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Abstract—Vehicle recognition plays an important role in traffic 

surveillance systems, advanced driver assistance systems, and 

autonomous vehicles. This paper presents a novel approach for 

multi-vehicle recognition which considers vehicle space location 

and classification as a coupled optimization problem. It can speed 

up the detection process with more accurate vehicle region 

proposals, and can recognize multi-vehicles using a single model. 

The proposed detector is implemented by three stages: 1) 

Obtaining candidate vehicle locations with prior objectness 

measure; 2) classifying vehicle region proposals to distinguish 

three common types of vehicles (i.e. car, taxi, and bus) by a single 

convolutional neural network; and 3) coupling classification 

results with detection process which lead to fewer false positives. 

In experiments on high-resolution traffic images, our method 

achieves unique characteristics: 1) it matches the state-of-the-art 

detection accuracy; 2) it is more efficiently generating smaller set 

of high quality vehicle windows; 3) searching time is decreased 

about 30 times compared with other two popular detection 

schemes; and 4) it recognizes different vehicles in each image 

using a single CNN model with 8-layers. 

 
Index Terms—Object proposals, multi-vehicle detection, 

vehicle classification, convolutional neural network (CNN).  

 

I. INTRODUCTION 

HE development  of intelligent transportation system (ITS) 

brings new technologies to solve traffic issues including 

congestion, accidents, delays, and pollution, etc. In applications 

of ITS such as traffic light control and intelligent vehicles, there 

is an increasing demand for traffic data extraction. To extract 

traffic data automatically and timely, vision-based vehicle 

recognition is an essential and challenging task. It collects 

vehicle physical attributes and vehicle traveling data for traffic 

management and control in parallel transportation systems [1], 

and has high industrial potential in advanced driver assistance 

systems [2] and autonomous vehicles [3].  
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There are two main tasks in typical automated vehicle 

recognition (AVR) systems: finding locations of vehicles in 

natural scene images (vehicle detection), and classifying  

detected vehicles into their specific sub-classes (vehicle 

classification). According to their recognition feature, different 

AVR systems have different functions, such as vehicle color 

recognition (VCR) systems, vehicle brand recognition (VBR) 

systems, and vehicle type recognition (VTR) systems. However, 

environments of traffic surveillance pose many difficulties for 

identifying vehicles due to viewpoint variation, multi-scale, 

deformation, illumination conditions, cluttered background, 

partial occlusion, and motion blur, etc. 

To achieve AVR systems, many approaches have been 

proposed to deal with vehicle detection and classification. In 

[4], a hierarchical vehicle model was established for real-time 

vehicle color identification, and could recognize four colors 

(red/green/blue/yellow) of cars with the help of a support vector 

machine (SVM) classifier.  Lu et al. [5] combined background 

subtraction method and three frame differencing method to 

detect moving vehicles, then classified detected vehicles into 

five types by six geometric parameters. Similarly, a VTR 

system was designed in [6] for toll station using background 

subtraction to get vehicles in region of interest (ROI). Different 

from [5], it yields vehicle type results by counting black pixels 

number included in vehicle body contour. However, some 

limitations could be noted in these approaches: 1) color may 

vary dramatically in response to illumination changes, and 

certain color types are very close to other color types; 2) 

motion-based detection methods are not suitable for 

slow-moving traffic or cars fleet; 3) simple geometric 

information or pixel counting is not enough to represent a 

vehicle; 4) no generic model was proposed for multiple vehicle 

detection and classification. Other methods [7]-[9] are based on 

hand-crafted features and complex models, using category 

specific classifier to evaluate image windows in a sliding 

window fashion. Due to large computation complexity, they are 

difficult to be applied in real-time applications. 

In this paper, we propose a deep-learning-based method to 

recognize multi-vehicle types in images for traffic surveillance. 

By considering vehicle space location and classification as a 

coupled optimization problem, we combine prior objectness 

measure [10] and convolutional neural network (CNN) [11] to 

recognize multiple vehicles. The main contributions of our 

work are as follows: 

(1) We propose a combined probabilistic measure in 

Bayesian framework with three cues to help the search for 
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vehicle locations using objectness scores, which can greatly 

reduce the number of candidate locations and detection time 

than sliding windows technique.  

(2) To recognize different vehicle types in one image, we 

utilize a CNN which contains 8 layers to learn features of 

vehicle proposals, and obtain corresponding distribution over 

types with a softmax classifier. 

(3) To reduce the number of false-positives, we linearly 

combine the type score of a window with its objectness score, 

which optimizes detection results and classification results 

simultaneously. 

The pipeline of our vehicle type recognition algorithm is 

illustrated in Fig. 1. Firstly, in natural scene images, we carry 

out objectness measure to detect vehicle proposals using 

Bayesian probability model. Our objectness measure integrates 

multiple features including multi-scale saliency, color contrast, 

and edge density so as to describe the vehicle features more 

accurate. Then, we sample high score windows in diverse 

locations by a given window number. Thirdly, we warp the set 

of candidate detections into a fixed size as a form compatible 

with the CNN. After that, we further classify the detected 

vehicles into their specific sub-classes by employing CNN with 

softmax classifier. When it ends, a vehicle is recognized as a car, 

a bus, or a taxi by a linear combination of proposal score and 

CNN score. Experimental results show that both our detection 

and classification methods achieve state-of-the-art performance 

together with significantly improved computational efficiency. 

It is worth mentioning that our recognition method is 30 times 

faster than other two popular detection schemes. 

The remainder of this paper is organized as follows. Existing 

vehicle detection and classification algorithms are generally 

reviewed in Section II. Our vehicle detection process to extract 

vehicle proposals is described in Section III. Then, Section IV 

presents the multi-vehicle type recognition algorithm, and 

explains the idea of combining the detection and classification 

results for multi-vehicle. In Section V, the performance of our 

algorithm is evaluated by real traffic images of metropolitan 

roads. Experiment results and their comprehensive discussions 

are also included in the same section. Finally, we make a 

conclusion of this paper and present the future work. 

