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a b s t r a c t

We investigate the problem of lung nodule malignancy suspiciousness (the likelihood of nodule ma-
lignancy) classification using thoracic Computed Tomography (CT) images. Unlike traditional studies
primarily relying on cautious nodule segmentation and time-consuming feature extraction, we tackle a
more challenging task on directly modeling raw nodule patches and building an end-to-end machine-
learning architecture for classifying lung nodule malignancy suspiciousness. We present a Multi-crop
Convolutional Neural Network (MC-CNN) to automatically extract nodule salient information by em-
ploying a novel multi-crop pooling strategy which crops different regions from convolutional feature
maps and then applies max-pooling different times. Extensive experimental results show that the pro-
posed method not only achieves state-of-the-art nodule suspiciousness classification performance, but
also effectively characterizes nodule semantic attributes (subtlety and margin) and nodule diameter
which are potentially helpful in modeling nodule malignancy.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Lung cancer is an aggressive disease carrying a dismal prog-
nosis with a 5-year survival rate at 18% [1]. Despite the develop-
ment of multi-modality treatments over the past decade, lung
cancer remains the leading death of cancer and accounts for ap-
proximately 27% of all cancer deaths [2]. Technological advances in
Computed Tomography (CT) have been routinely used in lung
cancer detection, risk assessment, and clinical management. In
particular, the increasing quantity of CT image assays has created a
unique avenue for data-driven analysis to capture underlying
cancer characteristics at a macroscopic level, allowing identifica-
tion of prognostic imaging biomarkers [3].

In this study, we investigate the problem of automatic lung
nodule malignancy suspiciousness classification using CT imaging
data. The annotation of nodule malignancy suspiciousness has
permitted a chance to evaluate consensus assessments from
lecular Imaging, Institute of
0190, China.
gyang@bjtu.edu.cn (F. Yang),
different experienced radiologists. Specifically, the automatic
classification of malignancy suspiciousness on CT studies is a
worthy task, because it would facilitate radiologists to assess early
risk factors which is essential in lung cancer research [4,5]. A ty-
pical implication of such analysis is to provide useful cues for
subsequent therapeutic plannings and holds promise for improv-
ing individualized patient management. For example, distinct
malignancy likelihood derived from imaging can be used to re-
commend follow-up treatments including CT surveillance (e.g. low
likelihood score) or biopsy test and surgical resection (e.g. high
likelihood score) [6]. Despite different approaches were proposed
for lung nodule diagnosis, novel data-driven techniques are re-
quired to advance the predictive power with CT imaging, espe-
cially for the prediction on malignancy suspiciousness.

Image-based techniques for analyzing lesions are normally per-
formed with detection [7,8], segmentation [9–12], hand-crafted
feature engineering [13,14], and category labelling [15–18]. Zinovev
et al. [19] adopted a belief decision tree approach to predict nodule
semantic attributes. Chen et al. [20] proposed to use a neural net-
work ensemble scheme to distinguish probably benign, uncertain
and probably malignant lung nodules. Han et al. [16] used a 3-D
image-based texture feature analysis for nodule diagnosis. More
recently, Balagurunathan et al. [14] and Aerts et al. [13] extracted a
number of nodule image features to investigate their prognostic
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Table 1
Some classification results on LIDC-IDRI dataset from literatures. “NA” denotes
“nodule attributes” and “MS” denotes “malignancy suspiciousness”.

Related work Label Accuracy AUC Sample size

Zinovev et al. [19] NA 54.32% – 914
Chen et al. [20] MS 78.70% – 47
Han et al. [16] MS – 0.927 1356
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power. Related studies on the Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI) dataset [21] are
shown in Table 1. However, all these methods rely on nodule seg-
mentation as a prerequisite. Notably, automatic nodule segmenta-
tion may affect classification results since methods such as region
growing and level set typically depend on initialization. Working on
these segmented regions may yield inaccurate features that lead to
erroneous outputs. To derive a suspiciousness-sensitive descriptor
in CT imaging, we need to overcome at least two major obstacles:
the difficulty of nodule delineation caused by a large range of no-
dule morphology variation, and the challenge posed by the nodule
radiological heterogeneity for computational models to capture
quantitative characteristics.

Image patch-based approaches provide an alternative way for
the region of interest (ROI) definition [22,23]. Researchers are
seeking visual feature descriptors, such as Local Binary Patterns
(LBP) [24] and Histogram of Oriented Gradients (HOG) [25], to
refine measurement on lung cancer imaging. Nevertheless, the
yielded textural features are largely determined by the parameter
setting. Thus, using them to accurately describe the variability of
lung nodules is difficult.

