn a lot of attention (Cheng, Hou, Lin, Tan, & Zhang, 2011;
Cheng,Wang, Hou, Tan, &Cao, 2013; Cheng, Hou, & Tan, 2014;
Cheng, Wang, Hou, & Tan, 2015; Liu, Cheng, Tan, & Hou, 2015;
Ma, Liu, Wang, Tan, & Li, 2015; Pan, Nian, & Guo, 2014; Ren,
Beard, & Atkins, 2007; Sun, Guan, Ding, & Wang, 2013; Wang,
Cheng, Ren, Hou, & Tan, 2015; Wen, Li, Duan, & Chen, 2013;
Yao & Zheng, 2014; Yu & Wang, 2014; Zhang & Tian, 2014).
The idea of distributed algorithms can be traced back to Tsit-
siklis (1984) and Bertsekas and Tsitsiklis (1989) for dealing with
the advent of networks. A novel type of phase transition in a
system of self-driven particles was proposed (Vicsek, Czirók,
Ben-Jacob, Cohen, & Shochet, 1995), which is the origin of the
nearest neighbour rules. Then according to Vicsek’s model, Jad-
babaie, Lin, andMorse (2003) introduced the nearest neighbour
rules into multi-agent systems. For more details, please refer to
survey papers (Hespanha, Naghshtabrizi, & Xu, 2007; Olfati-
Saber & Murray, 2004; Olfati-Saber, Fax, & Murray, 2007; Ren,
Beard, & Atkins, 2005) and the references cited therein.

Bipartite graph (Diestel, 2000) is a basic concept in graph the-
ory which is suitable for representing the communication topol-
ogy of bipartite consensus. In several physical scenarios, it is rea-
sonable to suppose that some of the agents are competitive, while
the rest are cooperative. For instance, the polarisation of the
community can be divided into two groups holding the opposite
opinions, such as two competing sport teams shown in Figure 1.
To the best of authors’ knowledge, some pioneering works were
given in Smith (1995), meanwhile Altafini (2013) was the first to
propose the concept of bipartite consensus. Next, we consider a
representative set of problem in the area of bipartite consensus.

CONTACT Derong Liu derong@ustb.edu.cn

Altafini (2013) introduced the negativeweights to the communi-
cation topology and demonstrated that bipartite consensus can
be reached in the presence of antagonistic interactions. On one
hand, Altafini (2013) mentioned that one of the most impor-
tant requirements for the signed graph was structural balance
(Cartwright &Harary, 1956). On the other hand, Altafini (2013)
proposed both the linear and nonlinear Laplacian feedback dis-
tributed protocols to solve bipartite consensus. However, only
the simplest situation was discussed where the dynamics of each
agent were just equal to the distributed control, that is ẋi = ui.
Consequently, bipartite consensus was extended to formation
control (Hu, Xiao, Zhou, & Yu, 2013) and directed signed net-
works (Hu & Zheng, 2013, 2014) with the same dynamics. In
addition, Valcher and Misra (2014) discussed a more complex
situation that the dynamics of multi-agent systems were high-
orderwith antagonistic interactions, and bipartite consensus can
be reached under the assumption of stabilisability with a sort of
equilibrium between two fully competing groups. However, all
the aspects mentioned above are associated with linear systems.
In physical implementations, the power integrator system inves-
tigated by Qian and Lin (2001) is more ubiquitous. Therefore, it
is of great importance to study the case where the multi-agent
systems of high-order power integrators can reach bipartite out-
put consensus.

High-order power integrator systems are both conceptually
interesting because they are more complex than traditional lin-
ear systems in the aspect of analytical technique, and practi-
cally interesting because a class of weakly coupled, unstable
and underactuated mechanical systems (Liu & Jiang, 2013),
which are difficult to obtain stable control, are inherently non-
linear. Thus, they pose a number of challenges in terms of
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Figure . Two teams with cooperative behaviours inside and competitive
behaviours between each other.

controllability after linearisation around the origin. In view of
this, the technique of adding power integrator is a promising
alternative approach to deal with the nonlinear properties of
high-order power integrator systems. This technique has been
widely used among the literatures. A new feedback design tool
which adds a power integrator was introduced to solve the prob-
lem of global robust stabilisation when the nonlinear systems
were lower triangular forms (Lin & Qian, 2000). Additionally,
adding a power integrator was also introduced in Qian and Lin
(2001) to deal with the global strong stabilisation with the simi-
lar form of power integrator. Moreover, in Qu (2010), network-
based cooperative control of nonlinear dynamical systems was
investigated and a restriction that p1 � p2 � …� pn − 1 � 1 was
given, where p1, p2, … , pn − 1 are odd integers. In Peng and Ye
(2013), it shed light on cooperative output-synchronisation in
multi-agent systems of high-order power integrator with input
noises and undirected topology.However, we focus on a directed
graph, particularly where the weights among agents are partly
negative. Compared with the advances in the area of consen-
sus (Olfati-Saber et al., 2007), less progress has been achieved
in bipartite consensus and especially in bipartite output consen-
sus. Therefore, due to the difficulty of handling the nonlinearity
of power integrator and the unconventional properties of signed
digraph, it is of great practical interest to investigate that under
what conditions the multi-agent systems of high-order power
integrators can reach bipartite output consensus.

Inspired by the above discussions, this paper aims at further
investigating bipartite output consensus in networked multi-
agent systems of high-order power integrators with signed
digraph and input noises. By virtue of the technique of adding
power integrator, we present this problem by first discussing
when bipartite output consensus can be achieved in the absence
of input noises, and then proceed by introducing noises to input
channels, which is plausible in physical implementations. How-
ever, noises can further deteriorate performance of the entire
networked systems. Thus, an adaptive noise compensator is
developed to deal with noises in input channels. Finally, numer-
ical simulations are given to validate the effectiveness of the
established criteria.

The main contributions of this paper are listed as follows.
(1) Unlike conventional unsigned graph, we extend the

graph to signed digraph whose communication weights
are partly negative.

(2) Only the output is communicated with each other. Thus,
information transferred among the multi-agent systems
is not the full state vector of each agent and communi-
cation resources are highly reduced. Furthermore, per-
formance of bipartite output consensus deteriorates in
the presence of input noises which is more suitable for

physical scenarios. Thus, we establish an adaptive noise
compensator to minimise the negative effect of external
disturbances.

(3) It is difficult to use traditional linear feedback control
method to maintain the stability of multi-agent systems
after linearisation around the origin. Therefore, the tech-
nique of adding power integrator is introduced to solve
this problem.