II. RELATED WORK 

Vehicle detection and classification are two basic tasks in 

vehicle recognition. In this section, existing methods for these 

two tasks are introduced individually. 

A. Vehicle Detection 

Vehicle detection requires that the hypothesized locations of 

vehicles are found and verified quickly in an image [12]. After 

vehicle detection, further processing can be carried out [13], 

such as vehicle tracking and vehicle classification. There are 

two main categories for vehicle detection methods. One is 

moving vehicle detection based on background estimation 

[14][15]. Vehicle candidates can be found from foreground 

blocks which are obtained by subtracting estimated background 

from original input images. This kind of method has low 

computational complexity, and can be used for applications 

with simple and stable background. However, they are not 

suitable to deal with congested urban traffic because the 

congestion causes slow-moving traffic and the lack of 

movement information. On the other hand, an object can’t only 

be determined by whether it is moving without considering its 

inherent information.  

Sliding windows [16][17] is another method for vehicle 

detection which is treated as a binary classification problem to 

distinguish vehicles of different colors and shapes from 

cluttered backgrounds. The process is as follows: parse the 

whole image with multi-scale sliding windows or parse an 

image pyramid with a fixed sliding window, score each sliding 

window with a classifier based on statistical models to 

determine whether it contains a vehicle instance or background, 

and finally output windows with locally highest scores. The 

principle is intuitive, and good detection performance can be 

got when using proper models and scales. 

However, the sliding window mechanism has two potential 

limitations. Firstly, the sliding window fashion is time 

consuming which makes it difficult to be integrated into 

real-time applications. Parsing the whole image needs millions 

windows under different scales, and larger image yields more 

windows. When using complex vehicle models such as 

deformable Parts Model [18][19], scoring all windows will cost 

intolerable computational time. Whereas, most windows are 

backgrounds and it is not necessary to evaluate every window. 

Secondly, simply treating vehicle detection as a 

two-class problem can’t satisfy requirements of vehicle 

recognition in modern traffic monitoring systems. In reality, 

multi-type vehicles will appear in one image at the same time. 

 
Fig. 1. The pipeline of the proposed vehicle type recognition algorithm. 
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Considering all vehicles as the same category can’t describe the 

details of each vehicle. Though class-specific models can be 

trained to detect special type of vehicles, such as taxi [9], 

two-classification could not identify which vehicle is a car, and 

which is a taxi by a single model.  

To speed up sliding window operations, training an 

objectness measure [10][20]-[23] which is generic over 

categories has recently become popular for object detection. By 

proposing a small number of category-independent proposals, 

objectness measure, which reflects how likely an image 

window covers an object, can avoid making decisions early on 

[10]. Carreira et al. [20] and Endres et al. [21] presented 

effective works of reducing search spaces for classifiers by 

producing rough segmentations as object proposals, whilst 

allowing the usage of strong classifiers to improve accuracy. 

However, these methods are computationally expensive, 

usually requiring several minutes per image. In [22], a selective 

search approach was proposed to get higher prediction 

performance, and was successfully used in Regions with CNN 

(R-CNN) [24], which is the state-of-the-art object detector. But 

computation cost is still a problem for its real application. For 

example, when testing a 480×360 pixels image in caffe [25], 

1570 windows are processed in 120s with a single NVIDIA 

GTX Titan GPU. In [23], a cascaded ranking SVM approach 

with orientated gradient feature was proposed for efficient 

proposal generation. In [10], Alexe et al. proposed a cue 

integration approach to get better prediction performance more 

efficiently. Inspired by their work, we propose a combined 

probabilistic objectness measure in Bayesian framework with 

three cues to extract multi-scale regions as vehicle proposals. 

B. Vehicle Classification 

Vehicle classification is to classify all detected vehicles into 

their specific sub-classes. Kafai et al. [26] designed a hybrid 

dynamic Bayesian network which classifies a vehicle into 

sedan, pickup truck, SUV, or unknown by its height, width, and 

angle. Chen et al. [27] used size and shape cues obtained by 

camera calibration to classify a vehicle into four classes (car, 

van, bus and motorcycle). However, these approaches have a 

relatively high false-positive rate since they have not 

considered appearance or structure features of vehicles, and 

their performance is heavily influenced by cluttered 

background, various illuminations, and severe occlusions. In 

[28], the authors presented a multi-feature combination 

approach to classify vehicles using SVM. A vehicle is 

classified to be a 2-wheeler, 3-wheeler, light motor vehicle or 

heavy motor vehicle according to multiple features including 

Haar, Gradient, RGB and Pyramidal histogram of oriented 

gradients. Unfortunately, selecting and designing an effective 

handcrafted feature is laborious, and the resulted classifiers are 

not strong enough to capture vehicles of different poses and 

scales.  

With advances in deep learning and GPU computation, deep 

convolutional neural networks (CNNs) have recently had a 

major impact in a variety of vision tasks, such as face 

recognition [29][30], object detection[24][31], and object 

classification [32][33]. CNNs are biologically-inspired 

multi-stage architectures which automatically learn hierarchies 

of invariant features. With its fast development, CNNs are also 

gradually used in traffic monitoring systems, especially for 

traffic sign classification. In [34], a two-stage Convolutional 

Networks was applied to deal with traffic sign classification for 

GTSRB competition [36] which was above the human 

performance of 98.81% by 98.97% accuracy. In [35], a CNN 

was used to further classify the detected sign proposals 

extracted by color probability model, which was 20 times faster 

than other existing best traffic sign detection module.  

To adopt the advantages of CNN, we apply it to solve 

multiple-vehicle recognition in real traffic scene in this paper. 

