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Abstract—The task of text/non-text stroke classification in
online handwritten documents is an essential preprocessing step
in document analysis. It is also a challenging problem since
in many cases local features are not enough to generate high
accuracy results and contextual information, such as temporal
information and spatial information, must be carefully consid-
ered. In this paper, we propose a novel method, which jointly
trains a combined model of conditional random fields and
neural networks, to solve this problem. Both our unary and
pairwise potentials are formulated as neural networks. The
parameters of conditional random fields and neural networks are
learned together during the training process. With much fewer
parameters and faster speed, our method achieves impressive
performance on the IAMonDo database, a publicly available
database of freely handwritten documents.

I. INTRODUCTION

In recent years, with the emergence of digital pens, tablets,
electronic whiteboards equipped with pen-based and touch-
based handwriting interfaces, online handwritten documents
have become more and more popular. However, since these
documents always contain various type contents, e.g. text
blocks, list, tables, diagrams, it is hard to design one general
engine to deal with all different types. One natural solution is
to first separate textual strokes from non-textual strokes and
then process them with different engines. For these reasons,
the task of text/non-text stroke classification is an essential
preprocessing step in document analysis [1].

The task of text/non-text classification in online handwritten
document is very challenging since text strokes and non-text
strokes can be extremely similar. As shown in Fig. 1, a circle
can be either a letter ’o’ or a wheel of a car. Thus, the feature
of an individual stroke is not enough to determine its label
and the contextual information, such as spatial relationship and
temporal relationship, plays a key role in the classification.

Conditional random fields (CRFs) is one of the most popular
methods for exploiting the contextual information. Previous
works, such as [3], [1], typically employ a two-step procedure.
First, they train a local classifier. Then, they learn a CRF
model by using this classifier as the unary potential and
some simple function as the pairwise potential. Although this

Fig. 1. A sample document from the IAMonDo database. Text strokes are
shown in black, non-text strokes are shown in blue.

sequential training approach is efficient, it is suboptimal since
the dependencies between CRFs and classifiers are ignored.

In this paper, we propose a novel method to combine
conditional random fields and neural networks (NNs), and
apply it to text/non-text classification in online handwritten
documents. Specifically, our contribution is in two folds. First,
we propose a chain CRF model that formulates the unary
potentials and pairwise potentials by two NNs. Benefit from
the two NNs, our model has more powerful representation
ability than previous works and thus can better exploit the
contextual information. Second, by taking advantage of the
chain structure of CRF, we design an efficient algorithm that
jointly learns the parameters of these networks. Experiment
results demonstrate the effective and superiority of this com-
bined model and our training approach. With much fewer
parameters and faster speed, our method obtains the top result
on the IAMonDo database.

The rest of this paper are organized as follows. In Section
2, we briefly review works that are related to this paper. In
Section 3, we present our method for text/non-text stroke
classification in online handwritten documents. In Section 4,
the experiments and results are presented. Finally, we draw
conclusion in Section 5.



II. RELATED WORKS

The task of text/non-text classification has been researched
for a long period. The work of Jain et al. [7] proposed a method
which extracted strictly local features, length and curvature, to
distinguish between text and non-text strokes. Indermühle et
al. [6] applied same features with a support vector machine for
isolated stroke classification and achieved 91.3% accuracy on
the IAMonDo database. Peterson et al. [14] proposed to extract
features not only from the stroke to be classified but also
from surrounding strokes to integrate contextual information.
In order to exploit more contextual information, graphical
models, like Markov random fields and conditional random
fields, have been used to tackle this problem. Zhou et al. [17]
and Delaye et al. [1] proposed methods based on Markov
random fields and conditional random fields to better integrate
contextual information, respectively. Delaye explored multiple
interactions between strokes, like spatial system, temporal
system, intersecting system, lateral system, stroke continuation
system and discussed the influence of different systems on the
classification accuracy. His fully system obtained 97.23% ac-
curacy on the IAMonDo database. Besides, since the temporal
information in online documents is crucial, tools for exploiting
temporal relationship, like recurrent neural networks(RNNs),
are also popular. Indermühle et al. [5] presented a method
based on bidirectional long short-term memory(BLSTM) neu-
ral networks and achieved 97.01% accuracy on the IAMonDo
datebase. Van et al. [15] proposed to use multiple BLSTM
neural networks to capture global and local contexts and the
ensemble classifiers achieved the state-of-art accuracy 98.30%
on the IAMonDo database.