The remainder of this paper is organised as follows. Basic
definitions of bipartite output consensus and the properties of
signed digraph are given in Section 2. By means of the tech-
nique of adding power integrator, a distributed control protocol
is developed to obtain bipartite output consensus without input
noises in Section 3. In view of input noises, an adaptive noise
compensator is developed in Section 4 to enhance the robust-
ness of networked multi-agent systems. In Section 5, numerical
examples of bipartite output consensus are conducted to demon-
strate the validity of the criteria established in Section 3 and 4.
Conclusion of the whole paper is given in Section 6. Some key
lemmas and propositions are provided in Appendices 1 and 2
with essential proofs.

2. Backgrounds and preliminaries

2.1. Algebraic graph theory
A triplet G = {V, E,A} is called a (weighted) signed graph if
V = {1, 2, . . . ,N} is the set of nodes, E ⊆ V × V is the set
of edges and A = (Ai j) ∈ R

N×N is the matrix of the signed
weights of G. Here, Ai j denotes the element of the ith row
and jth column of matrix A. The ith node in signed graph G
represents the ith agent, and a directed edge from node i to
node j is denoted as an ordered pair (i, j) ∈ E which means
that agent i can directly transfer its information to agent j.
A is called the adjacency matrix of signed graph G with real
numbers and we use the notation G(A) : Ai j �= 0 ⇔ ( j, i) ∈
E to represent the signed graph corresponding to A. Note
that self-loops will not be considered in this paper, i.e. Aii =
0,∀ i = 1, 2, . . . ,N. For convenience, we introduce the follow-
ing concepts. A directed cycle C of G(A) is a directed path
with the same beginning and ending node. A cycle C is posi-
tive if it consists of an even number of negative edge weights:
Aw1w2Aw2w3 · · ·Awpw1 > 0, where w1, w2, … , wp belong to V . It
is negative whenAw1w2Aw2w3 · · ·Awpw1 < 0. In a directed graph
(digraph), a pair of edges sharing the same nodes (i, j), ( j, i) ∈
E is called a digon. We assume that Ai jA ji ≥ 0, which means
that all digons cannot have the opposite signs. In this paper, we
call this property digon sign-symmetric. Otherwise, we call it
digon sign-nonsymmetric. Given a signed digraph G(A), Cr is
termed as the row connectivity matrix ofA and

Cr =

⎡
⎢⎢⎢⎣
cr,11 0 · · · 0
0 cr,22 · · · 0
...

...
. . .

...
0 0 · · · cr,NN

⎤
⎥⎥⎥⎦

with diagonal elements cr,ii = ∑
j∈Ni

|Ai j|, where Ni = { j ∈
V|( j, i) ∈ E} is the in-degree neighbour set of node i. The
column connectivity matrix Cc is defined likewise, where
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3118 H. MA ET AL.

cc,ii = ∑
j∈Ñi

|A ji| and Ñi = { j ∈ V|(i, j) ∈ E} is the out-
degree neighbour set.

2.2. Bipartite consensus
The communication topology among the N agents can be rep-
resented by a signed digraph G = {V, E,A}. The interaction
between the ith agent and the jth agent is cooperative ifAi j > 0;
otherwise, it is antagonistic if Ai j < 0. Furthermore, Ai j = 0
means there is no interaction between the ith agent and the jth
agent.

Following the definition of the unsigned graph in most liter-
ature, we define the row Laplacian matrix corresponding to the
adjacency matrixA of signed digraph G(A) as

L = Cr − A, (1)

where Cr is the row connectivity matrix ofA. Therefore,

Li j =
⎧⎨
⎩

∑
k∈Ni

|Aik|, if i = j;

−Ai j, if i �= j.
(2)

Definition 1 (Structurally balanced, cf. Altafini (2013)): A
signed digraph G(A) is said to be structurally balanced if it con-
tains a bipartition of the nodes V1,V2,V = V1 ∪ V2,V1 ∩ V2 =
∅ such that Ai j ≥ 0,∀i, j ∈ Vp (p ∈ {1, 2});Ai j ≤ 0,∀i ∈
Vp, j ∈ Vq, p �= q (p, q ∈ {1, 2}). Otherwise, it is called struc-
turally unbalanced.

In this and the subsequent sections, we assume that the
signed digraph G is digon sign-symmetric, strongly connected
and structurally balanced. In addition, all the cycles C in digraph
G are positive. According to Definition 1 and the illustration
in Figure 1, this is equivalent to saying that the agents can be
split into two disjoint groups, where the cooperative interactions
between pairs of agents exist in the same groups and the antag-
onistic interactions between pairs of agents exist between two
different groups.

2.3. Problem formulation
Suppose that the network contains N agents and the dynamics
of each agent i are given as follows:

ẋi1 = xp1i2
ẋi2 = xp2i3
... (3)

ẋi,n−1 = xpn−1
in

ẋin = upn
i

yi = xi1

where pk �1, �k � {1, 2, … , n} are odd integers and xi =
(xi1, xi2, . . . , xin)T ∈ R

n, yi ∈ R, ui ∈ R are the state vector, out-
put and control input of agent i, respectively. Before proceeding,
we introduce the definition of bipartite output consensus in con-
cert with the subsequent analyses.

Definition 2 (bipartite output consensus): If for any initial con-
dition xi(0),

{
lim
t→∞ ‖y j(t ) − yi(t )‖ = 0, ∀i, j ∈ V1 or ∀i, j ∈ V2;
lim
t→∞ ‖y j(t ) + yi(t )‖ = 0, ∀i ∈ V1 and ∀ j ∈ V2,

(4)

where V1 and V2 are the sets defined in Definition 1, then we
say that the multi-agent system (3) can reach bipartite output
consensus.
Remark 1: In this paper, we suppose that the communication
capability is sufficient and the communication intensity is not
related to the distance between each pair of agents. Furthermore,
if there is an edge from agent i to agent j where j ∈ Ñi, then
agent i can transfer its output information yi to agent j without
data loss.

3. Bipartite output consensus with directed topology
In this section, we will concentrate on designing a distributed
control protocol to achieve bipartite output consensus without
input noises. The main theorem is given as follows.

Theorem 1: The dynamics of each agent in the network are given
in (3) and x∗

il, l = 2, 3, . . . , n, can be seen as internal reference
states. The distributed control protocols are designed as follows:

ϕi1 =
∑
j∈Ni

|Ai j|(yi − sgn(Ai j)y j)

+
∑
j∈Ñi

|A ji|(yi − sgn(A ji)y j)

x∗p1
i2 = −k1ϕi1 ϕi2 = xp1i2 − x∗p1

i2
x∗p1p2
i3 = −k2ϕi2 ϕi3 = xp1 p2i3 − x∗p1p2

i3
...

