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ABSTRACT
The nonlocally sparse coding and collaborative filtering tech-
niques have been proved very effective in image denoising,
which yielded state-of-the-art performance at this time. In
this paper, the two approaches are adaptively embedded into
a Bayesian framework to perform denoising based on split
Bregman iteration. In the proposed framework, a noise-free
structure part of the latent image and a refined observation
with less noise than the original observation are mixed as
constraints to finely remove noise iteration by iteration. To
reconstruct the structure part, we utilize the sparse cod-
ing method based on the proposed nonlocally orthogonal
matching pursuit algorithm (NLOMP), which can improve
the robustness and accuracy of sparse coding in present of
noise. To get the refined observation, the collaborative fil-
tering method are used based on Tucker tensor decomposi-
tion, which can takes full advantage of the multilinear data
analysis. Experiments illustrate that the proposed denois-
ing algorithm achieves highly competitive performance to
the leading algorithms such as BM3D and NCSR.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Computer vi-
sion, signal processing

General Terms
Algorithms

Keywords
collaborative filtering, sparse coding, tensor decomposition,
Bregman iteration
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1. INTRODUCTION
Cleaning of noise from images is a classical and long stud-

ied problem in image processing. For an observed image

y ∈ <
√
N×
√
N , the problem of image denoising can be gen-

erally formulated by

y = x+ n (1)

where x ∈ <
√
N×
√
N is the latent image and n ∈ <

√
N×
√
N

is the additive Gaussian white noise. There are several im-
age denoising techniques that have been developed in the
past few decades, such as partial differential equations [1],
spatially varying convolution [2], kernel regression [3], nonlo-
cal techniques [4], transform-based techniques [5], and tech-
niques based on sparse coding [6].

Among the above techniques, nonlocal techniques [4] which
assume that there exists repeating structures in a given
image have received increasingly more attention in recent
years. One of reasons for this population is the nonlocal as-
sumption greatly extends the ability of other methods. For
example, nonlocal ROF model was developed in [7] to ex-
tend the traditionary ROF model based on PEDs [1]. By
combining the nonlocal and transform-domain approaches,
Dabove et al. proposed a collaborative filtering algorithm
named BM3D to perform denosing. The BM3D algorithm
is well known due to its outstanding performance and can
be considered to be the state of the art at this time. More
recently, in [9], Rajwade et al. used the same framework
to perform densoing but replaced the fixed transform bases
(whether Haar/DCT/Biorthogonal wavelet) in BM3D by
the spatially adaptive bases constructed by Tucker tensor
decomposition. Inspired by the nonlocal and sparse coding
approaches, Mairal et al. proposed a denoising algorithm
based on the nonlocal sparse model (NLSM). More recently,
in [11], Dong et al. introduced the concept of sparse coding
noise and proposed a nonlocally centralized sparse represen-
tation (NCSR) to suppress the sparse coding noise for image
denoisng. Both NLSM and NCSR have yielded state-of-the-
art performance on par with the BM3D algorithm.

In this paper, we unify the nonlocal, transform-domain
and sparse coding approaches to perform denoising based
on split Bregman iteration [12]. In the proposed denoisng
framework, we first reconstruct the noise-free structure part
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xS of the latent image by the nonlocally sparse coding method.
Due to the potential instability of sparse decompositions in
present of noise, we propose a nonlocal orthogonal match-
ing pursuit algorithm (NLOMP) to reduce the coding error.
Next, the collaborative filtering based on Tucker tensor de-
composition is used to get a refined observation xT with less
noise than the original observation. Finally, the two parts
xS and xT are mixed as constraints to finely remove noise
iteration by iteration

This paper is organized as follows. Section 2 describes
the proposed denoising algorithm in detail. Experimental
results are given in Section 3 to verify our algorithm, and
show the performance as compared with other algorithms.
Finally, we conclude the algorithm in Section 4.