Recently, as convolutional neural networks(CNNs) become
the preferred choice in image processing and computer vision,
the deep structured model, combined with CNNs and CRFs,
obtained state-of-art results in semantic segmentation. Zheng,
et al. [16] implemented the mean-field inference procedure of
CRFs as RNNs which enables the end-to-end joint training
of CRFs and CNNs. Lin, et al. [11] formulated both unary
potentials and pairwise potentials as CNNs and jointly trained
the parameters of CNNs and CRFs with piecewise training.

III. METHOD DESCRIPTION

In this work, we formulate the online stroke classification
task as a particular structured prediction problem and solve
it under the framework of CRFs. In the following, we first
introduce our model which is a combination of CRFs and NNs,
and then propose efficient learning and inference algorithms
for the model.

A. Problem definition

We are given a set of labeled online documents S =
{(x(i),y(i)), i = 1, . . . , N}, in which each document x(i) is
represented by a sequence of strokes {x(i)

t , t = 1, · · · , Ti}
and each stroke has one associated label y(i)

t ∈ {+1,−1} for
text and non-text classes. The task is to learn a model from
the training set S that can predict test documents with high
accuracy.

B. Model formulation

CRFs were first introduced by Lafferty et al. [10], as a type
of discriminative undirected probabilistic graphical model.
It is a powerful method for various structured prediction
problems, such as image semantic segmentation [9], part-of-
speech tagging [2], name identity recognition [13]. A CRF
model can be defined as:

P (y|x;w) =
1

Z(x;w)
exp{F (x,y;w)}, (1)

where w is the learnable model parameters, F (x,y;w) is the
potential function and Z(x;w) =

∑
y exp{F (x,y;w)} is the

partition function.
The potential function is designed to capture the dependency

between y given x, and thus can be of arbitrary forms in
general. However, for the online stroke classification problem
considered in this work, the most important relationship within
data is the temporal relationship. Therefore, we can just
model the pairwise relationship between adjacent strokes. This
results in a chain CRF model whose potential function can be
formulated as:

F (x,y;w) =
∑
t

FU (x,yt;w) +
∑
t

FP (x,yt,yt+1;w).

(2)
Here, FU is the unary potential function which works as a
stroke classifier, while FP is the pairwise potential function
which aims to capture the dependency between adjacent
strokes. The key benefit of this simple structure is that it
allows fast exact inference in testing and also brings much
convenience in the training process.

Next we introduce how to formulate the unary potentials
FU and pairwise potentials FP with NNs.

1) Unary potentials: We formulate the unary potential
function as follows:

FU (x,yt;w) =
K∑

k=1

δ(k = yt)ϕk(xt;w). (3)

Here δ(·) is the indicator function, ϕk is the unary network
output value that corresponds to the k-th class, K = 2 is the
number of classes. The output of unary network is equal to
K. The input of unary network is the features extracted from
a single stroke as presented in TABLE I. These features are
expansion of [1] which have been showed effectiveness in this
task.

2) Pairwise potentials: We formulate the pairwise potential
function as follows:

FP (x,yt,yt+1;w)

=
K∑

p=1

K∑
q=1

δ(p = yt)δ(q = yt+1)ϕp,q(xt,xt+1;w).

(4)
Here ϕp,q is the pairwise network output. It is the score

value for the node pair (t, t + 1) when they are labeled with
the class value (p, q), which measures the compatibility of



TABLE I
23 DESCRIPTORS EXTRACTED FROM STROKE xk AND LOCAL CONTEXT.

# Description

1 Trajectory length of xk

2 Area of the convex hull of xk

3 Duration of the stroke

4 Ratio of the principal axis of xk

5 Rectangularity of the minimum area bounding rectangle of xk

6 Circular variance of points of xk around its centroid

7 Normalized centroid offset along the principal axis

8 Ratio between first-to-last point distance and trajectory length

9 Accumulated curvature

10 Accumulated squared perpendicularity

11 Accumulated signed perpendicularity

12 Width of xk , normalized by the median stroke height in the document

13 Height of xk , normalized by the median stroke height in the document

14 Number of temporal neighbours of xk

15 Number of spatial neighbours of xk

16 Average of the distances from xk to time neighbours

17 Standard deviation of the distances from xk to time neighbours

18 Average of lengths of time neighbours

19 Standard deviation of lengths of time neighbours

20 Average of the distances from xk to space neighbours

21 Standard deviation of the distances from xk to space neighbours

22 Average of lengths of space neighbours

23 Standard deviation of lengths of space neighbours

TABLE II
19 DESCRIPTORS EXTRACTED FOR A PAIR OF STROKE xu, xv .