In response to these challenges, we utilize the Convolutional
Neural Network (CNN) [26–28] to build an end-to-end computa-
tional architecture which is robust in lung nodule image feature
extraction and malignancy suspiciousness classification. We pro-
pose a computational architecture—the Multi-crop Convolutional
Neural Network (MC-CNN)—to learn high-level suspiciousness-
specific features for lung nodule classification. As outlined in Fig. 1,
our approach automatically classifies nodule malignancy suspi-
ciousness by extracting a set of highly compact features. It is an
end-to-end architecture which embeds nodule feature extraction
into a hierarchical network. The proposed method simplifies
conventional lung nodule malignancy suspiciousness classification
by removing nodule segmentation and hand-crafted feature (e.g.,
texture and shape compactness) engineering work. Our main
contributions can be summarized as follows:
Fig. 1. The proposed MC-CNN architecture for lung nodule malignancy suspiciousness c
the feature maps. The inside cuboid represents the 3-D convolution kernel and the insi
hidden feature layer is marked at the bottom. The output layer is a softmax layer that
malignancy suspiciousness and high malignancy suspiciousness. The pink arrow indicat
improving classification performance. (For interpretation of the references to color in th
1. We demonstrate that even without nodule segmentation and
hand-crafted feature engineering which are time-consuming
and subjective, the high-level features extracted by our MC-CNN
from detected nodule patches are able to present high inter-
class variations related to nodule malignancy suspiciousness
(Fig. 2), bridging the gap between the raw nodule image and the
malignancy suspiciousness.

2. We propose a multi-crop pooling operation which is a specia-
lized pooling strategy for producing multi-scale features to
surrogate the conventional max-pooling operation. Without
using multiple networks to produce multi-scale features, the
proposed approach applying on a single network is effective in
computational complexity (Section 4.2).

3. Beyond nodule malignancy suspiciousness classification, we
extend the proposed approach to quantify nodule semantic la-
bels as well as to estimate nodule diameter that may potentially
assist researchers in evaluating malignancy uncertainty (Section
4.5). Our results showed the possible applications of the
proposed method in other lung nodule-relevant analysis that
may potentially assist researchers in evaluating malignancy
uncertainty.

Applying a supervised learning scheme in deep feature ex-
traction, our approach is in contrast with an auto-encoder ap-
proach [30] that applied an unsupervised learning method with-
out prior labeling information. The proposed method also differs
from our previous work based on the multi-scale CNN model [31]
which utilized multiple CNNs in parallel with different scales of
nodule images. In [31], a resampling strategy was used to uni-
formly represent nodule patches. However, multiple networks
become the main burden for training CNNs efficiently since they
involve more computational costs, especially when dealing with
high-resolution images. As opposed to the design of multiple CNNs
[31], the proposed model simplified the training process by re-
placing multiple CNNs with the multi-crop pooling architecture
that is specially tailored to lung nodule malignancy suspiciousness
classification. Furthermore, our model underscored the knowledge
extraction from feature space rather than image space. In other
words, the computation is specified on the intermediate con-
volutional features (i.e., feature space), rather than different scales
of raw input signals (i.e., image space).

The rest of the paper is organized as follows. Section 2 in-
troduces the proposed multi-crop CNN architecture. Section 3
presents the detail of the dataset and data augmentation. Section 4
describes the experimental setup and results. Section 5 is the
discussion and Section 6 concludes the paper.
lassification. The numbers along each side of the cuboid indicate the dimensions of
de square stands for the associated 2-D pooling region. The dimension of the final
predicts the probability of the class of nodule malignancy suspiciousness, i.e., low
es a multi-crop pooling layer that serves as a surrogate of a max-pooling layer for
is figure caption, the reader is referred to the web version of this paper.)



Fig. 2. Feature visualization. “LMNs” indicate low malignancy-suspicious nodules and “HMNs” represent high malignancy-suspicious nodules. Two major components were
computed and projected in a 2-D space by the Principal Component Analysis (PCA) [29]. Left: features from original pixel-based nodule patches; right: deep features from the
proposed method. Visualization indicates that the MC-CNN is effective in yielding highly-discriminative features.
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2. Methods

In recent studies [26,32,33], the CNN architecture has been
brought to the forefront in the image processing field. The core
computation seeks a feature representation, also known as the
activation of the final hidden layer in the network, that is trans-
formed from high-dimensional features in ×RM N and remains well
separated in a low-dimensional ×RP 1 space ( < ×P M N). Specifi-
cally, two computational units including convolutional layers and
pooling layers are used to quantify the mechanism. The network
defines a feature-extraction cascade consisting of concatenated
convolutional layers and pooling layers (i.e., “ConvþPool”). Thus,
the formed hierarchical network can learn high-level compact
features from signal activations of high layers. As shown in Fig. 1,
our MC-CNN also consists of “ConvþPool” layers. However, a
proposed multi-crop pooling layer (Section 2.2) is used to surro-
gate the max-pooling layer to extract multi-scale features.

Given the lung nodule CT images, our goal is to discover a set of
discriminative features from the proposed hierarchical neural
networks and thus to capture the essence of suspiciousness-spe-
cific nodule information. The challenge is that the image space is
heterogeneous including both healthy tissues and nodules at dif-
ferent visual scales. Compared to the conventional feature ex-
traction [13,14,34], we propose an integrated computational deep
learning architecture. The major components which form the basis
of our multi-crop CNN are presented from Sections 2.1 to 2.3.