2. METHODS

2.1 Nonlocal Orthogonal Matching Pursuit
The denoising technique based on sparse coding is to de-

noised image by solving the following minimization [6]

min
x,α,D

1

2
||y − x||22 +

∑
i

µi||αi||0 + λ
∑
i

||Dαi −Rix||22 (2)

where D is the overcomplete dictionary learned from the
noisy image, µi and λ are regularization parameters, and
Ri is an n × N matrix that extracts the i-th patch from
the image. αi is the sparse coefficients corresponding to the
i-th patch. As the `0 problem is complicated in general,
approximation methods are often employed. One such ap-
proximation technique is the orthogonal matching pursuit
(OMP)[13], which is a greedy algorithm and can guarantee
near-optimal results in some cases.

However, it has been shown that sparse coding with an
overcomplete dictionary is unstable [14], which can result
in noticeable reconstruction artifacts in the denoised image.
Fortunately, multiple observations of a sparse signal can im-
prove the ability to identify the underlying sparse represen-
tation [15]. To reduce the coding error in present of noise, we
proposed a nonlocal orthogonal matching pursuit (NLOMP)
algorithm based on the fact that natural images often con-
tain repetitive structures, i.e., the rich amount of nonlocal
redundancies [4].

Given the dictionary D, the objective function of our non-
local sparse model is

min
αi

||αi||0, s.t.
∑
q∈Ωi

||Dαi − yq||22wq ≤ ε (3)

where Ωi denotes a set of patches similar as the given patch
yi (including yi), ε is a small constant controlling the ap-
proximation error, and wq is the weight. We set the weights
to be inversely proportional to the photometric distance be-
tween patches yi and yq

wq =
1

W
exp(−||yi − yq||22/h) (4)

where h is the smooth parameter and W is the normalization
constant. Then the algorithm of NLOMP is summarized in
Alg. 1.

To verify the robustness and accuracy of NLOMP for
sparse coding, we compare the proposed NLOMP algorithm
with the traditional OMP algorithm. Fig. 1 (a) is the ex-
ample image House with the noise level σ = 20, and Fig.

Algorithm 1: Nonlocal Orthogonal Matching Pursuit

Input: The dictionary D, the similar signals {yq},
the weights {wq}, and the threshold ε.

Output: The sparse coefficient α.

1 Initialization: Initialize k = 0, and set

2 The initial solution α0 = 0.

3 The initial residuals {r0
q = yq −Dα0 = yq}.

4 The initial support S0 = Sup{α0} = ∅.

5 while
∑
q∈Ω ||rkq ||22wq > ε do

6 k = k+1.
7 Sweep:
8 Compute the optimal zj of ε(j) for every dj using

9 z∗j = dTj r
k−1
w /||dj ||22, where rw =

∑
q∈Ω wqrq

10 and ε(j) = min
∑
q∈Ω ||djzj − r

k−1
q ||22wq .

11 Update Support:

12 Find j0 : ∀ j /∈ Sk−1, ε(j0) < ε(j),

13 and update Sk = Sk−1 ∪ {j0}.
14 Update Solution:

15 Compute the optimal αk by

16 minα
∑
q∈Ω ||Dα− yq ||22wq , s.t. Sup{α} = Sk.

17 Update Residuals:

18 Compute {rkq = yq −Dαk}.

19 end

20 Return α;

1 (b) shows the learned dictionary using the K-SVD algo-
rithm [16]. Fig. 2 illustrates the coding results for different
patches in Fig. 1 (a). The patch size is 8 × 8. The red
stems correspond the sparse coding coefficients for the latent
patches by OMP, and we take them as the latent sparse co-
efficients. The blue stems correspond the coefficients for the
noisy patches by OMP while the green stems correspond the
coefficients by our NLOMP. Obviously, the coding results of
our NLOMP are more consistent with the latent coefficients
than the ones of OMP.

Figure 1: Example image and the dictionary. (a) the

noisy image with variance σ = 20, (b) the corresponding

adaptive dictionary.

It is worth noting that there exists a few small coefficients
in the latent coding results which correspond to the degraded
or lost texture of the image due to noise. In general, it is
a big challenge to accurately restore these small coefficients
in present of noise. Getting accurate restoration of big co-
efficients, however, is much easier when the structure part
exists.