We aim at designing a method, which is able to reduce the 

number of classifier evaluations substantially, detect more 

precise candidate locations, and recognize multi-type vehicles 

with high accuracy. To achieve the above idea, a combined 

probabilistic measure built in Bayesian framework with three 

cues is defined to predict a set of bounding boxes, which 

represent potential vehicle locations. Furtherly, a CNN model 

is trained to output a score for each box which indicates 

whether specific vehicle type is contained in this box. Here, a 

candidate box can be classified into a car, bus, taxi, or 

background. Finally, proposal score and CNN score are linearly 

combined for one window, which optimizes detection results 

and classification results simultaneously and reduces the 

number of false-positives. The details of the method are given 

in the following sections. 

III. VEHICLE PROPOSALS EXTRACTION 

To extract vehicle proposals, we take the idea of objectness 

measure to find candidate regions. Objectness is usually 

represented as a value to quantify how likely an image window 

covers an object of any class, which can speed up detectors by 

reducing a large number of evaluated windows. To define the 

objectness measure, objects in an image are characterized by 

their uniqueness, a closed boundary in space, and a different 

appearance from their immediate surroundings. In our work, 

three image cues are used to measure the characteristics of 

objects respectively, and the final measure combines them in a 

Bayesian framework to obtain potential vehicle locations. 

A. Three cues 

Alexe et al. presented five objectness cues to measure the 

characteristics for an image window in [10]. In this paper, three 

of them are selected to get our objectness score. The following 

gives a brief introduction of them. 

Multi-scale Saliency (MS): This cue measures the uniqueness 

characteristic of vehicles. It can measure unique appearance of 

a vehicle from backgrounds shown in Fig. 2. For each scale s, a 

saliency map       of an image i at each pixel p can be 

obtained by the spectral residual of Fast Fourier 

Transformation (FFT) proposed in [37]. Extending it to 

multiple scales, the saliency of a window w at scale s is defined 

as follows 

         ∑        
|{   |          }|

| |{   |          }  (1) 
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where   is scale-specific thresholds, and | |  indicates the 

number of pixels. 

Having multi-scale saliency maps is important for finding 

more vehicles in datasets. Each scale threshold    is learned 

independently, by optimizing the localization accuracy of the 

training vehicle windows   at each scale s. The saliency map 

      and the MS score of all windows are computed for every 

training image i and scale s. Then a set of local maxima 

windows      
  is obtained after NMS on score space. The 

optimal   
  is founded by maximizing the following function: 

  
          

∑          
 

|   |

|   |                  (2) 

the optimal threshold   
  leads the local maxima of MS in the 

images which can most accurately cover the annotated vehicles. 

At the same time, maximizing (2) indicates minimizing the 

score of windows not containing any annotated vehicle. 

Edge Density (ED): The ED cue captures the closed boundary 

characteristic of vehicles by measuring the density of edges 

near the window borders. A pixel   which is classified as edge 

by an edge detector is an edgel. The ED of a window   is 

computed as the density of edgels in the inner ring          

         
∑                

             
                                (3) 

where        {   } is a binary edge map which is obtained 

using the Canny detector in this paper,        indicates the 

perimeter of the inner ring, and the inner ring          of a 

window w is obtained by shrinking it by a factor    in all 

directions, i.e. |        |  
 

  
 | |.                                         

The optimal inner ring          is defined by a well-learned 

parameter   
  . We learn    in a Bayesian framework. For every 

image i, 100000 random windows are generated to distinguish 

positive examples and the negatives. Windows covering an 

annotated vehicle are considered as positive examples    , yet 

the others are the negatives    . For any   , the likelihoods for 

positive and negative classes can be built as          |    

and          |   , respectively.  

The optimal    
  is founded by maximizing the posterior 

probability that object windows are classified as positives: 

   
          

∏  (  |        )                    (4) 

                              
∏

          |         

∑           |         {     }
       

 

where the priors are set by relative frequency: 

{
      

|   |

|   | |   |

             
                           (5) 

Color Contrast (CC): CC is a useful cue to measure the 

different appearance characteristic of vehicles. It scores a 

whole window as whether it contains an entire object. Knowing 

that objects tend to have a different appearance than the 

background behind them, CC measures the dissimilarity of a 

window to its immediate surrounding area according to their 

color distribution. CC between a window w and its surrounding 

        is computed as 

                                          (6) 

where      is the LAB histogram which is invariant to rotation 

and scales,       indicates the Chi-square distance between 

two histograms, and the surrounding         of a window w is 

a rectangular ring obtained by enlarging the window by a 

factor    in all directions, i.e.  |       |     
    | | .                                  

The parameter    is learned as same as the parameter   . 

Note that the learned parameter   
  defines the optimal outer 

ring        . Once all of the parameters have been learned, we 

can take advantage of the three cues for vehicle proposals 

detection.  

B. Vehicle Proposals Extraction  

From above subsection, a vehicle proposal can be measured 

from backgrounds by its characteristics of uniqueness, closed 

boundary, and different appearance according to MS, ED, and 

CC respectively. To speed up, all cues are computed by integral 

images. Since the proposed cues are complementary, we 

combine them in a Bayesian framework to obtain potential 

vehicle locations in Fig. 2. 

To combine three cues, a Bayesian classifier is trained to 

distinguish positive from negative. For each training image i, 

we sample 100000 windows from the distribution given by the 

MS cue, and then compute the other two cues. The positive and 

negative examples are defined in the same way as in ED. Here, 

a Naive Bayes approach is chosen to avoid enormous samples 

to estimate the joint likelihood of cues.  

In our Naive Bayes model, the priors       and       can 

be estimated by above eq. (5). And the individual cue 

likelihood      |    and      |    can be obtained due to 

cues are independent, where     {        }. When a test 

image is given, the posterior probability of a test window w is 

computed as  

    |     
   |        

    
                            (7) 

 
     ∏      |      

∑     ∏      |       {     }
      

Thus the final objectness score of w is computed by eq. (7).  

      
Fig. 2.  Bayesian framework combined cues to search for vehicles proposals.  