...
x∗p1···pn−1
in = −kn−1ϕi,n−1 ϕin = xp1···pn−1

in − x∗p1···pn−1
in

ui = −(knϕin)
1/p1···pn ,

(5)

where k1, k2, … , kn and p1, p2, … , pn are positive constant con-
trol gains and positive odd integers, respectively. The symbol sgn
represents the sign function. That is

sgn(Ai j) =
⎧⎨
⎩

1, if Ai j > 0;
0, if Ai j = 0;

−1, if Ai j < 0.

Then, the multi-agent system (3) can asymptotically achieve
bipartite output consensus. Furthermore, xi2, xi3, . . . , xin,∀i ∈ V
are bounded and will approach zero.

Proof: Note that the basic idea of designing the distributed
control protocol is borrowed from backstepping technique. ϕi1
utilises the information of both in-degree and out-degree neigh-
bouring nodes of agent i. Then, we obtain the internal virtual
reference state x∗p1

i2 which will be tracked by xp1i2 , and ϕi1 can be
seen as the feedback error to the internal virtual reference state
x∗p1
i2 . Thus,ϕi2 is the error between x∗p1

i2 and xp1i2 , which can be fed
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to higher order virtual reference state x∗p1p2
i3 . By using the simi-

lar designing steps, Equation (5) can easily be obtained. Further-
more, ui is the final control signal which is used to control agent
i.

Let L̂u = Cu − Au be an undirected Laplacianmatrix, where

Au = A + AT

2
, Cu = Cr + Cc

2
.

Wefirst define a potential functionV1 associated with the Lapla-
cian matrix L̂u as follows:

V1 = 1
2
�xTL̂u�x = 1

2
∑

(i, j)∈E
|Au,i j|(xi1 − sgn

(Au,i j)x j1
)2

, (6)

where �x = (x11, x21, . . . , xN1)
T and Au,i j is the (i, j)th element

of matrixAu. Then,

V̇1 =
(
L̂u�x

)T
�̇x

= 1
2
[
(Cr − A)�x + (Cc − AT)�x

]T
�̇x

= 1
2

N∑
i=1

⎡
⎣∑

j∈Ni

|Ai j|(xi1 − sgn(Ai j)x j1)

+
∑
j∈Ñi

|A ji|(xi1 − sgn(A ji)x j1)

⎤
⎦ ẋi1

= 1
2

N∑
i=1

ϕi1x
p1
i2

= 1
2

N∑
i=1

ϕi1x
∗p1
i2 + 1

2

N∑
i=1

ϕi1
(
xp1i2 − x∗p1

i2
)
. (7)

Let ϕi2 = xp1i2 − x∗p1
i2 . Then, by Lemma 1 in Appendix 1,

V̇1 = −k1
2

N∑
i=1

ϕ2
i1 + 1

2

N∑
i=1

ϕi1ϕi2

≤ −k1
2

N∑
i=1

ϕ2
i1 +

N∑
i=1

ϕ2
i1 + 1

16

N∑
i=1

ϕ2
i2 (by Lemma 1)

≤ −b11
N∑
i=1

ϕ2
i1 + b12

N∑
i=1

ϕ2
i2, (8)

where b11 and b12 are two positive constants satisfying the
inequality (8). In the sequel, we make use of the form of xp1i2 to
define a new scalar function

Si2 =
∫ xi2

x∗
i2

(
rp1 − x∗p1

i2
)2−1/p1 dr, ∀i ∈ V . (9)

Referring to Proposition 1 in Appendix 2, Si2 � 0 and the corre-
sponding partial derivatives of Si2 are

∂Si2
∂xi2

= ϕ
2−1/p1
i2 ,

∂Si2
∂xi1

= −
(
2 − 1

p1

)
∂x∗p1

i2
∂xi1

∫ xi2

x∗
i2

(
rp1 − x∗p1

i2
)1−1/p1 dr,

∂Si2
∂x j1

= −
(
2 − 1

p1

)
∂x∗p1

i2
∂x j1

∫ xi2

x∗
i2

(
rp1 − x∗p1

i2
)1−1/p1 dr, j ∈ Ni.

Similarly, define another potential function containing the
information of xi1 and xi2 of all the agents as follows:

V2 = V1 +
N∑
i=1

Si2 = V1 +
N∑
i=1

∫ xi2

x∗
i2

(
rp1 − x∗p1

i2
)2−1/p1 dr.

(10)
Hence, the derivative of V2 with respect to time t is

V̇2 = V̇1 +
N∑
i=1

Ṡi2

= V̇1 +
N∑
i=1

∂Si2
∂xi2

ẋi2 +
N∑
i=1

∂Si2
∂xi1

ẋi1 +
N∑
i=1

∑
j∈Ni

∂Si2
∂x j1

ẋ j1

= V̇1 +
N∑
i=1

ϕ
2−1/p1
i2

[
x∗p2
i3 + (

xp2i3 − x∗p2
i3

)] +
N∑
i=1

∂Si2
∂xi1

ẋi1

+
N∑
i=1

∑
j∈Ni

∂Si2
∂x j1

ẋ j1

≤ −b11
N∑
i=1

ϕ2
i1 + b12

N∑
i=1

ϕ2
i2 +

N∑
i=1

ϕ
2−1/p1
i2 x∗p2

i3

+
N∑
i=1

|ϕi2|2−1/p1 |xp2i3 − x∗p2
i3 |

+
N∑
i=1

∣∣∣∣∂Si2∂xi1

∣∣∣∣ |ẋi1| +
N∑
i=1

∑
j∈Ni

∣∣∣∣ ∂Si2
∂x j1

∣∣∣∣ |ẋ j1|. (11)

Furthermore, from (5) we can derive that x∗p2
i3 = −k1/p12 ϕ

1/p1
i2

and

∣∣xp2i3 − x∗p2
i3

∣∣ ≤ 2
p1−1
p1

∣∣xp1p2i3 − x∗p1p2
i3

∣∣1/p1 = 2
p1−1
p1 |ϕi3|1/p1 .