2.2 Denoising via Tensor Decomposition
Given a tensor T ∈ <

√
n×
√
n× K , the Tucker tensor de-
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Figure 2: Sparse coding for different patches. (a) patch

1, (b) patch 2, (c) patch 3, (d) patch 4. The x axis

denotes the index of coefficients and the y axis denotes

the value of coefficients. (Color version shows clearly.)

composition of T is [18]

T = S ×1 U
(1) ×2 U

(2) ×3 U
(3) (5)

where U (1) ∈ <
√
n×
√
n, U (2) ∈ <

√
n×
√
n, and U (3) ∈ <

√
n×
√
n

are ortho-normal matrices, which can be considered as 3D
transform basis pairs, and S is a 3D coefficient array (core
tensor) of size

√
n×
√
n× K. Here, the symbol ×n stands

for the n-th mode tensor product.
In this work, followed [9], we use the tensor decomposition

to finely remove noise while preserve texture at the same
time. There are two advantages: firstly, due to the massive
variety of the geometrical structure in the nature images, the
data adaptive transform basis learned from the given noisy
image [9, 17] is more suitable than the fixed basis in BM3D;
secondly, tensor-based multilinear data analysis is capable of
taking full advantage of the multilinear structures to provide
better understanding and more precision[18].

Algorithm 2: Denoising via Tensor Decomposition

Input: The noisy image y. The noise variance σ.
Output: The denoised image x .

1 Initialization: x = y

2 Patch clustering: find the KNN for each exemplar patch
and create tensor Ti for each cluster;

3 Tensor decompostion: (Si, U
(1)
i , U

(2)
i , U

(3)
i , ) = TD(Ti);

4 Thresholding: τ = ησ
√

2log(nK), Ŝi = Thresh(Si, τ);

5 Tensor reconstruction: T̂i = Ŝi ×1 U
(1)
i ×2 U

(2)
i ×3 U

(3)
i ;

6 Image update: obtain the denoised image x by weighted
averaging all denoised patches;

7 Return x.

Alg. 2 summarizes the image denoising algorithm using
tensor decomposition. In the step of thresholding, τ is the
threshold and η is a control parameter. The thresholding is

a hard shrinkage operator as follow

Thresh(z, τ) =

{
z |z| > τ

0 |z| ≤ τ
(6)

The choice of τ is of importance for the denoising algo-
rithms which perform denoising by filtering the transform
coefficients. If it is set too big, the texture will lost in the
denoised image. If it is set too small, the noise will not be
removed enough. In this work, we empirically set it less
than 0.5 to remove a certain amount of the noise at each
iteration.

2.3 Denoising Based on Iteration
In this section, we unify nonlocal orthogonal matching

pursuit (NLOMP) and tensor decomposition (TD) to per-
form denoising based on split Bregman iteration.

Figure 3: Image denoising using separately NLOMP

and TD. (a) latent image x, (b) the denoised image xS
using NLOMP, (c)the denoised image xT using TD, (d)

the noisy image with σ = 20, (e) the difference r1 between

(a) and (b), (f) the difference r2 between (a) and (c).

Fig. 3 shows the denoised results using separately NLOMP
and TD. We can see that both noise and texture have been
removed from the denoised image xS using NLOMP (Fig. 3
(b)) and the difference r1 (Fig. 3(e)) with the latent image
well represents the texture. Fig. 3 (c) is the denoised result
xT by Alg. 2 using TD where we set the control parameter
η = 0.4, and Fig. 3(d)) is the difference r2 with the latent
image. It is obvious that there remains a lot of noise in xT .
However, more textures are preserved at the same time.

The empirical distributions of the difference r1 (black one)
and r2 (blue one) are plotted in Fig. 4. We can see that the
distribution of r1 can be well characterized by Laplacian dis-
tribution, while Gaussian distribution can well fit the distri-
bution of r2. This observation motivates us to model r1 and
r2 with a Laplacian prior and a Gaussian prior respectively.

Specifically, P (x|xS) ∝ e−|x−xS | and P (x|xT ) ∝ e−||x−xT ||
2
2 .

Assumed xS and xD are independent, maximizing the pos-
terior probability P (x|xT , xS) ∝ P (x|xS)P (x|xT ) is equiva-
lent to minimizing the following objective function

E(x) = min
x
|x− xS |+

λ

2
||x− xT ||22 (7)
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Figure 4: The empirical distributions of the difference.