2.1. Convþpool layer design

The CNN starts from a convolutional layer where we adopt the
Randomized Leaky Rectified Linear Units (RReLU) [35,36] as a non-
linear transformation. Formally, the convolution operation is de-
fined by

∑= ⁎ +
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y c h bRReLU ,

1
j

i

ij i j

where hi and yj are the ith input map and the jth output map,
respectively. We define cij as the convolution kernel between the
ith input map and the jth output map (n denotes the 2-D con-
volution). bj is the bias of the jth output map. hi, yj and cij are all
2-D. The entire input, output and convolution kernel of a con-
volutional layer are a stack of hi, yj, and cij. As seen in Fig. 1, there
are 64 CT slices (hi) in the input layer and the convolutional layer
outputs 64 convolutional feature maps (yj). Accordingly, the
number of convolution kernels is 64 with dimension of × ×3 3 64
voxels. Both cij and bj are continuously learned in the network
training process. The non-linear transformation function RReLU(x)
[35] is expressed as
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where a is a random factor sampled from a uniform distribution
( )U b b,l u , and bl and bu are the lower and higher bounds of the

distribution respectively. RReLU allows for a small, non-zero gra-
dient initialization for unit activation that has been proven to be
less prone to overfit the dataset [35,36] than conventional ReLU
[26] in a classification task, especially when the training samples
are limited.

Following the convolutional layer, a max-pooling layer is
commonly introduced to select feature subsets. It is defined as

= { }
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where s is the size of pooling region. ( )y j k
i
, represents the neuron at

position (j,k) in the ith output map. ( · + · + )h j s m k s n
i

, denotes the neuron

at position ( · + · + )j s m k s n, in the ith input map where m and n
are the offsets of the position. The advantage of using the max-
pooling layer is its translation invariability even when different
nodule images are not well-aligned. In the following section, we
introduce our multi-crop pooling strategy which can surrogate the
traditional max-pooling operation.

2.2. Multi-crop pooling strategy

We extend the traditional max-pooling layer into our multi-
crop pooling layer which allows the capture of nodule-centric vi-
sual features. Traditional max-pooling layers in the network play a
role of selecting feature subsets and reducing the size of the fea-
ture maps. However, the max-pooling operation performs
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uniformly on each feature map, and thus the max-pooling layer is
a single-level feature reduction operation. Such a setting hinders it
from capturing accurate object-specific information when the size
of objects varied largely in the images. As seen in Fig. 3, a large
variability of nodule sizes steers us to pursue an alternative
strategy for capturing nodule sensitive information.

We proposed a multi-crop layer to surrogate the conventional
max-pooling layer. It is a strategy with repetitive pooling features,
enabling a multi-scale feature extraction from the input feature
maps on nodule samples. Given a stack of feature maps from a
previous convolutional layer, a multi-crop strategy is designed to
fully capture nodule-centric features. As shown in Fig. 4, the
concatenated nodule-centric feature = [ ]f f f f, ,0 1 2 is formed from
three nodule-centric feature patches R R R, ,0 1 2 respectively. Speci-
fically, let the size of R0 be × ×l l n, where ×l l is the dimension of
the feature map and n is the number of feature maps:

= − { } = { } ( )( − )f R imax pool , 0, 1, 2 , 4i
i

i
2

where R1, R2 are two center regions with size of ( ) × ( ) ×l l n/2 /2
and ( ) × ( ) ×l l n/4 /4 . The superscript of “max-pool” indicates the
frequency of the utilized max-pooling operation on Ri. In Fig. 4, the
input of multi-crop pooling operation is the convolutional features
R0 obtained from either the original image or the pooled features.
R1 is the center region cropped from R0 and R2 is the center region
cropped from R1. Then, R0 is max-pooled twice and R1 is max-
pooled once to generate pooled feature maps f0 and f1. R2 serves as
f2 without any pooling operation. The final multi-crop feature is
made up with the concatenation of f0, f1, and f2. Specifically, the
strategy on targeting nodule-specific patches allows us to feed
multi-scale nodule sensitive information into the following con-
volutional layers. The functionality of the multi-crop pooling layer
is similar to that of the max-pooling layer since they both pool the
input feature maps. Thus, it can surrogate any max-pooling layers
for the purpose of extracting multi-scale features. The effective-
ness of multi-crop features is discussed in Section 4.2.

The objective of multi-crop pooling strategy is to extract multi-
scale features from a single network. The strategy draws inspira-
tion from spatial pyramid pooling network (SPPNet) [37] which
concatenated the feature pyramid as the final feature vector. Al-
though both SPPNet and the proposed method share a similarity in
extracting features at different scales, several remarkable differ-
ences are recognized: (1) the pooling frequency of multi-crop
pooling relies on feature location in the feature map, while spatial
pyramid pooling strategy pools features at different location
equally; (2) the output features of our multi-crop pooling layer at
different scales have the same dimension while the feature di-
mensions from spatial pyramid pooling are determined by their
pooling levels; (3) a third and more important distinction is that
the output of our multi-crop pooling at each scale can be con-
catenated to feed into the following convolutional layer, while the
output of spatial pyramid pooling can only be placed at the top of a
CNN.

Speaking of computational complexity, unlike conventional
multi-scale features [31] with multiple parallel networks in image
space, the multi-crop pooling layer could generate multi-scale
features from a singular MC-CNN pipeline, which greatly simplifies
the training process and shortens the training time without sa-
crificing the classification accuracy (Section 4.2).