By Lemma 1, we obtain

N∑
i=1

|ϕi2|2−1/p1
∣∣xp2i3 − x∗p2

i3
∣∣

≤ 2
p1−1
p1

N∑
i=1

|ϕi2|2−1/p1 |ϕi3|1/p1 ≤ b
′
22

N∑
i=1

ϕ2
i2 + b

′
23

N∑
i=1

ϕ2
i3, (12)

where b′
22 and b′

23 are two positive constants.
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Now,we concentrate on the latter two terms in (11). Note that
with Propositions 2 and 3, the following two inequalities hold:

∣∣∣∣∂Si2∂xi1

∣∣∣∣ |ẋi1| ≤ 4|ϕi2|
∣∣∣∣∣∂x

∗p1
i2

∂xi1
ẋi1

∣∣∣∣∣ ≤ 4γ i
21|ϕi2|(|ϕi1| + |ϕi2|),

∣∣∣∣ ∂Si2
∂x j1

∣∣∣∣ ∣∣ẋ j1
∣∣ ≤ 4|ϕi2|

∣∣∣∣∣∂x
∗p1
i2

∂x j1
ẋ j1

∣∣∣∣∣ ≤ 4ηi
2 j|ϕi2|(|ϕ j1| + |ϕ j2|),

j ∈ Ni,

where γ i
21 and ηi

2 j are positive constants. By virtue of Lemma 1,
we obtain

N∑
i=1

∣∣∣∣∂Si2∂xi1

∣∣∣∣ |ẋi1| +
N∑
i=1

∑
j∈Ni

∣∣∣∣ ∂Si2
∂x j1

∣∣∣∣ ∣∣ẋ j1
∣∣

≤ b
′′
21

N∑
i=1

ϕ2
i1 + b

′′
22

N∑
i=1

ϕ2
i2, (13)

where b′′
21 and b′′

22 are positive constants.
With (12) and (13), V̇2 can be rewritten as

V̇2 ≤ −b11
N∑
i=1

ϕ2
i1 + b12

N∑
i=1

ϕ2
i2 − k1/p12

N∑
i=1

ϕ2
i2 + b

′
22

N∑
i=1

ϕ2
i2

+ b
′
23

N∑
i=1

ϕ2
i3 + b

′′
21

N∑
i=1

ϕ2
i1 + b

′′
22

N∑
i=1

ϕ2
i2

≤ −b21
N∑
i=1

ϕ2
i1 − b22

N∑
i=1

ϕ2
i2 + b23

N∑
i=1

ϕ2
i3, (14)

where k2 and b11 are chosen properly such that −b11 + b′′
21 < 0

and −k1/p12 + b12 + b′
22 + b′′

22 < 0, and b21, b22, b23 are positive
constants.

Next, we utilise induction with similar steps above for 2 < m
� n − 1. Define

Sim =
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)2−1/p1···pm−1 dr. (15)

Then,

Vm = Vm−1 +
N∑
i=1

Sim = Vm−1

+
N∑
i=1

∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)2−1/p1···pm−1 dr. (16)

Thus, the derivative of Vm is

V̇m = V̇m−1 +
N∑
i=1

∂Sim
∂xim

ẋim +
N∑
i=1

m−1∑
l=1

∂Sim
∂xil

ẋil +
N∑
i=1

∑
j∈Ni

∂Sim
∂x j1

ẋ j1

= V̇m−1 +
N∑
i=1

∂Sim
∂xim

x∗pm
i,m+1 +

N∑
i=1

∂Sim
∂xim

(
xpmi,m+1 − x∗pm

i,m+1
)

−

−

Figure . Communication topology of four agents.

+
N∑
i=1

m−1∑
l=1

∂Sim
∂xil

ẋil +
N∑
i=1

∑
j∈Ni

∂Sim
∂x j1

ẋ j1

≤ V̇m−1 − (km)1/p1···pm−1

N∑
i=1

ϕ2
im +

N∑
i=1

∣∣∣ϕ2−1/p1···pm−1
im

∣∣∣

× ∣∣xpmi,m+1 − x∗pm
i,m+1

∣∣ +
N∑
i=1

m−1∑
l=1

∂Sim
∂xil

ẋil +
N∑
i=1

∑
j∈Ni

∂Sim
∂x j1

ẋ j1

≤ V̇m−1 − (km)1/p1···pm−1

N∑
i=1

ϕ2
im

+
N∑
i=1

(
b

′
imϕ2

im + b
′
i,m+1ϕ

2
i,m+1

)

+
N∑
i=1

m−1∑
l=1

∂Sim
∂xil

ẋil +
N∑
i=1

∑
j∈Ni

∂Sim
∂x j1

ẋ j1

≤ V̇m−1 − (km)1/p1···pm−1

N∑
i=1

ϕ2
im

+
N∑
i=1

(
b

′
imϕ2

im + b
′
i,m+1ϕ

2
i,m+1

)

+
N∑
i=1

m−1∑
l=1

4|ϕim|
∣∣∣∣∣∂x

∗p1···pm−1
im

∂xil
ẋil

∣∣∣∣∣
+

N∑
i=1

∑
j∈Ni

4|ϕim|
∣∣∣∣∣∂x

∗p1···pm−1
im

∂x j1
ẋ j1

∣∣∣∣∣ (by Proposition 2)

≤ V̇m−1 − (km)1/p1···pm−1

N∑
i=1

ϕ2
im +

N∑
i=1

(
b

′
imϕ2

im + b
′
i,m+1ϕ

2
i,m+1

)

+
N∑
i=1

m−1∑
l=1

4γ i
ml |ϕim|(|ϕi1| + · · · + |ϕim|)

+
N∑
i=1

∑
j∈Ni

4ηi
m j|ϕim|(|ϕ j1| + |ϕ j2|) (by Proposition 3)

≤ −bm−1,1

N∑
i=1

ϕ2
i1 − bm−1,2

N∑
i=1

ϕ2
i2 − · · · − bm−1,m−1

×
N∑
i=1

ϕ2
i,m−1 + bm−1,m

N∑
i=1

ϕ2
i,m
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Figure . Output trajectories yi = xi, i= , , , , with bipartite output consensus.

− (km)1/p1···pm−1

N∑
i=1

ϕ2
im +

N∑
i=1

(
b

′
imϕ2

im + b
′
i,m+1ϕ

2
i,m+1

)

+
N∑
i=1

(
b

′′
i1ϕ

2
i1 + b

′′
i2ϕ

2
i2 + . . . + b

′′
imϕ2

im

)
. (17)

Therefore, by appropriately choosing the parameters in (17), we
can rewrite V̇m as

V̇m ≤ −bm1

N∑
i=1

ϕ2
i1 − bm2

N∑
i=1

ϕ2
i2 − · · · − bmm

N∑
i=1

ϕ2
im

+ bm,m+1

N∑
i=1

ϕ2
i,m+1. (18)

Finally, we demonstrate V̇n ≤ 0. To that end, define

Vn = Vn−1 +
N∑
i=1

Sin, (19)

where

Sin =
∫ xin

x∗
in

(
rp1···pn−1 − x∗p1···pn−1

in
)2−1/p1···pn−1 dr. (20)

In addition, with the help of similar steps shown in calculating
V̇m for 2 < m � n − 1, the derivative of Vn is

V̇n = V̇n−1 +
N∑
i=1

∂Sin
∂xin

upn
i +

N∑
i=1

n−1∑
l=1

∂Sin
∂xil

ẋil +
N∑
i=1

∑
j∈Ni

∂Sin
∂x j1

ẋ j1

≤ −bn−1,1

N∑
i=1

ϕ2
i1 − bn−1,2

N∑
i=1

ϕ2
i2 − · · · − bn−1,n−1

N∑
i=1

ϕ2
i,n−1

+ bn−1,n

N∑
i=1

ϕ2
in + b

′
n1

N∑
i=1

ϕ2
i1 + b

′
n2

N∑
i=1

ϕ2
i2 + · · ·

+ b
′
nn

N∑
i=1

ϕ2
in − k1/p1···pn−1

n

N∑
i=1

ϕ2
in

≤ −bn1
N∑
i=1

ϕ2
i1 − bn2

N∑
i=1

ϕ2
i2 − · · · − bn,n−1

N∑
i=1

ϕ2
i,n−1

− bnn
N∑
i=1

ϕ2
in ≤ 0, (21)

where bn1, bn2, … , bnn are all positive constants.
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Figure . Trajectories of xi, i= , , , .