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2582926, IEEE
Transactions on Vehicular Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

To get more precise vehicle proposals, we have taken two 

procedures into account. Firstly, we sample much less 

candidate vehicle locations according to desired final number 

of windows responding to an objectness threshold. This can 

reduce a large number of evaluated windows. The selection 

principle for windows number is described in Section V-A. 

After that, we consider the size and aspect ratio of the candidate 

region which also helps reducing the false positives. As a 

complementary strategy, windows that appear too large are 

reduced by vehicle size prior without analyzing image pixels, 

such as        . At the same time, a very elongated window 

is less probable as a vehicle proposal in an image than a square 

window, so this window is also not considered as a vehicle 

candidate for the postprocessing. Fig. 3 gives an example to 

show how the Bayesian classifier based on objectness measure 

can provide the meaningful distribution over vehicles’ 

locations. Fig. 3 (b) is the corresponding probability heat-map 

of an input image that indicates where vehicles are more likely 

to appear. It proves that our detection procedure can reduce the 

uncertainty of vehicle locations which helps us find candidate 

vehicles quickly and easily. 

IV. VEHICLE TYPE CLASSIFICATION BASED ON CNN 

In this section, we will provide details of the vehicle type 

classification algorithm and its training process by a pre-trained 

CNN. The CNN architecture is trained using the training 

examples and later it acts as a feature extractor to compute a 

feature vector for each resized image. A softmax classifier over 

four classes is used to predict the type of a given proposal. As a 

complementary optimization strategy, a linear combination of 

the CNN score and objectness score for a window is used to 

filter out false positives for final recognition results.  

A. Vehicle Type Classification by CNN 

Here, a region proposal obtained in section III can be 

classified into a car, bus, taxi, or background by our vehicle 

type recognition model based on CNN. The CNN feature 

extractor can runs on raw pixels to automatically learn a 

hierarchy of features in a deep stacked structure for a specific 

task. Meanwhile, it has the ability to extract features which are 

invariant to translations, rotations, and scale changes. The 

framework of our CNN net is depicted in Fig. 4. A detailed 

explaination on this figure is given below. 

In our method, we adopt AlexNet [33] as a pre-trained model 

for vehicle type classification. AlexNet is an 8 layers convnet 

which has been successfully trained on the ILSVRC 2012 

ImageNet dataset [38]. Before fine-tuning the model on our 

data, we model the recognition task as a 4-class classification 

problem containing four predefined labels: car, bus, taxi and 

background. So we replace the final layer of AlexNet with a 

Softmax loss function with a 4-dimension output. As presented 

in Fig. 4, our model consists of 8 layers, where the first 5 layers 

are convolution layers {              } and the last 3 layers 

are fully-connected layers {        }. A resized proposal is 

the input of our CNN model. Based on convolving the input 

image with different filters, several feature maps can be 

generated in convolution layers. The responses of the filters in 

each layer are regarded as the features for our task. Each feature 

map in pooling layers  {                 } is obtained by 

max pooling that is performed on the corresponding feature 

map in previous convolution layers, respectively. Following 

each convolution layer, the contrast normalization, pooling, 

and nonlinear function are connected to it successively. 

Following two fully-connected layers {     } , the final 

layer    implements a softmax nonlinear function to give the 

score of each category in classification: 

      
       

∑        
 
   

                           (8) 

where    is     input of    that equals to a linear combination 

of 4096-dimension feature, and       is a 4-dimension output 

corresponding to the number of nodes in    which can give a 

    
(a)                                             (b)             

Fig. 3. An example of objectness measure to detect vehicle locations. (a) An 

input image. (b)The corresponding probability heat-map of vehicles’ 

locations.  

 
 Fig. 4.  The framework of our CNN  

Fig. 5.  Examples for training our CNN model. 
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probability to predict the class of a vehicle proposal, i.e. car, 

taxi, bus, or background. 

As shown in Fig. 4, the proposals are resized to         

since the input of CNN should have the same size. So the net 

takes           RGB images as input. The size of filter 

kernel in the five convolution layers are     ,   ,  
 ,   ,   , respectively. The sizes of the outputs of all the 

convolution layers are          ,          ,    
      ,         , and          , respectively. 

Max pooling method is applied to the outputs of   and    to 

reduce the size of the output and shorten the computation cost at 

the same time. The output of    is fed to the fully-connected 

layers    and    to get a long feature vector with the length of 

4096. Finally, these extracted feature vectors are used to 

compute score of each class by the softmax classifier. Given all 

scored regions in an image, a greedy NMS is applied to reject a 

region if its intersection-over-union (IOU) overlap with a 

higher scoring selected region is lower than a learned threshold. 

For fine-tuning, we used 100K iterations of stochastic 

gradient descent (SGD), momentum of 0.9, weight decay of 

0.0005, and base learning rate of 0.001. Note that the learning 

rate is dropped 1/10th of the initial rate every 20k iterations, 

which allows fine-tuning to make progress while not clobbering 

the initialization. We trained our models using SGD with a 

batch size of 128 examples, where each batch contained 32 

positive and 96 negative examples.  To generate examples, we 

manually annotated the type of each vehicle from the dataset, 

which consists of 10K images with 40K vehicles. To 

increase the number of examples, we randomly sampled 

subwindows of the annotated images. A subwindow is treated 

as a positive example if it has more than an 80% IOU overlap 

with the ground truth box. Otherwise, it is treated as a negative 

image if it has less than a 20% IOU overlap with the ground 

truth box. For further data augmentation, we also cropped and 

flipped the taxi and bus examples randomly because they are 

extremely rare compared to car images in real traffic. Fig. 5 

shows some examples of training samples. It can be clearly 

seen that our training samples contain a wide range rotation 

angle of vehicles. Finally, the resulted dataset contains 30K 

positive images and 90k negative images for training and 

testing. The fine-tuning takes about 9 hours in caffe on a Titan 

GPU with a very high classification accuracy of 99.76%.  