2.3. Loss function

In general, multiple pairs of concatenated ConvþPool layers
consist of a major network architecture and the last pooling layer
is usually connected to a fully-connected layer. The output layer of
the entire network is a 2-way softmax layer (see Fig. 1) predicting
the probability distribution over low malignancy suspiciousness
and high malignancy suspiciousness:

=
( ′)

( ′ ) + ( ′)
= { }

( )
p

y

y y
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exp exp
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j
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where ′ = ∑ ′· + ′=y h w bj i i i j j1
32

, is the linear combination of the input

′hi (the activations of the final hidden features in Fig. 1). wi j, is the
weight and ′bj is the scalar.

The network is learned by minimizing the cross entropy loss,
which can be expressed as

= − ( + ( − ) ) ( )LOSS q p q plog 1 log , 61 0

where q indicates suspiciousness label with the value 1 or 0 cor-
responding to being high suspiciousness or low suspiciousness
respectively. The network is trained using Stochastic Gradient
Descent (SGD) with a standard backprop [38,39].

2.4. Prediction modeling and model evaluation

In addition to classify nodule malignancy suspiciousness cate-
gory, we also predict nodule attributes including nodule subtlety,
margin, and diameter (Section 4.5), which could potentially be
used to model nodule malignancy uncertainty. For malignancy
suspiciousness, subtlety and margin, we model them as a binary
classification problem and predict whether the nodule belongs to
the high score category or the low score category. For nodule
diameter estimation, we modify our MC-CNN to be a regression
model by replacing the last softmax layer with a single neuron
which predicts the estimated diameter in a real value. Balanced
datasets, obtained by sample selection, are prepared for the clas-
sification tasks. For diameter estimation model, the entire dataset
without any balancing process is used. More detailed discussions
on the validation setting are given in Section 3.

In order to do model selection for predicting outcomes, we split
the dataset into the training set, validation set and test set. Each
network model was trained for 5000 iterations, and we saved the
trained model at every 100 iterations. After the entire training
process, the associated validation scores obtained from the vali-
dation set were sorted in a descending order. We then selected the
top 3 models as the final trained models and the prediction out-
come of a test patch was the average of the ensemble probability
scores.

The performance of classifying malignancy suspiciousness
(Section 4.2), subtlety and margin (Section 4.5.1), and of estimat-
ing nodule diameter (Section 4.5.2) were evaluated via five-fold
cross validation. In each experiment, three folds were used as the
training set. One fold was used as the validation set and the rest
one as the test set. We reported the classification performance by
averaging the classification accuracies and the area under the
curve (AUC) scores across 30 times tests.
3. Dataset description

3.1. Dataset

The dataset used in this work is the LIDC-IDRI dataset [21],
consisting of 1010 patients with lung cancer thoracic CT scans as
well as mark-up annotated lesions. We included nodules along
with their annotated centers from the nodule collection report.1

The diameters of the nodules range from 3 mm to 30 mm. Since
the resolution of the images varied, we resampled images using

http://www.via.cornell.edu/lidc


Fig. 3. Nodule sample images. We illustrate that both high malignancy suspicious cases (first row) and low malignancy suspicious (second row) cases have a large diameter
range (3–30 mm).

Fig. 4. Illustration of the multi-crop pooling operation. The input of multi-crop pooling operation is the convolutional features R0 obtained from either the original image or
the pooled features. R1 is the center region cropped from R0 and R2 is the center region cropped from R1. Then, R0 is max-pooled twice and R1 is max-pooled once to generate
pooled feature maps f0 and f1. R2 serves as f2 without any pooling operation. The final multi-crop feature is made up with the concatenation of f0, f1, and f2.
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spline interpolation to have a fixed resolution with 0.5 mm/voxel
along all three axes. Each nodule patch was cropped from the
resampled CT image based on the annotated nodule center.

The malignancy suspiciousness of each nodule is rated from
1 to 5 by four experienced thoracic radiologists, indicating an in-
creasing degree of malignancy suspiciousness. We chose the
averaged malignancy rating for each nodule as [40,31,16]: for
those with an average score lower than 3, we labelled them as low
malignancy-suspicious nodules (LMNs); for those with an average
score higher than 3, we labelled them as high malignancy-suspi-
cious nodules (HMNs). We removed nodule samples with ambig-
uous IDs. Overall, there were 880 LMN and 495 HMN cases in-
cluded for performance evaluation. For nodules with an average
rating of 3, we followed the study in [16] by conducting two ad-
ditional experiments of excluding them from the evaluation and
including them in another experiment, respectively. The number
of nodules with an average rating of 3 was 1243 in total. These
nodules will be referred to as uncertain nodules (UNs) in the fol-
lowing sections since they do not fall to any distinct categories.

Similarly, for nodule subtlety and margin attributes analysis in
Section 4.5, we selected equal numbers of positive nodule samples
(average attribute rating >3) and negative nodule samples (aver-
age attribute rating <3) from the LIDC-IDRI dataset, resulting in
756 nodules for subtlety classification and 658 nodules for margin
classification. For nodule diameter estimation in Section 4.5, we
used the entire dataset of 2618 nodules for the regression
modeling.