Then by integrating (21), we have

Vn(t ) −Vn(0) ≤ −bn1
N∑
i=1

∫ t

0
ϕ2
i1(σ )dσ − bn2

×
N∑
i=1

∫ t

0
ϕ2
i2(σ )dσ − · · · − bnn

×
N∑
i=1

∫ t

0
ϕ2
in(σ )dσ ≤ 0. (22)

Therefore, 0 � Vn(t) � Vn(0) and Vn(t) is bounded. Since
V̇n ≤ 0,

lim
t→∞Vn(t ) = 0. (23)

The preceding analysis, along with V̇n ≤ 0, yields

lim
t→∞ V̇n(t ) = 0. (24)

According to (21),

lim
t→∞ ϕik(t ) = 0, ∀i ∈ V, k = 1, 2, . . . , n.

Furthermore, with regard to (5), it is clear that xi2, xi3, … ,
xin are bounded and all approach zero when t → �. Since
(1/2)�xTL̂u�x, Si2, Si3, . . . , Sin are all nonnegative terms and G is
strongly connected, along with (6) and (23), we have

lim
t→∞V1(t ) = 0, (25)

and this implies that bipartite output consensus can be asymp-
totically achieved, which is satisfied with (4) in Definition 2. �
Remark 2: The distributed control law ϕi1 in (5) includes two
parts, i.e. the in-degree and out-degree information of agent
i. Therefore, more information from neighbours can guaran-
tee better performance of themulti-agent systems. Furthermore,
although the dynamics of each agent are high-order power inte-
grator, only output information is needed to be transferred to
the neighbours around, which greatly reduces the communica-
tion overhead.

4. Bipartite output consensus with input noises
We consider the case when input channels of multi-agent sys-
tem (3) are contaminated with unknown disturbances δ =
(δ1, δ2, . . . , δN )T ∈ R

N .
Assumption 1: There is an unknown external system

θ̇ = 	θ,

δ = 
Tθ, (26)
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Figure . Trajectories of xi, i= , , , .

where θ ∈ R
2, 	 ∈ R

2×2,
 ∈ R
2×N and the eigenvalues of	 are

all on the imaginary axis. The marginal stability of the exosys-
tem implies that δi is bounded by constants δ̄i, i.e. |δi| ≤ δ̄i,

∀i ∈ V .
To obtain a concise form, we only show the different parts

from (3) and (5). They are

ẋin = upn
i + δi (27)

and

ui = −
[
(knϕin)

1/p1···pn−1 + sgn
(
ϕ
2−1/p1···pn−1
in

)
δ̂i

]1/pn
,

˙̂
δi = κi

∣∣∣ϕ2−1/p1···pn−1
in

∣∣∣ , (28)

where δ̂i is the adaptive disturbance compensator and κ i is a pos-
itive gain parameter. Based on Theorem 1 andAssumption 1, we
provide the following theorem where input noises are added.

Theorem 2: If Equations (3) and (5) are updated with (27)
and (28), respectively, and other parts are kept unchanged in
Theorem 1, then the multi-agent system (3) with (27) can
asymptotically achieve bipartite output consensus. Moreover,
xi2, xi3, . . . , xin,∀i ∈ V are bounded and will approach zero.

Proof: All the proof steps are similar with the steps in Section 3
except the final step from (19). For simplicity, we restrict our
attention to the following different steps.

Vn = Vn−1 +
N∑
i=1

Sin +
N∑
i=1

1
2κi

δ̃2i , (29)

where δ̃i = δ̄i − δ̂i and κ i > 0. Then,

V̇n = V̇n−1 +
N∑
i=1

∂Sin
∂xin

(
upn
i + δi

) +
N∑
i=1

n−1∑
l=1

∂Sin
∂xil

ẋil

+
N∑
i=1

∑
j∈Ni

∂Sin
∂x j1

ẋ j1 −
N∑
i=1

1
κi

δ̃i
˙̂
δi

≤ −b̃n−1,1

N∑
i=1

ϕ2
i1 − b̃n−1,2

N∑
i=1

ϕ2
i2 − · · · − b̃n−1,n−1

N∑
i=1

ϕ2
i,n−1

+ b̃n−1,n

N∑
i=1

ϕ2
in + b̃

′
n1

N∑
i=1

ϕ2
i1 + b̃

′
n2

N∑
i=1

ϕ2
i2 + · · ·

+ b̃
′
nn

N∑
i=1

ϕ2
in − k1/p1···pn−1

n

N∑
i=1

ϕ2
in +

N∑
i=1

ϕ
2−1/p1···pn−1
in
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Figure . Trajectories of xi , i= , , ,  in D space.

×
(
δi − sgn

(
ϕ
2−1/p1···pn−1
in

)
δ̂i

)
−

N∑
i=1

1
κi

δ̃i
˙̂
δi. (30)

Note that

ϕ
2−1/p1···pn−1
in

(
δi−sgn

(
ϕ
2−1/p1···pn−1
in

)
δ̂i

)
≤

∣∣∣ϕ2−1/p1···pn−1
in

∣∣∣ δ̄i−∣∣∣ϕ2−1/p1···pn−1
in

∣∣∣ δ̂i= ∣∣∣ϕ2−1/p1···pn−1
in

∣∣∣δ̃i.
Therefore,

V̇n = V̇n−1 +
N∑
i=1

∂Sin
∂xin

(
upn
i + δi

) +
N∑
i=1

n−1∑
l=1

∂Sin
∂xil

ẋil

+
N∑
i=1

∑
j∈Ni

∂Sin
∂x j1

ẋ j1 −
N∑
i=1

1
κi

δ̃i
˙̂
δi

≤ −b̃n−1,1

N∑
i=1

ϕ2
i1 − b̃n−1,2

N∑
i=1

ϕ2
i2 − · · · − b̃n−1,n−1

×
N∑
i=1

ϕ2
i,n−1 + b̃n−1,n

N∑
i=1

ϕ2
in + b̃

′
n1

N∑
i=1

ϕ2
i1

−

−

Figure . Communication topology of six agents.