The x axis denotes the value of difference, and the y

axis denotes the number of pixels. (Color version shows

clearly.)

where λ is the regularization parameter. Eq. (7) is not
patch-based but global denoising procedure mixing the con-
straints of xS and xT . We can investigate Eq. (7) in view of
regularization other than Beyesian perspective, namely, xS
is the structure part and the `1-norm constraint forces the
estimated image x enhanced just at textures, while xT can
be considered as a refined observation with less noise than
the original noisy observation and the `2-norm constraint
guarantees x consistent with the latent image.

We resort to the split Bregman method [12] to solve Eq.
(7) duo to the rapid convergence in dealing with the `1-based
optimization problem. The key idea of the split Bregman is
that it “de-couple” the `1 and `2 portions of the energy in
Eq. (7). By introducing a new variable, we can get the
following problem equivalent to Eq. (7)

min
x,d

|d|+ λ

2
||x− xT ||22, s.t. d = Φ(x) = x− xS (8)

As shown in [12], the above iteration is equivalent to the
simple version of the split Bregman iteration

(xk+1, dk+1) = min
x,d

|d|+ λ

2
||x− xT ||22 +

µ

2
||d− Φ(x)− bk||22

(9)

bk+1 = bk + Φ(xk+1)− dk+1 (10)

where µ is the free parameter. We can perform the mini-
mization problem Eq. (9) efficiently by iterative minimizing
with respect to x and d separately. The two steps we must
perform are

Step1 : xk+1 = min
x

λ

2
||x− xT ||22 +

µ

2
||dk − Φ(x)− bk||22

(11)

Step2 : dk+1 = min
d
|d|+ µ

2
||d− Φ(xk+1)− bk||22 (12)

To solve Step 1, note that because we have “de-couple” x
from the `1 portion of the problem, the optimization problem
that we must solve for xk+1 is now differentiable, and the
analysis solution is

xk+1 =
λ

λ+ µ
xT +

µ

λ+ µ
xS +

µ

λ+ µ
(dk − bk) (13)

In Step 2, there is no coupling between elements of d. The
optimal value of d can be explicit computed by soft shrinkage
operators

dk+1 = shrink(Φ(xk+1) + bk, 1/µ) (14)

and the shrink operator is

shrink(z, γ) =


z − γ z > γ

0 −γ ≤ z ≤ γ
z + γ z < −γ

(15)

The final image denoising algorithm unifying NLOMP and
TD based on split Bregman iteration is summarized in Alg.
3, where “Med” in re-estimating the noise variance stands
for median operator. Note that we update the xT with xk

and σ̂k as inputs of Alg. 2 at each iteration.

Algorithm 3: Iterative Image Denoising

Input: The noisy image y. The noise variance σ.
Output: The denoised image x .

1 Initialization: x = y, d = 0, b = 0

2 Stage 1: Get xS using NLOMP and xT using TD

3 Stage 2: Denoising based on split Bregman iteration

4 while ||σ̂k − σ̂k−1||22 > tol and k < Miter do
5 Solve xk using Eq. (13);
6 Re-estimate noise variance:

7 σ̂k =
√
σ2 −Med(||y − xk||22);

8 Update xT with x̂k and σ̂k as inputs of Alg.2;

9 Solve dk+1 using Eq. (14);

10 Solve bk+1 using Eq. (10);
11 k = k + 1;

12 end

13 Return xk.

3. EXPERIMENTS
In this section we will illustrate the performance of the

proposed approach. Several algorithms, such as BM3D [8],
NCSR [11], and KSVD [6] were used for comparisons. Both
peak signal to noise ratio (PSNR) and structural similarity
(SSIM) indices are adopted to evaluate the objective quality
of the denoised results.