B. Reduce False-Positive Rate 

The score function of above CNN-based classifier typically 

returns a high response to instances of vehicle types, but 

occasionally also to other image patterns, which will usually 

lead to false positives. The most common false positives are 

images of full background and partial background with object. 

In order to reduce the number of false positives and improve the 

average precision for three vehicle types, we linearly combine 

the detection and classification results in above sections. A low 

score of objectness measure should be given to a false-positive 

window. To realize this, the final score      is calculated by 

combining the type score       of a window   and its 

objectness score    |  :  

                    |              (9) 

where   is the weight to control the importance of objectness 

score.  

When different value of   is set, the final result for vehicle 

type classification is also different in some degree. Because that 

objectness score    |   is an assistant measure to improve the 

reliability of type score     , it is usually set a smaller weight 

value. We tested several values for the parameter   to obtain a 

better vehicle detection and classification results. In our final 

experiment, we set      . 

V. EXPERIMENTS 

We evaluate our integrated approach on a large set of image 

sequences and compare it with other representative methods. 

All testing images are taken by traffic cameras along 

metropolitan roads. All experiments were conducted on a 

computer with 4GHz CPU, 32G RAM, 12G GPU, and 64bit 

Linux OS. Experimental results under various circumstances of 

roads show that our method achieves the state-of-the-art 

performance with significantly improved computational 

efficiency. The recognition process is almost 30 times faster 

than R-CNN method. 

A. Dataset and Evaluation Criteria 

This section presents dataset and evaluation criteria to verify 

the effectiveness of our method.  

The proposed methods are trained and evaluated on a large 

set of testing images in various traffic conditions including 

partial occlusion. The images are captured roughly from the 

frontal view by different high-resolution CCD cameras along 

metropolitan roads.  The dataset is built from several videos 

that are respectively captured at 8fps with the resolution of 

2592×1936 and 1920×1080. For training phase, we do some 

data augmentation to balance different data class. We 

subsample 900 testing images to form three representative 

datasets which cover a large range of variations in view angle 

and ambient illumination. Detailed information of each dataset 

TABLE II 

PERFORMANCE OF OUR METHOD 

Vehicle Type 
Vehicle Type Recognition Rate 

Subset 1 Subset 2 Subset 3 Average 

Car 96.73% 91.05% 92.88% 93.55% 

Bus 97.64% 92.60% 93.81% 94.68% 

Taxi 95.78% 90.15% 92.35% 92.76% 

 

TABLE I 

DETAILED INFORMATION OF OUR COLLECTED DATASET 

Dataset Description 
Number of Examples 

Image Car Taxi Bus 

Subset 1 
daytime,  

resolution 1920×1080 
300 817 210 106 

Subset 2 
nighttime,  

resolution 1920×1080 
300 445 139 197 

Subset 3 
daytime, 

 resolution 2592×1936 
300 2214 615 520 

Total 900 3476 964 823 
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is shown in Table I. For convenience, the ROI is set from the 

middle to the bottom of each image without considering the 

upper area because the objects are too small in that area. 

The performance of proposed methods is measured by 

calculating the detection-rate/windows-amount (DR-#WIN), 

the vehicle type recognition rate, and the receiver operating 

characteristic (ROC) curve. The computational time of whole 

recognition system is also considered.  

DR-#WIN means detection rate (DR) given #WIN proposals. 

This metric is the most popular evaluation criterion for 

objectness measure methods, where DR is the percentage of 

ground-truth vehicles covered by selected proposal windows, 

and #WIN is the number of selected proposal windows. When 

#WIN is larger, DR is more likely to be higher but the 

following processing requires more computing resources. A 

vehicle is correctly detected only if the percentage of 

ground-truth bounding box covered by detected windows is 

above 0.8. Vehicle type recognition rate indicates the ability to 

correctly recognize vehicles of each type.  

ROC curves show the performance of different methods with 

a series of TP-FP (true positive rate and false positive rate) pairs 

at various threshold settings. The ROC curve of different 

vehicle type is drawn by adjusting the scoring thresholds in the 

vehicle localization as shown in Fig. 9. We tested all data sets in 

different scenarios to get the summary ROC curve, and utilized 

least squares method for curve fitting. With the ROC curve, we 

can choose a relatively good scoring threshold for all scenarios.  

B. Experimental Results 

From Fig.3, we obtain the probabilistic response of locations 

for multi-vehicle by our integrated image cues. In order to 

describe its ability to extract vehicle proposals, we compute the 

DR-#WIN curves of our method on three dataset which is 

shown in Fig. 6. Different #WIN represents different candidate 

location number. A small set of coarse locations with high DR 

are sufficient for effective vehicle detection, and it allows 

complex features to be involved in following processing to 

achieve better quality and higher efficiency than traditional 

methods. When WIN=1000, the DR of our method is already 

above 96% which is much higher than using a single cue. It 

proves that a large size of search space is reduced with little loss 

of detection rate for the subsequent vehicle type recognition. 

This is the reason for efficiency improved in our method. It is 

crucial to obtain the precise bounding box of each vehicle 

region before recognition. It also indicates the three cues are 

complementary and important for finding vehicles in 

challenging traffic images. And Table III shows detailed 

information about average processing time in different phases 

of the proposed method.   

Fig. 7 shows some results of testing images by the proposed 

method. According to those results, we can easily find that our 

method can deal with vehicles with different translations, 

rotations and noise caused by illuminations. There are two 

main reasons for this: first, our model is trained on a large-scale 

    
(a)                                      (b)                                                        (c)                                                           (d)        

Fig. 7. Examples of results for vehicles with different out-of-plane translations, rotations and illuminations.  

 
Fig.6 DR-#WIN plots of the triple cue combinations. 