+ b̃
′
n2

N∑
i=1

ϕ2
i2 + · · · + b̃

′
nn

N∑
i=1

ϕ2
in − k1/p1···pn−1

n

N∑
i=1

ϕ2
in

+
N∑
i=1

(∣∣∣ϕ2−1/p1···pn−1
in

∣∣∣ − 1
κi

˙̂
δi

)
δ̃i. (31)

In order to remove the last item in (31), update δ̂i with

˙̂
δi = κi|ϕ2−1/p1···pn−1

in |. (32)
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Figure . Output trajectories yi = xi, i= , , … , , with bipartite output consensus and input noises.

Then, V̇n can be simplified to the following form

V̇n ≤ −b̃n1
N∑
i=1

ϕ2
i1 − b̃n2

N∑
i=1

ϕ2
i2 − · · · − b̃n,n−1

N∑
i=1

ϕ2
i,n−1

− b̃nn
N∑
i=1

ϕ2
in ≤ 0, (33)

where b̃n1, b̃n2, . . . , b̃nn are all positive constants. Go back to
(21) and its corresponding steps (22)–(25) in the proof of Theo-
rem 1, we can get the same conclusion that bipartite output con-
sensus can be reached. Furthermore, xi2, xi3, … , xin are bounded
and all approach zero when t → �. �
Remark 3: κ i is aimed at adapting the amplitude of unknown
disturbances δi. If κ i is too large, then a small change in ϕin can
cause a big surge in ui, which is too sensitive. In contrary, if κ i
is too small, there will hardly be a response to the input noise
δi. Therefore, the constant gain κ i can affect the performance of
adaptive noise compensator δ̂i. Furthermore, time-varying κ i(t)
can be considered in future works.

5. Implementations and performance analysis
We provide two examples to demonstrate the validity of the dis-
tributed control protocols established in this paper.

Example 1 (Signed digraph without input noises): The dynam-
ics of the multi-agent system are given as follows:

ẋi1 = xi2
ẋi2 = x3i3 (34)
ẋi3 = u3i , i = 1, 2, 3, 4.

There are four agents in this network and the topology is
shown in Figure 2 . The graph is strongly connected, digon sign-
symmetric and structurally balanced. Agents 1 and 2 are in one
group, while agents 3 and 4 are in the opposite group. Let k1 =
0.5, k2 = 10, k3 = 100 and the initial values of the four agents
are

(x11(0), x12(0), x13(0))T = (−1,−0.5, 1)T

(x21(0), x22(0), x23(0))T = (0.5, 1,−0.5)T

(x31(0), x32(0), x33(0))T = (2, 0.5,−1)T

(x41(0), x42(0), x43(0))T = (−1.5, 2,−2)T.

It is illustrated in Figure 3 that bipartite output consensus
can be reached. In Figures 4 and 5 , we can see that xi2 and xi3
approach zero, which is in concert with Theorem 1. In Figure 6,
we show the trajectories of xi in three-dimensional (3D) space.
Clearly, the four agents, from their initial positions, can achieve
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Figure . Trajectories of xi, i= , , … , , with input noises.

bipartite output consensus by virtue of only output information,
which in turn demonstrates the effectiveness of our distributed
control laws (5).
Example 2 (Signed digraph with input noises): In this example,
the dynamics of the multi-agent system are given as follows:

ẋi1 = xi2
ẋi2 = x3i3 (35)
ẋi3 = u3i + δi, i = 1, 2, . . . , 6,

and

	 =
[

0 1
−1 0

]
, 
 =

[
0.1 −0.1 0 0.3 0.2 −0.2
0.2 0.5 0.05 −0.05 0.1 0.05

]
.

The eigenvalues of matrix 	 are +i and −i, which are all on the
imaginary axis. Thus, according to Equation (26), we can obtain
the bounded oscillating signals δi, i = 1, 2, … , 6, which are the
input noises.

There are six agents and the topology is shown in Figure 7 .
The graph is also strongly connected, digon-sign symmetric and
structurally balanced. Agents 1, 2 and 3 are in one group, while
agents 4, 5 and 6 are in the opposite group. Let k1 = 0.5, k2 = 10,
k3 = 20, κ i = 0.01, i = 1, 2, … , 6, and the initial values of the

six agents are

(x11(0), x12(0), x13(0))T = (−2, 1,−0.5)T

(x21(0), x22(0), x23(0))T = (1.5,−0.5, 1)T

(x31(0), x32(0), x33(0))T = (2,−1, 1.5)T

(x41(0), x42(0), x43(0))T = (−1, 2,−1)T

(x51(0), x52(0), x53(0))T = (−0.5, 1.5, 0)T

(x61(0), x62(0), x63(0))T = (1, 0, 0.5)T.

It is illustrated in Figure 8 that bipartite output consensus can
be achieved in the presence of input noises. In Figures 9 and 10 ,
we can see that xi2 and xi3 are bounded and approach zero, which
is in accordance with Theorem 2 and in turn verifies the validity
of our distributed control protocols (28).

Remark 4: In Example 2, with several oscillations, the third
dimension of each agent finally approaches zero. Thus, the
developed distributed control protocol (28) can deal with the
nonlinearity of high-order power integrator based merely on
output information. Furthermore, due to the high nonlinearity
of the third dimension in themulti-agent system, when bipartite
output consensus has been achieved, xi3 is still varying and will
vary for a period of time as shown in Figure 10.
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Figure . Trajectories of xi, i= , , … , , with input noises.

6. Conclusions
In this paper, we study bipartite output consensus in networked
multi-agent systems of high-order power integrators with input
noises and signed digraph. An adaptive disturbance compen-
sator and the technique of adding power integrator are intro-
duced to deal with the input noises and the nonlinearity of the
multi-agent systems, respectively. In addition, the distributed
controllers are divided into three parts: the output information
of each agent and its neighbours, the state feedback within its
internal system and the input adaptive noise compensator. By
using our designed distributed control protocol, bipartite out-
put consensus can be achieved, which is one of the ramifications
in consensus problems. Note that in physical implementations,
the communication intensity cannot maintain constant and the
capacity of signal channels is limited. Thus, our future work
will concentrate on switching topologies, time delays and packet
dropouts over the networked multi-agent systems of high-order
power integrators.
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Appendix 1. Frequently used important lemmas
We give three important lemmas frequently used throughout
this paper.

Lemma 1(cf. Qian & Lin, 2001): Assume x, y, m, n, α, β are all
positive real numbers. Then, the following inequality holds

αxmyn ≤ βxm+n + n
m + n

(
m + n

n

)− m
n

α
m+n
n β− m

n ym+n.

(A1)
If m, n are odd integers, x, y can be real numbers.