3.2. Data augmentation

We sought to train the MC-CNN model with augmented
training samples that complemented the learning process given
limited training samples. We augmented nodules by random im-
age translation, rotation and flip operations as in [26,41,42]. The
translation was in a range of [�6, 6] voxels; the rotation was done
by first swapping the three axes in 3-D followed by a 2-D rotation
of [90°, 180°, 270°]. Nodule patches were augmented when fed
into the input layer. Such augmentation helped the MC-CNN
capture nodule features invariant to image-level translation, ro-
tation and flip operations.
4. Experiments and results

In this section, we evaluate our MC-CNN performance by
measuring the classification accuracy and the AUC score of com-
puted deep features. We perform a systematic evaluation against
different parameters including the number of convolution kernels,
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Fig. 5. The classification accuracies and AUC scores of our MC-CNNs using 9 dif-
ferent configurations. The final hidden feature dimension is fixed to 32 for sim-
plicity. Each configuration is assigned to a unique ID for display convenience.

Fig. 6. Classification accuracies from MC-CNNs with different numbers of final
hidden feature nodes (nh). The variation is less than 0.3% for a certain nker indicating
nh is not a crucial parameter to the performance of our MC-CNN.

Table 2
Classification accuracies of a multi-crop CNN with mean-pooling (MC-CNN-MP), a

Multi-scale CNN (MCNN), a single CNN (CNN-S) and our −MC CNN1
64.

Network MC-CNN-MP MCNN CNN-S −MC CNN1
64

Accuracy (%) 86.24 86.53 86.32 87.14
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the position of multi-crop pooling layer in the whole architecture,
and dataset sample sizes. We first describe the experimental set-
up. Then, we report results of our MC-CNN and compare it with
the state-of-the-art approaches. We also conduct an exploratory
analysis on modeling nodule malignancy uncertainty. Finally, we
demonstrate the effectiveness of our MC-CNN in nodule subtlety
prediction, nodule margin prediction and nodule diameter
estimation.

4.1. Experimental setup

To observe performance with regard to the network config-
uration, we investigated different configurations including the
number of convolution kernels of each convolution layer and the
position of a multi-crop pooling layer. The MC-CNN which had nker
convolution kernels for each convolutional layer and a multi-crop
pooling layer surrogating the ith max-pooling layer (the position
of the multi-crop pooling layer) was named as −MC CNNi

nker ,
where = { }n 16, 32, 64ker and = { }i 1, 2, 3 . Thus, there were 9 dif-
ferent configurations in total. For simplicity, −MC CNNi was used
to indicate a general MC-CNN with an ith max-pooling layer sur-
rogated by a multi-crop pooling layer but with an arbitrary nker.
The number of neurons nh in the final hidden feature layer was
fixed to 32. All results of these parameter settings are discussed in
Section 4.2.

To capture a majority of nodule morphology, the input nodule
patch size was set to × ×64 64 64 voxels. We set the learning rate
to be × −1.0 10 3. In order to relieve the risk of overfitting, we added
an L-2 norm weight decay during the training process and the
weight decay coefficiency was × −5 10 4. We let bl¼3 and bu¼8 in
Eq. (2) as [35]. The pooling region size s was 3 with pooling stride
of 2 in the first two pooling layers, while s was 4 with a stride of
4 in the third pooling layer to decrease the feature dimension. The
size of convolution kernel was 3�3. These chosen parameters
were commonly used as discussed in [26,43].

Our MC-CNN implementation was based on CAFFE [44]. HOG
and LBP descriptors, which were implemented in the scikit-image
package [45], were compared for the performance evaluation of
segmentation-free classification methods with our method (Sec-
tion 4.3). The classifier used was the Support Vector Machine
(SVM) classifier from the scikit-learn package [46].

4.2. MC-CNN classification performance

In this section, we perform a systematic evaluation against
different parameters including the number of convolution kernels,
the position of multi-crop pooling layer, and the dataset sample
size. During each round of the five-fold cross validation, there
were originally 825 nodules (528 LMNs and 297 HMNs) in the
training set and 275 nodules (176 LMNs and 99 HMNs) in either of
the validation set and test set. We oversampled HMN samples to
approximately balance the training set.

4.2.1. Results with different network configurations
Following the description in Section 4.1, there were 9 different

network configurations in total with respect to the number of
convolution kernels ( = { })n 16, 32, 64ker and the ith position
( = { })i 1, 2, 3 of the multi-crop layer. As shown in Fig. 5, our MC-
CNN was stable to different configurations with all being above
86% in accuracy with a maximum standard variation of 0.27% and
above 0.90 for the AUC score with a maximum standard variation
of 0.0016. The highest classification accuracy obtained was 87.14%
from −MC CNN1

64, and the highest AUC score was 0.93 from
−MC CNN1

16. Besides nker and i, we also evaluated the effect of the
number of neurons (nh) in the hidden feature layer. We trained

−MC CNN1 with different nh from { }16, 32, 64 . Classification
accuracy comparison is shown in Fig. 6. It was obvious that the
performance was quite stable and the variation was less than 0.3%
for a certain nker. Thus, we chose to fix nh as 32 in all the remaining
experiments due to its relative stability. The encouraging results of
the MC-CNN can be ascribed to that the hierarchical learning
network selects high-level discriminative features through the
multi-crop pooling strategy. And the stable outcomes can be ex-
plained that the weight-decay term (Section 4.1) regularizes the
weights during the learning process, making results less sensitive
to different network capacities.