TABLE IV 
COMPARISON OF COMPUTATIONAL TIME FOR THREE METHODS 

Image Size Method 
Average Processing  
Time for an Image 

1920×1080 

Sliding window with CNN 210s 

R-CNN 167s 

Our method 5s 

2592×1936 

Sliding window with CNN 450s 

R-CNN 275s 

Our method 12s 

 

TABLE III 

AVERAGE PROCESSING TIME OF DIFFERENT PHASES 

Image size 
 

Phases 

Average Processing Time  

1920×1080 2592×1936 

Vehicle proposals 
extraction 

2.78s 7.52s 

Vehicle type 

classification 
2.31s 4.47s 
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dataset which guarantees the model can be adapted to a variety 

of situations; second, the robustness depends on multi-feature 

extractors in different stages. The complementary cues and 

CNN features also ensure the proposed method can extract 

features which are invariant to translations, rotations, and noise 

variances.  

Fig. 8 presents examples in the final results of proposed 

multi-vehicle type recognition method. We sequentially 

process all the testing images and output the bounding boxes of 

detected vehicles’ type with different color. The red rectangles 

indicate the bounding boxes of the detected cars, the blue ones 

indicate the bounding boxes of the detected taxis, and the green 

ones indicate the bounding boxes of the detected buses. As 

illustrated in Fig. 8, our method can detect multi-vehicle 

locations and recognize the corresponding different vehicle 

type at the same time.  It can work for traffic images under 

different illumination conditions, including daylight and night. 

More importantly, our method has a good performance in some 

occlusion conditions. From Fig. 8(c), it can be seen that our 

method can deal with the partial occlusion between vehicles. In 

addition, our method adapts to various vehicle poses and shapes 

benefiting from the usage of prior objectness measure and 

CNN-based classifier. 

C. Comparison of Experiments 

In this section, some contrasting experiments for further 

testing of our method have been conducted. The proposed 

method is compared with two popular object detection schemes, 

sliding window technique and R-CNN method [26]. The sliding 

window technique is realized by multi-scale pyramid iterative 

method combining with CNN. R-CNN method is the 

state-of-the-art object detection algorithm which adopts 

selective search, another common objectness measure method. 

The comparison analysis is done from two aspects, 

computational time and vehicle type recognition rate. 

All of the three methods are conducted in GPU mode. The 

code is implemented in Python, C++ and Matlab. Detailed 

information of average computational time to process an image 

for each method is shown in Table IV. It is easy to see our 

method achieves remarkable advantage in shortening the full 

computation cost for images in 2 Mega pixels and in 5 Mega 

pixels. Sliding window fashion and selective search method are 

time-consuming, requiring hundreds of seconds to process an 

image. Our method is efficient to decrease the processing time 

for two main reasons: the first one is integral images are used to 

efficiently compute three cues for the final objectness score of  

a window; and the second is a large number of windows have 

been reduced before the final evaluation by objectness measure 

in detection. As shown in Table IV, the average processing time 

for different high-resolution traffic images is no more than 20s 

in our method. The proposed method is able to efficiently 

process a 1920×1080 image with only 5 seconds and a 

2592×1936 image with only 12 seconds which is about 30 

times faster than the existing R-CNN with selective search. 

Combined with Fig. 6, it proves that our method can greatly 

reduce the size of search space without sacrificing the detection 

rate.  

In Fig. 9, ROC curves of three methods for multi-vehicle 

type recognition in subset 1 are shown. The curves are color 

coded so that the proposed method, R-CNN method and sliding 

window technique appear as red, green and blue, respectively. 

Comparison of ROC results clearly shows that our method 

        
    (a)                                                                              (b)                                                                            (c)                    

Fig. 9 The ROC curves in Subset1 for vehicle types of (a) Car, (b) Bus, (c) Taxi, respectively 

          
(a)                                                                               (b)                                                                           (c)                    

Fig. 8. Examples for detection and recognition results of test images in each subset. (a) the multi-vehicle type recognition result for a 1920×1080 image in the 

daytime,(b) is the multi-vehicle type recognition result for a 1920×1080 image in the nighttime, (c) the multi-vehicle type recognition result for a 2592×1936 

image in the daytime.  
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achieves remarkable advantages on true positive rate against 

the same false positive rate above 0.1, for three types of vehicle 

recognition. This indicates that compared with general R-CNN 

and sliding windows, our method which couples multi-vehicle 

detection and classification is more precise in capturing diverse 

locations of vehicles and classifying their corresponding types. 

As illustrated in Fig. 9, our method has very strong 

discriminative power and can achieve the state-of-the-art 

recognition performance for car, bus, and taxi. Our method has 

shown its advantage to classify high dimensional features using 

a single CNN-based model. In addition, it achieves effective 

performance and is robust to deal with traffic images of 

different resolution and different illumination conditions. 

D. Discussions 

The collection of incorrect and missed samples in detection 

and classification is used to analyze the limitations of our 

method. Three situations cause the most failed cases. Firstly, 

poor image cues caused by the camera view and make vehicles 

hard to identify. For example, a red taxi can be classified as a 

car because they are similar in size and color when viewed from 

one perspective. Secondly, shadows in daytime and light of 

vehicles at night cause problems in finding an accurate vehicle 

location. Thus, the location of a vehicle is vague and generates 

no strong responses of objectness measure in general. Thirdly, 

vehicles with severe occlusion are still difficult to detect and 

classify. In this situation, the objectness score of the occluded 

hypothesis is quite low and the occluded is detected as the same 

vehicle in front by mistaken.  

VI. CONCLUSION 

A novel method for multi-vehicle recognition has been 

proposed in this paper. The proposed method considers vehicle 

detection and classification as a coupled optimization problem 

by combining objectness measure with CNN. With three image 

cues, our approach obtains more accurate vehicle region 

proposals and avoids the brute force search in sliding window 

approach. After that, normalized detection areas are classified 

into one of three common vehicle types using a single 8-layer 

CNN model. Due to the recognition framework, not only 

vehicle locations are detected, but also vehicle types are 

determined. Our method has the ability to extract features 

which are robust against various translations, rotations, and 

noise variances. In experiments on high-resolution traffic 

images, the results have demonstrated that the proposed method 

can achieve reliable and robust recognition performance in real 

traffic environment while speeding up the detection process by 

capitalizing on the reduced number of locations. 