Lemma 2 (cf. Qian & Lin, 2001): With x ∈ R, y ∈ R and p � 1
an integer, the following two inequalities hold

∣∣x + y
∣∣p ≤ 2p−1

∣∣xp + yp
∣∣ , (A2)

(|x| + ∣∣y∣∣) 1
p ≤ |x| 1

p + ∣∣y∣∣ 1
p ≤ 2

p−1
p

(|x| + ∣∣y∣∣) 1
p . (A3)

If p � 1 is an odd integer, then

∣∣x − y
∣∣p ≤ 2p−1 ∣∣xp − yp

∣∣ . (A4)

Lemma 3 (cf. Qian & Lin, 2001): Suppose that α ∈ R, β ∈ R

are both nonnegative real numbers and p � 1, q � 1 are integers,
then

αp−1βq ≤ αp + β pq. (A5)

Appendix 2. Useful propositions
The following propositions are the foundation of the proofs for
the main results in this paper.

Proposition 1: Denote Sim � 0 (i = 1, 2, … , N, m = 2, 3, … , n)
a scalar function, where

Sim =
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)2−1/p1···pm−1 dr. (B1)

Then, the partial derivatives of Sim are

∂Sim
∂xim

= ϕ
2−1/p1···pm−1
im ,

∂Sim
∂xil

= −
(
2 − 1

p1 · · · pm−1

)
∂x∗p1···pm−1

im

∂xil

×
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)1−1/p1···pm−1 dr,

∂Sim
∂x j1

= −
(
2 − 1

p1 · · · pm−1

)
∂x∗p1···pm−1

im

∂x j1

×
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)1−1/p1···pm−1 dr,

where l = 1, 2, … , m − 1, j ∈ Ni and p1, p2, … , pm − 1 are odd
integers.

Proof: According to the definition of Sim, when xim ≥ x∗
im, we

have r ≥ x∗
im. By virtue of Lemma 2,

Sim ≥
∫ xim

x∗
im

[
21−p1···pm−1

(
r − x∗

im
)p1···pm−1

]2−1/p1···pm−1
dr

= c1
(
xim − x∗

im
)2p1···pm−1 ≥ 0,

where c1 > 0. Likewise, when xim < x∗
im, we can infer that

Sim =
∫ xim

x∗
im

(
x∗p1···pm−1
im − rp1···pm−1

)2−1/p1···pm−1 d(−r)

≥
∫ xim

x∗
im

[
21−p1···pm−1

(
x∗
im − r

)p1···pm−1
]2−1/p1···pm−1

d(−r)

= c2
(
x∗
im − xim

)2p1···pm−1
> 0,

where c2 > 0. Thus, Sim � 0.
In the sequel, we will obtain the partial derivatives of Sim,

� i= 1, 2, … ,N,m= 2, 3, … , n. It is straightforward to derive
that

∂Sim
∂xim

= (
xp1···pm−1
im − x∗p1···pm−1

im
)2−1/p1···pm−1 = ϕ

2−1/p1···pm−1
im .

(B2)

Denote

x̄Ni1 = (x j11, x j21, . . . , x j|Ni1 |1), k = 1, 2, . . . , |Ni1|,
jk ∈ Ni1,

�
(l)
i,m−1 = (

xi1, . . . , xi,l−1, xil + �, xi,l+1, . . . , xi,m−1, x̄Ni1

)
,

∀1 ≤ l ≤ m − 1
x̃i,m−1 = (

xi1, . . . , xi,l−1, xil, xi,l+1, . . . , xi,m−1, x̄Ni1

)
,

∀1 ≤ l ≤ m − 1
pM = p1 · · · pm−1.
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Then,

∂Sim
∂xil

= lim
�→ 0

Sim
(
�

(l)
i,m−1, xim

) − Sim
(
x̃i,m−1, xim

)
�

= lim
�→ 0

∫ xim
x∗
im

(
�

(l)
i,m−1

)(rpM −x∗pM
im (�

(l)
i,m−1))

2−1/pMdr−∫ xim
x∗
im(x̃i,m−1)

(rpM −x∗pM
im (x̃i,m−1))

2−1/pMdr

�

= lim
�→ 0

∫ xim
x∗
im

(
�

(l)
i,m−1

)(rpM −x∗pM
im (�

(l)
i,m−1))

2−1/pMdr−∫ xim
x∗
im(x̃i,m−1)

(rpM −x∗pM
im (�

(l)
i,m−1))

2−1/pMdr

�

+lim
�→ 0

∫ xim
x∗
im(x̃i,m−1)

(rpM −x∗pM
im (�

(l)
i,m−1))

2−1/pMdr−∫ xim
x∗
im(x̃i,m−1)

(rpM −x∗pM
im (x̃i,m−1))

2−1/pMdr
�

= lim
�→ 0

∫ x∗
im(x̃i,m−1)

x∗
im(�

(l)
i,m−1)

(rpM−x∗pM
im (�

(l)
i,m−1))

2−1/pMdr

�
−

(
2− 1

pM

)
∂x∗pM

im

∂xil

∫ xim

x∗
im

(rpM−x∗pM
im )1−1/pMdr. (B3)

Then, we consider the limit shown in (B3). Note that
∣∣∣∣∣∣∣
∫ x∗

im(x̃i,m−1 )

x∗
im(�

(l)
i,m−1 )

(rpM − x∗pM
im (�

(l)
i,m−1))

2−1/pMdr

�

∣∣∣∣∣∣∣
≤

∣∣∣x∗pM
im (x̃i,m−1)−x∗pM

im (�
(l)
i,m−1)

∣∣∣
|�|

×
∣∣∣x∗

im(x̃i,m−1)−x∗
im(�

(l)
i,m−1)

∣∣∣ ∣∣∣x∗pM
im (x̃i,m−1)−x∗pM

im (�
(l)
i,m−1)

∣∣∣1−1/pM
,

and x∗pM
im (�

(l)
i,m−1) is C∞. Therefore,

lim
�→ 0

∫ x∗
im(x̃i,m−1)

x∗
im(�

(l)
i,m−1)

(rpM − x∗pM
im (�

(l)
i,m−1))

2−1/pMdr

�
= 0.

Thus,

∂Sim
∂xil

= −
(
2 − 1

p1 · · · pm−1

)
∂x∗p1···pm−1

im

∂xil

×
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)1−1/p1···pm−1 dr,

l = 1, 2, . . . ,m − 1. (B4)

Consequently, we follow similar steps to obtain

∂Sim
∂x j1

= −
(
2 − 1

p1 · · · pm−1

)
∂x∗p1···pm−1

im

∂x j1

×
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)1−1/p1···pm−1 dr, j ∈ Ni.