4.2.2. Effectiveness of multi-crop pooling features
We justify the effectiveness of the multi-crop pooling features

by comparing our MC-CNNs with three other networks without
applying multi-crop pooling operation in the feature space. First,
since multi-crop pooling on feature maps helped achieve high
classification accuracy, we also applied multi-crop pooling opera-
tion directly to the image space (i.e., the input nodule patches).
Instead of using max-pooling inside the multi-crop pooling layer,
we used average-pooling which simulated the image



Table 3
Classification accuracies on different dataset sizes.

Dataset size 340 1030 1375

Accuracy (%) 83.09 86.36 87.14

Table 5
Classification performance comparison on the same dataset size.

Method Autoencoder [30] Massive-feat [13] Our method

Accuracy (%) 80.29 83.21 87.14
AUC score 0.86 0.89 0.93
Sensitivity 0.73 0.87 0.77
Specificity 0.85 0.78 0.93
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downsampling process (MC-CNN-MP). Second, in order to show
that the proposed method simplified the training process without
sacrificing classification accuracy compared to the traditional
multi-scale CNN (MCNN) pipeline, we trained an MCNN [31] using
the same input patch size and the same number of layers with our

−MC CNN1
64. Finally, a traditional single scale CNN was also tested

to serve as a baseline. Again, the input patch size and the number
of layers were the same with our −MC CNN1

64. The results are
shown in Table 2. The classification accuracies of all these three
networks were lower than that of our −MC CNN1

64. The results
confirmed three aspects of feature learning for lung nodule clas-
sification. First, multi-cop pooling applied on input image patches
(MC-CNN-MP) lowered the image resolution leading to an in-
formation loss and decreased the classification accuracy. Second,
multi-scale features learned in a single network had comparable
or even better representative capability than those learned from
multiple networks (MCNN). Third, the improvement over CNN-S
could be explained that nodule-centric features from nodules with
different sizes were consistently persevered in the MC-CNN, while
the conventional CNN extracted single scale features from both
small and large nodules. Furthermore, speaking of time complex-
ity, the training time of our MC-CNN was nearly one-third of that
of the MCNN which indicated the efficiency of the computation.

4.2.3. Performance with varying data samples
We evaluate the performance of −MC CNN1

64 on datasets with
different sizes by randomly sampling different numbers of nodules
from the original dataset including three sub-datasets: a quarter, a
half and the entire dataset. The classification accuracies are shown
in Table 3. Adding more training data improved the model per-
formance from 83.09% to 87.14%, leading to a performance increase
by around 4%. Although Table 3 demonstrated empirical success of
the MC-CNN with regard to different sizes of samples, we would
expect to collect more nodule samples to further improve and
validate the stability of the proposed approach.

4.3. Competing with state-of-the-art approaches

We compare our method with both segmentation-free and
segmentation-dependent classification methods in this section.
Segmentation-free methods included LBP and HOG descriptors
working on nodule patches. Segmentation-dependent methods
relied on nodule image segmentation for feature engineering.
Table 4
Classification accuracies using HOG descriptor with different sw and LBP descriptor
with different npt.

Descriptor Parameter 32 (%) 64 (%) 96 (%)

HOG sw¼8 74.18 66.69 64.07
sw¼16 63.27 66.40 65.16
sw¼32 49.82 56.15 56.58

LBP =n 8pt 64.58 49.24 36.00

=n 16pt 66.40 59.93 52.22

=n 24pt 67.35 59.20 54.84
4.3.1. Comparison with HOG and LBP based classification
We first compared our results with commonly used descriptors

including HOG and LBP descriptors. For HOG descriptor, we used
different cell window sizes, = { }s 8, 16, 32w with the number of
orientations no¼8. For LBP descriptor, the uniform LBP descriptor
was computed with different neighbourhood points

= { }n 8, 16, 24pt . The SVM classifier was used for classification. We
extracted HOG descriptors and LBP descriptors with three scales
on nodule patches, i.e., × ×32 32 32 voxels, × ×64 64 64 voxels,
and × ×96 96 96 voxels. Accuracies of HOG and LBP descriptors
were shown in Table 4. We found that HOG descriptor was quite
sensitive to the size of the cell window (sw). For LBP descriptor, we
observed that the number of neighborhood points (npt) was po-
sitively related to the performance probably because sophisticated
neighborhood structures led to improved results. However, when
competing with the best results among these two descriptors, our
method outperformed them by 12.96% and 19.79% respectively.
Overall, our observation confirmed that parametric textural de-
scriptors were sensitive to various parameters.

4.3.2. Comparison with segmentation-dependent classification
We have reported related results on the LIDC-IDRI dataset in

the literature in Table 1. Although we noticed that different
number of samples were used which made the fair comparison
difficult, the results from our MC-CNN were still quite competitive
in terms of both classification accuracy and the AUC score. In this
section, we included two more metrics: sensitivity and specificity.
The sensitivity and the specificity of our method were 0.77 and
0.00
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0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue MC−CNN1

64

Massive−feat
Autoencoder

Fig. 7. The receiver operating characteristic curve (ROC curve) of our −MC CNN1
64,

the Massive-feat method and the Autoencoder method. It can be seen that the ROC
of our −MC CNN1