In addition, the CNN structure makes it suitable for a parallel 

implementation on GPUs, thus making a real-time recognition 

system possible. In the future, we are planning to use multiple 

GPUs to accelerate vehicle recognition process, improving the 

performance and efficiency of the recognition system. At the 

same time, we will also expand the network learning dataset 

and use more sophisticated data augmentation techniques to 

further recognize more vehicle types and improve our method’s 

performance. 

REFERENCES 

[1] F.-Y. Wang, “Parallel control and management for intelligent transportation 

systems: Concepts, architectures, and applications,” IEEE Trans. Intell. 
Transp. Syst., vol. 11, no. 3, pp. 630-638, Sep. 2010. 

[2] Y. C. Kuo, N. S. Pai, and Y. F. Li, “Vision-based vehicle detection for a 

driver assistance system,” Comput. Math. Appl., vol. 61, no.8, pp. 
2096-2100, 2011. 

[3] X. Liu, X. Xu, and B. Dai, “Vision-based long-distance lane perception and 

front vehicle location for full autonomous vehicles on highway roads,” J. 
Central South University, vol. 19, pp. 1454-1465, 2012. 

[4] C. Y. Lin, C. H. Yeh, and C. H. Yeh, “Real-time vehicle color identification 

for surveillance videos,” in Proc. IEEE Conf. on Electronics, 
Communications and Computers, pp. 59-64, 2014. 

[5] A. Lu, L. Zhong, L. Li, and Q. Wang, “Moving Vehicle Recognition and 

Feature Extraction From Tunnel Monitoring Videos,” TELKOMNIKA 
Indonesian J. Electrical Engineering, vol.11, no. 10, pp. 6060-6067, 2013. 

[6] W. Zhan, and Z. Q. Luo, “Research of Vehicle Type Recognition System 

Based on Audio Video Interleaved Flow for Toll Station,” J. Softw., vol.7, 
no.4, pp. 741-744, 2012. 

[7] H. Cho, and S. Y. Hwang, “High-performance on-road vehicle detection 

with non-biased cascade classifier by weight-balanced training,” J. on 
Image and Video Processing, vol. 2015, no. 16, pp. 1-7, 2015. 

[8] Y. Li, B. Tian, B. Li, G. Xiong, F. H. Zhu, and K. F. Wang, “Vehicle 

detection with a part-based model for complex traffic conditions,” in Proc. 
IEEE Conf. Vehicular Electronics and Safety, pp. 110-113, 2013. 

[9] B. Tian, B. Li, Y. Li, G. Xiong, and F. H. Zhu, “Taxi detection based on 

vehicle painting features for urban traffic scenes,” in Proc. IEEE Conf. 
Vehicular Electronics and Safety, pp. 105-109, 2013. 

[10] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image 

windows,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no.11, pp. 
2189-2202, 2012. 

[11] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A 

convolutional neural-network approach,” IEEE Trans. Neural Netw., vol. 8, 
no. 1, pp. 98-113, 1997. 

[12] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.5, pp. 694-711, 2006. 

[13] X. Mei, and H. Ling, “Robust visual tracking and vehicle classification via 

sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 

11, pp. 2259-2272, 2011. 
[14] J. Zhou, D. Gao, and D. Zhang, “Moving vehicle detection for automatic 

traffic monitoring,” IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 51-59, 

2007. 
[15] M. Vargas, J. M. Milla, S. L. Toral, and F. Barrero, “An enhanced 

background estimation algorithm for vehicle detection in urban traffic 

scenes,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 3694-3709, 2010. 
[16] B. Tian, B. T. Morris, M. Tang, Y. Q. Liu, Y. J. Yao, C. Gou, D. Y. Shen,  

and S. H. Tang, “Hierarchical and Networked Vehicle Surveillance in ITS: 

A Survey,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 557-580. 
2015. 

[17] R. Feris, B. Siddiquie, J. Petterson, Y. Zhai, A. Datta, L. Brown, and S. 

Pankanti, “Large-scale vehicle detection, indexing, and search in urban 
surveillance videos,” IEEE Trans. Multimedia, vol. 14, no. 1, pp. 28-42, 

Feb. 2012. 

[18] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object 

detection with discriminatively trained part-based models,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep. 2010. 
[19] L. C. Leon, and J. R. Hirata, “Vehicle detection using mixture of 

deformable parts models: Static and dynamic camera,” in Proc. SIBGRAPI 

Conf. Graphics, Patterns and Images, pp. 237-244, 2012. 
[20] J. Carreira, and C. Sminchisescu, “CPMC: Automatic object segmentation 

using constrained parametric min-cuts,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 34, no. 7, pp.1312–1328, 2012. 
[21] I. Endres, and D. Hoiem, “Category independent object proposals,” in 

Proc. European Conf. Comput. Vis., pp. 575-588. 2010. 

[22] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search 
for object recognition. Int. J. Comput. Vis., 2013. 

[23] Z. Zhang, J. Warrell, and P. H. Torr, “Proposal generation for object 

detection using cascaded ranking svms,” in Proc. IEEE Conf. Comput. Vis. 
Pattern Recog., pp. 1497-1504, 2011. 

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies 

for accurate object detection and semantic segmentation,” in Proc. IEEE 
Conf. Comput. Vis. Pattern Recog., pp. 580-587, 2014. 

[25] Y. Jia, “Caffe: An open source convolutional architecture for fast feature 

embedding,” http://caffe.berkeleyvision.org/, Mar. 2013. 