(B5)
�

Proposition 2: If Sim � 0 (i = 1, … , N, m = 2, … , n), we can
obtain

∣∣∣∣∂Sim∂x j1

∣∣∣∣ ≤ 4|ϕim|
∣∣∣ ∂x∗p1 ···pm−1

im
∂x j1

∣∣∣ , j ∈ Ni, (B6)∣∣∣∣∂Sim∂xil

∣∣∣∣ ≤ 4|ϕim|
∣∣∣ ∂x∗p1 ···pm−1

im
∂xil

∣∣∣ , l = 1, 2, . . . ,m − 1. (B7)

Proof: First, by using the basic properties of inequalities,

∣∣∣∣∂Sim∂x j1

∣∣∣∣ =
∣∣∣∣ −

(
2 − 1

p1 · · · pm−1

)
∂x∗p1···pm−1

im

∂x j1

×
∫ xim

x∗
im

(
rp1···pm−1 − x∗p1···pm−1

im
)1−1/p1···pm−1 dr

∣∣∣∣
≤

(
2 − 1

p1 · · · pm−1

) ∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1

∣∣∣∣∣ |ϕim|

× ∣∣xim − x∗
im

∣∣ |ϕim|−1/p1···pm−1

≤
(
2 − 1

p1 · · · pm−1

) ∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1

∣∣∣∣∣ |ϕim| ∣∣xim − x∗
im

∣∣
× 2

p1 ···pm−1−1
p1 ···pm−1

1∣∣xim − x∗
im

∣∣
≤ 4|ϕim|

∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1

∣∣∣∣∣ , j ∈ Ni. (B8)

Following similar steps,

∣∣∣∣∂Sim∂xil

∣∣∣∣ ≤ 4|ϕim|
∣∣∣∣∣∂x

∗p1···pm−1
im

∂xil

∣∣∣∣∣ , l = 1, 2, . . . ,m − 1,

and this completes the proof. �
Proposition 3: The following inequalities hold:

∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1
ẋ j1

∣∣∣∣∣ ≤ ηi
m j(|ϕ j1| + |ϕ j2|), j ∈ Ni, (B9)∣∣∣∣∣∂x

∗p1···pm−1
im

∂xil
ẋil

∣∣∣∣∣ ≤ γ i
ml (|ϕi1| + |ϕi2| + · · · + |ϕim|),

l = 1, 2, . . . ,m − 1, (B10)

where ηi
m j ≥ 0, γ i

ml ≥ 0,∀i, j ∈ V,m = 2, 3, . . . , n.
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Proof: First, we demonstrate (B9) of Proposition 3. When
m = 2,

∣∣∣∣∣∂x
∗p1
i2

∂x j1
ẋ j1

∣∣∣∣∣ =
∣∣∣∣∣∂x

∗p1
i2

∂x j1

∣∣∣∣∣
∣∣ϕ j2 − k1ϕ j1

∣∣
= k1(|Ai j| + |A ji|)

∣∣ϕ j2 − k1ϕ j1
∣∣ ≤ ηi

2 j(
∣∣ϕ j1

∣∣ + ∣∣ϕ j2
∣∣).

Consequently, when 2 < m � n,

∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1
ẋ j1

∣∣∣∣∣ =
∣∣∣∣∂(−km−1ϕi,m−1)

∂x j1

∣∣∣∣ ∣∣ϕ j2 − k1ϕ j1
∣∣

= k1k2 . . . km−1
∣∣|Ai j| + |A ji|

∣∣ ∣∣ϕ j2 − k1ϕ j1
∣∣

≤ ηi
m j(

∣∣ϕ j1
∣∣ + ∣∣ϕ j2

∣∣).
Therefore, we can infer that

∣∣∣∣∣∂x
∗p1···pm−1
im

∂x j1
ẋ j1

∣∣∣∣∣ ≤ ηi
m j(|ϕ j1| + |ϕ j2|), j ∈ Ni.

In what follows, we restrict our attention to demonstrating
(B10) with induction.

Step 1 (Initial result):Whenm = 2,

∣∣∣∣∣∂x
∗p1
i2

∂xi1
ẋi1

∣∣∣∣∣ = ∣∣−k1(Cr,ii + Cc,ii)
∣∣ ∣∣xp1i2 ∣∣

= k1(Cr,ii + Cc,ii) |ϕi2 − k1ϕi1| ≤ γ i
ml (|ϕi1| + |ϕi2|),

which satisfies (B10).
Step 2 (Inductive assumption): �m = 3, 4, … , n − 1,

assume
∣∣∣∣∣∂x

∗p1···pm−2
i,m−1

∂xil
ẋil

∣∣∣∣∣ ≤ γ i
m−1,l (|ϕi1| + |ϕi2| + · · · + |ϕi,m−1|),

l = 1, 2, . . . ,m − 1.

Step 3 (Validation): For m = n, we consider two cases, i.e. l =
1, 2, … , m − 2 and l = m − 1, respectively. First, when l = 1,
2, … ,m − 2,∣∣∣∣∣∂x

∗p1···pm−1
im

∂xil
ẋil

∣∣∣∣∣ =
∣∣∣∣∂(−km−1ϕi,m−1)

∂xil
ẋil

∣∣∣∣
= km−1

∣∣∣∣∣∂(xp1···pm−2
i,m−1 − x∗p1···pm−2

i,m−1 )

∂xil
ẋil

∣∣∣∣∣
≤ km−1γ

i
m−1,l (|ϕi1| + |ϕi2| + · · · + |ϕi,m−1|).

Subsequently, when l = m − 1 and with the aid of Lemma 3,
∣∣∣∣∣∂x

∗p1···pm−1
im

∂xi,m−1
ẋi,m−1

∣∣∣∣∣
= km−1

∣∣∣∣∣∂(xp1···pm−2
i,m−1 − x∗p1···pm−2

i,m−1 )

∂xi,m−1
ẋi,m−1

∣∣∣∣∣
= km−1p1 · · · pm−2

∣∣∣xp1···pm−2−1
i,m−1 ẋi,m−1

∣∣∣
= km−1p1 · · · pm−2

∣∣∣xp1···pm−2−1
i,m−1 xpm−1

im

∣∣∣
≤ km−1p1 · · · pm−2

( ∣∣xp1···pm−1
im

∣∣ + ∣∣xp1···pm−2
i,m−1

∣∣ ) (by Lemma 3)

≤ γ i
m,m−1(|ϕi1| + |ϕi2| + · · · + |ϕim|).

In regard to the above discussions, for m = 2, 3, … , n, the fol-
lowing inequalities

∣∣∣∣∣∂x
∗p1···pm−1
im

∂xil
ẋil

∣∣∣∣∣ ≤ γ i
ml (|ϕi1| + |ϕi2| + · · · + |ϕim|),

l = 1, 2, . . . ,m − 1

hold, and this completes the proof. �
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