64 (AUC¼0.93) is very competitive compared to the Autoencoder
method (AUC¼0.86) and the Massive-feat method (AUC¼0.89).
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0.93 respectively. We implemented two approaches in the litera-
ture for additional comparison with the same number of nodules
(see Table 5 and Fig. 7). The first one is the autoencoder-based
method (Autoencoder) [30] in an unsupervised learning scheme.
We tested it on the same dataset and achieved the classification
accuracy of 80.29% with an AUC score of 0.86. The sensitivity and
the specificity were 0.73 and 0.85 respectively. The lack of prior
label information in the unsupervised learning may lead to a sub-
optimal feature learning, causing its outcomes lower than that of
the MC-CNN. Second, we implemented a massive feature mining
pipeline (Massive-feat) following the strategy in [13]. Four types of
nodule image features were included: first order statistics, shape
and size features, textural features, and wavelet features. After
feature selection using the mRMR score [47], the top 54 features
were chosen from the extracted 319 dimensional features. Ap-
plying the SVM classifier led to the best accuracy of 83.21% with an
AUC score of 0.89. The sensitivity and specificity were 0.87 and
0.78 respectively. Both the classification accuracies and the AUC
scores from two implemented approaches were shown inferior to
the proposed MC-CNN. Though the sensitivity of our method was
lower than that of the Massive-feat method, the specificity of our
MC-CNN was higher compared to those of the other two methods.
More importantly, the reporting figures of our approach here were
not meant to lead a significant improvement over the current lit-
erature. Instead, we sought to demonstrate an alternative feature
extraction pipeline that can complement state-of-the-art archi-
tectures for lung nodule analysis.

4.4. Exploratory analysis on modeling nodule malignancy
uncertainty

Since our prior results were based on a binary setting of ma-
lignancy suspiciousness classification, in this section, we extended
to estimate nodule malignancy uncertainty by taking into account
nodules with a moderate score of 3. The uncertainty estimation on
nodule malignancy suspiciousness is challenging because of am-
biguous assessment from human experts. We provided ex-
ploratory evidence to model uncertain nodules by analyzing in-
clination of uncertain samples to the distinct group of LMNs or
HMNs, so that we may be able to gain insight into better patient
sub-group stratification.

Two tasks were designed to quantify nodule malignancy un-
certainty by applying the model of −MC CNN1

64. First, the uncertain
nodules with a score 3 were either categorized into LMNs or HMNs
respectively. Second, we additionally treated them as an in-
dependent category and performed classification on three groups.
Table 6 showed the classification results with uncertain nodules
included. Comparing the first row in Table 6 with our best results,
we found that uncertain nodules made the model slightly inferior
to that trained without uncertain nodules, probably since inclusion
of uncertain nodules introduced variation within each category.
Comparing first and second columns, we found that incorporating
uncertain cases into LMNs led to better results than incorporating
them into HMNs.
Table 6
Classification accuracies including uncertain nodules. “UNs” indicate uncertain
nodules. “IC” indicates an independent category.

Settings UNs as LMNs
(%)

UNs as HMNs
(%)

UNs as IC (%)

UNs in training set 86.12 85.60 –

UNs in both training and test
sets

87.29 72.57 62.46
The observation indicated that uncertain cases shared more
similarities with LMNs. The finding presented that radiologists
seemed to have a biased scoring towards classifying some LMS
cases into uncertain nodules. Our observation was consistent with
the study [16]. Also, the dropped accuracy was observed when the
uncertain nodules were regarded as an independent category. The
result is not surprising since nodules with a moderate score pre-
sent heterogeneous characteristics in nature, leading to deteriorate
performance in classification during both training and test phases.
The evidence data here suggests that a more sophisticated com-
parison will be needed to investigate between subtle sub-groups
in the future.

4.5. Nodule semantic prediction and diameter estimation

Beyond nodule malignancy suspiciousness classification, we
quantify nodule semantic prediction including subtlety and mar-
gin and nodule diameter estimation using the −MC CNN1

64.

4.5.1. Nodule subtlety and margin prediction
We performed semantic label prediction including two attri-

butes: subtlety and margin. Subtlety indicates the difficulty in
nodule detection which refers to the contrast between the lung
nodule and its surroundings, while margin describes how well-
defined the margins of the defining nodule [48]. The model we
used here is the classification model of −MC CNN1

64 and the eva-
luation method is also the five-fold cross validation. The classifi-
cation accuracy of subtlety is 74.32% and that of margin is 76.99%.

4.5.2. Nodule diameter estimation
The diameter of a solitary pulmonary nodule (SPN) can be a

useful predictor of malignancy—larger diameter indicates the in-
creasing suspiciousness of nodule malignancy [49]. In this ex-
periment, given the five-fold cross validation, we used the re-
gression version of −MC CNN1

64 (Section 2.4). The metric used to
evaluate the estimation performance was the relative estimation
error

= | − |
( )

E
d d

d
,
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est truth

truth

where dest is the estimated diameter and dtruth indicates the
ground truth diameter. The distribution of Er is shown in Fig. 8. The
population of Er less than 0.2, 0.3 and 0.4 respectively occupy
73.78%, 84.54% and 90.15% of the entire dataset. The results sug-
gest an alternative way of estimating the nodule diameter, in-
dicating a strong correlation of the learned deep features with
lung nodule diameter distribution.
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Fig. 8. The distribution of the relative estimation error Er. The population of Er
within 0.2, 0.3 and 0.4 occupy 73.78%, 84.54% and 90.15% of the entire dataset.