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2016.2582926, IEEE
Transactions on Vehicular Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

[26] M. Kafai, and B. Bhanu, “Dynamic Bayesian networks for vehicle 

classification in video,” IEEE Trans. Ind. Informat., vol. 8, no. 1, 

pp.100-109, 2012. 

[27] Z. Chen, T. Ellis, and S. Velastin, “Vehicle type categorization: A 

comparison of classification schemes,” in Proc. IEEE Conf. Intell. Transp. 
Syst., pp. 74-79, 2011. 

[28] P. K. Mishra, and B. Banerjee, “Vehicle Classification using Density 

based Multi-feature Approach in Support Vector Machine Classifier,” Int. J. 
Comput. Appl., vol. 71, no.7, pp. 1-6, Jun. 2013. 

[29] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the 

gap to human-level performance in face verification,” in Proc. IEEE Conf. 
Comput. Vis. Pattern Recog., 2014. 

[30] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face 

representation by joint identification-verification,” in Proc. NIPS, 2014. 
[31] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, 

“Overfeat: Integrated recognition, localization and detection using 

convolutional networks,” arXiv preprint arXiv:1312.6229, 2013. 
[32] R. Socher, B. Huval, B. Bath, D. M. Christopher, and Y. N. Andrew, 

“Convolutional-recursive deep learning for 3d object classification,” 

Advances in Neural Inform. Process. Syst., pp. 665-673, 2012. 
[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification 

with deep convolutional neural networks,” Advances in 

Neural Inform. Process. Syst., pp. 1097-1105 2012. 
[34] P. Sermanet, and Y. LeCun, “Traffic sign recognition with multi-scale 

convolutional networks,” in Proc. IJCNN, pp. 2809-2813, 2011. 

[35] Y. Yang, H. Luo, H. Xu, and F. Wu, “Towards real-time traffic sign 
detection and classification,” IEEE Trans. Intell. Transp. Syst., vol. PP, 

no.99, pp. 1-12, Oct. 2015. 
[36] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German Traffic 

Sign Recognition Benchmark: A multi-class classification competition,” 

in Proc. IJCNN, pp. 1453-1460, 2011. 

[37] x. Hou, and L. Zhang, “Saliency detection: A spectral residual approach,” 

in Proc. IEEE Conf. Comput. Vis. Pattern Recog., pp. 1-8, 2007. 

[38] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and F.-F., Li, “ImageNet 

large scale visual recognition competition 2012 (ILSVRC2012),” 
http://www.image-net.org/challenges/LSVRC/2012/ 

 

 
 

 

Yanjie Yao received the B.S. degree from 

the China University of Geosciences, 

Beijing, China, in 2011. She is currently 

working toward the Ph.D. degree in control 

theory and control engineering with the 

State Key Laboratory of Management and 

Control for Complex Systems, Institute of 

Automation, Chinese Academy of Sciences, 

Beijing, China. 

Her research interests include intelligent transportation 

systems, image processing, and computer vision. 

 

 

 

Bin Tian received the B.S. degree from 

Shandong University, Jinan, China, in 

2009 and the Ph.D degree from the 

Institute of Automation, Chinese Academy 

of Sciences, Beijing, China, in 2014. 

He is currently an Assistant Professor of 

the State Key Laboratory of Management 

and Control for Complex Systems, 

Institute of Automation, Chinese Academy of Sciences. His 

research interests include visual object detection, machine 

learning, and intelligent transportation systems. 

 

 

 

 

 

Fei-Yue Wang (S'87-M'89-SM'94-F'03) 
received his Ph.D. in Computer and 

Systems Engineering from Rensselaer 

Polytechnic Institute, Troy, New York in 

1990. 

He joined the University of Arizona in 

1990 and became a Professor and Director 

of the Robotics and Automation Lab (RAL) 

and Program in Advanced Research for 

Complex Systems (PARCS). In 1999, he found the Intelligent 

Control and Systems Engineering Center at the Chinese 

Academy of Sciences (CAS), Beijing, China, under the support 

of the Outstanding Oversea Chinese Talents Program, and in 

2002, was appointed as the Director of the CAS Key Lab for 

Complex Systems and Intelligence Science. From 2006 to 2010, 

he was Vice President for research, education, and academic 

exchanges at the Institute of Automation, Chinese Academy of 

Sciences. Since 2005, he is the Dean of the School of Software 

Engineering, Xi'an Jiaotong University. In 2011, he became the 

State Specially Appointed Expert and the Founding Director of 

the State Key Laboratory of Management and Control for 

Complex Systems. His research is focused in social computing 

and parallel systems, and has published over 10 books and 300 

papers in related areas over the past three decades. 

Dr. Wang was the Editor-in-Chief of the IEEE Intelligent 

Systems in 2009 to 2012. He is currently the EiC of the IEEE 

Transactions on Intelligent Transportation Systems. He has 

served as General or Program Chair of more than 20 IEEE, 

INFORMS, ACM, ASME conferences. He was the President of 

IEEE ITS Society from 2005 to 2007, Chinese Association for 

Science and Technology (CAST, USA) in 2005, and the 

American Zhu Kezhen Education Foundation from 2007-2008. 

Dr. Wang is member of Sigma Xi, an Outstanding Scientist of 

ACM, and Fellow of IFAC, IEEE, INCOSE, ASME, and 

AAAS. Currently, he is the Vice President and Secretary 

General of Chinese Association of Automation. In 2007, he 

received the 2nd Class National Prize in Natural Sciences of 

China for his work in intelligent control and social computing. 

He received IEEE ITS Outstanding Application Award in 2009 

and 2015, IEEE ITS Outstanding Research Award in 2011, 

IEEE Intelligence and Security Informatics Outstanding 

Research Award in 2012, and ASME MESA Achievement 

Award in 2012 for his cumulative contribution to the field of 

mechatronic/embedded systems and applications. In 2014, he 

received the IEEE SMC Society Norbert Wiener Award. 

http://www.image-net.org/challenges/LSVRC/2012/