Figure 5: The evolution of the denoised result using the

Alg. 3. (a) the noisy image with variance σ = 20 and

PSNR 22.08 dB, (b) the denoised result after iterating

once with PSNR 29.58 dB, (c) the denoised result after

iterating twice with PSNR 34.47 dB, (d) the denoised

result after iterating thrice with PSNR 34.90 dB.
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The basic parameter setting of the proposed method is
as follow: the patch size is 8 × 8; for Alg. 2, the number
of similar patches is 30 in the step of patch clustering and
the control parameter η is 0.4 in the step of thresholding;
for Alg. 3, the regularization parameter λ of the objective
function in Eq. (7) is 20σ , the auxiliary parameter µ for the
Bregman iteration in Eq. (9) is 50, the stopping criterion
“tol” is 0.1σ and the maximum number of iterations is 4.
Note that the parameter settings mentioned above are fixed
in all tests.

Fig. 5 illustrates the evolution of the denoised result using
Alg. 3. The noise variance σ is 20. The image content inside
the small green rectangle is zoomed in the upright corner.
Compared with the denoised results in Fig. 3 (b) and Fig. 3
(c) which separately use NLOMP and TD, we can see that
the noise is finely removed step by step and the degraded
texture is preserved at the same time (see 5 (d)).

A set of 7 natural images commonly used in the literature
of image denoising are used for comparison. The denoised
results using different methods with difference noise variance
are reported in Table 1. The highest PSNR and SSIM values
are highlighted in each cell to facilitate the comparison.We
can see that the proposed method achieves at least compara-
ble denoising performance to the state-of-the-art algorithms
BM3D and NCSR.

4. CONCLUSIONS
In this paper, we use the sparse coding based on the

proposed NLOMP and the collaborative filtering based on
tensor decomposition to perform denosing. The denoising
framework based on split Bregman iteration has the Bayesian
explanation, and at each iteration, the noise is finely re-
moved from the current denoised image. Experimental re-
sults demonstrated that the proposed denoising algorithm
can achieve the competitive performance to the state-of-the-
art denoising algorithms.
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Table 1: Summary of PSNR and SSIM

Images Methods
σ = 10 σ = 20 σ = 30 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

House

Proposed 38.03 0.947 34.89 0.912 32.96 0.891 31.41 0.873
BM3D 38.05 0.950 34.63 0.908 32.72 0.885 31.16 0.863
NCSR 38.18 0.951 34.79 0.910 32.72 0.888 31.31 0.873
KSVD 36.97 0.931 33.83 0.896 31.75 0.867 29.91 0.834

Barbara

Proposed 36.18 0.968 32.54 0.935 30.19 0.896 28.44 0.853
BM3D 35.81 0.967 32.28 0.933 30.16 0.896 28.26 0.851
NCSR 35.87 0.967 32.30 0.935 29.98 0.897 28.48 0.858
KSVD 35.10 0.959 31.23 0.908 28.83 0.849 27.07 0.795

Boat

Proposed 35.22 0.934 31.60 0.875 29.54 0.828 28.09 0.788
BM3D 35.16 0.934 31.63 0.878 29.66 0.832 28.16 0.791
NCSR 35.13 0.933 31.54 0.875 29.47 0.828 28.06 0.787
KSVD 34.71 0.926 31.02 0.855 28.90 0.798 27.43 0.752

Lena

Proposed 38.57 0.973 34.79 0.944 32.43 0.915 30.82 0.889
BM3D 38.64 0.974 34.79 0.943 32.50 0.914 30.64 0.884
NCSR 38.21 0.972 34.47 0.944 32.09 0.916 30.76 0.893
KSVD 37.84 0.968 34.02 0.934 31.73 0.902 30.08 0.871

Hill

Proposed 34.76 0.918 31.39 0.841 29.56 0.785 28.32 0.742
BM3D 34.72 0.917 31.47 0.846 29.75 0.795 28.48 0.751
NCSR 34.77 0.918 31.39 0.844 29.53 0.789 28.30 0.743
KSVD 34.29 0.907 30.83 0.817 28.93 0.753 27.61 0.704

Monarch

Proposed 34.98 0.971 30.94 0.937 28.71 0.902 27.18 0.869
BM3D 34.56 0.969 30.63 0.932 28.59 0.897 26.88 0.859
NCSR 35.01 0.971 30.93 0.936 28.69 0.902 27.03 0.870
KSVD 34.02 0.961 30.12 0.920 28.03 0.881 26.61 0.846
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