Table 7
Processing time of each method. Training time is measured for one round in the
five-fold cross validation and the test time is averaged for one single nodule.

Methods Segmentation Training time Test time

Feature extraction Classifier

Massive-feat [13] Manual 10h15min25s 0.09 s 32.76 s
Autoencoder [30] Manual 7.29 s 0.14 s 0.01 s

−MC CNN1
64 – 47min01s 0.23 s
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5. Discussion

In this paper, we proposed a deep learning computational archi-
tecture, called MC-CNN, to classify nodule malignancy suspiciousness
using CT images. It is an end-to-end architecture which embeds no-
dule feature extraction into a hierarchical network and simplifies
conventional lung nodule malignancy suspiciousness classification by
removing nodule segmentation and hand-crafted feature engineering.
Providing early suspiciousness estimation from imaging allowed a
strategy of non-invasively identifying patient sub-groups before
treatments of needle biopsy or surgical resection. Thus, it has the
potential to facilitate radiologists to discern the underlying risk factors
for better individualized patient management. Experimental results
demonstrated that our proposed method achieved promising results
in both classification accuracy (87.14%) and the AUC score (0.93). Ad-
ditional semantic prediction and diameter estimation reaffirmed the
strength of the proposed approach in characterizing nodule-related
information. To further assimilate diagnostic values of the proposed
approach, we would expect to validate the deep learning architecture
by incorporating additional lung cancer imaging studies with both
radiologists' opinions and follow-up pathologic scores. As vast quantity
of clinical imaging sequences are becoming increasingly available, our
data-driven model holds promise for early diagnosis with more rapid
clinical translation.

Although accurate processing time comparison of different
methods is difficult, we list the time consumed by the Massive-
feat method [13], the Autoencoder method [30] and our

−MC CNN1
64 in Table 7. All the methods run on the same machine

with 12GB memory and a 6-core Intel Xeon CPU. Nvidia Tesla K40
GPU was enabled for our −MC CNN1

64 model and the Autoencoder
method. We did not migrate the feature extraction code in the
Massive-feat method to GPU. The manual segmentation time for
the Massive-feat method and the Autoencoder method were not
included because the segmentation was provided in the dataset.
We found that hand-crafted feature extraction in the Massive-feat
method was very time-consuming which took more than 10 h and
the test time for one single nodule was also much longer than that
of the other two methods. The input data of the Autoencoder
method was the 2-D nodule slice while that of our method was
3-D which brought much more computational cost. This could
explain why our method took more time than the Autoencoder
method. It was also obvious that our method could simplify the
traditional nodule analysis pipeline by removing nodule segmen-
tation and feature extraction.

The rationale for seeking “deep features” is that deep learning
networks would make mostly correct assumptions about the
nature of images by varying the depth and breadth of the network
capacity [26]. As the results in [50], through hierarchical networks,
the CNN can produce a dimensional reduction that is particularly
helpful for image-related classification. Our MC-CNN prioritized a
repetitive pooling strategy for nodule-centric feature extraction.
By considering different regions of the feature maps
independently, the strategy preserved more details of the salient
region of nodules. Thus, features from small nodules were also
well kept and forwarded to the following layers, indicating that
our MC-CNN was able to capture a variety of nodule dynamic
structures.

Dropout [51] is a known strategy to prevent the CNN from over-
fitting. However, we did not observe much test difference between
networks with or without dropout on the LIDC-IDRI dataset. The
reason may be ascribed to that the LIDC-IDRI dataset is quite different
from generic image datasets (e.g., the imagenet dataset) having
thousands of categories, where the learning models are prone to
overfit decision boundaries easily. The use of 3-D augmentation cre-
ated augmented training samples that preserve intra-class variation to
minimize the potential over-fitting issue. Additionally, results on se-
mantic prediction and diameter estimation revealed the generalized
performance of the proposed method.

The proposed study complemented the traditional approaches.
The only prerequisite of our method is the identification of the
nodule central location, which is a substitute of conventional no-
dule image segmentation. Both multi-crop pooling and max-
pooling can tolerate a small amount of shift of a nodule center
point, thus the process actually does not require an accurate lo-
calization of nodule centers. This suggests an appealing strategy of
approach initialization. However, when dealing with a growing
number of clinical imaging sequences, an extra automatic nodule
detection process might be needed for both our method and the
traditional nodule classification methods in order to speed up the
diagnosis process.
6. Conclusion

Deep learning architecture is a rising computational paradigm in
developing predictive models of diseases. In this paper, we in-
troduced a deep learning model of MC-CNN to tackle the challen-
ging problem of lung nodule malignancy suspiciousness classifica-
tion. We demonstrated that the learned deep features were able to
capture nodule salient information by the multi-crop pooling
strategy. The encouraging results on nodule malignancy suspi-
ciousness classification showed the effectiveness of our MC-CNN.
Additional experiments on nodule semantic prediction and nodule
diameter estimation revealed that the proposed method could be
potentially helpful to other aspects of nodule-relevant character-
istics analysis. In general, the extracted deep features can be con-
sidered to be integrated with conventional image features to further
improve the precision performance for lung cancer patients.
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