# Description

1 Minimum distance between 2 strokes

2 Minimum distance between the endpoints of 2 strokes

3 Maximum distance between the endpoints of 2 strokes

4 Distance between the centers of the 2 bounding boxes of 2 strokes

5 Horizontal distances between the centroids of 2 strokes

6 Vertical distances between the centroids of 2 strokes

7 Off-stroke distance between 2 strokes

8 Off-stroke distance projected on X and Y axes

9 Temporal distance between 2 strokes

10 Ratio of off-stroke distance to temporal distance

11 Ratio of off-stroke distance to projected on X,Y axes to temporal distance

12 Ratio of area of the largest bounding box of 2 strokes to that of their union

13 Ratio of widths of the bounding boxes of 2 strokes

14 Ratio of heights of the bounding boxes of 2 strokes

15 Ratio of diagonals of the bounding boxes of 2 strokes

16 Ratio of areas of the bounding boxes of 2 strokes

17 Ratio of lengths of 2 strokes

18 Ratio of durations of 2 strokes

19 Ratio of curvatures of 2 strokes

the label pair (yi,yj) given the input strokes. The output
of pairwise network is equal to K2. The input of pairwise
network is the pairwise features extracted from a pair of
strokes as presented in TABLE II, the same as in [15].

C. Inference

We adopt the maximum a posteriori(MAP) strategy to
predict the labels of strokes in a new document. This leads

to the following problem:

y∗ = argmax
y

P (y|x). (5)

Since the structure of our CRF is a chain, we can solve this
problem by applying exact inference algorithms, such as max-
sum algorithm [8]. Max-sum algorithm is a classic message
passing algorithm for performing inference on graphical mod-
els. When applied to tree or chain structures, its computational
complexity is linear in the number of nodes.

D. Learning

Given the training data set S = {(x(i),y(i)), i = 1, . . . , N},
we train our model P (y|x;w) by maximizing its likelihood
on S. This is equivalent to solving the following problem with
respect to the parameters w:

w∗ = argmin
w

N∑
i=1

− lnP (y(i)|x(i);w). (6)

We solve this problem by the limited-memory BFGS al-
gorithm. The gradient of the negative log likelihood for a
particular sample (x̂, ŷ) is

− ∂

∂w
lnP (ŷ|x̂;w)

=
∂ lnZ(x̂;w)

∂w
− ∂F (x̂, ŷ;w)

∂w

= EP (y|x̂;w)[
∂F (x̂,y;w)

∂w
]− ∂F (x̂, ŷ;w)

∂w

= EP (y|x̂;w)[
∑
t

∂FU (x̂,yt;w)

∂w
+
∑
t

∂FP (x̂,yt,yt+1;w)

∂w
]

−

(∑
t

∂FU (x̂, ŷt;w)

∂w
+
∑
t

∂FP (x̂, ŷt, ŷt+1;w)

∂w

)
.

(7)
Thus, it remains to explain how to calculate the gradient of

the unary network and the pairwise network with respect to
w. We first consider the gradient of the unary network:

EP (y|x̂;w)[
∂FU (x̂,yt;w)

∂w
]− ∂FU (x̂, ŷt;w)

∂w

=

(∑
y

P (y|x̂;w)
∂FU (x̂,yt;w)

∂w

)
− ∂FU (x̂, ŷt;w)

∂w

=

(∑
yt

P (yt|x̂;w)
∂FU (x̂,yt;w)

∂w

)
− ∂FU (x̂, ŷt;w)

∂w

=
∑
yt

[P (yt|x̂;w)− δ(yt = ŷt)]
∂FU (x̂,yt;w)

∂w
.

(8)
Thanks to the chain structure, the marginal distribution

P (yt|x̂;w) can be calculated by the sum-product algo-
rithm [8] in linear time. Furthermore, (8) can be computed ef-
ficiently by one-pass backward propagation when P (yt|x̂;w)
is known.



In a very similar way, the gradient of the pairwise network
can be calculated as follows,

EP (y|x̂;w)[
∂FP (x̂,yt,yt+1;w)

∂w
]− ∂FP (x̂, ŷt, ŷt+1;w)

∂w

=

 ∑
yt,yt+1

P (yt,yt+1|x̂;w)
∂FP (x̂,yt,yt+1;w)

∂w


− ∂FP (x̂, ŷt, ŷt+1;w)

∂w
.

(9)
Similarly, the marginal distribution P (yt,yt+1|x̂;w) can

be calculated by the sum-product algorithm and (9) can be
calculated with one-pass backward propagation through the
pairwise network. Algorithm 1 summarizes the procedure of
calculating the gradient.

IV. EXPERIMENT AND RESULTS

A. IAMonDo database

We conduct our experiments on the IAMonDo database [6],
a publicly available collection of freely handwritten online
documents with full ground truth content annotation and
transcription. The database consists of about 1000 documents
written by 200 writers, mixing handwritten text, drawings,
diagrams, formulas, tables, lists and marking elements ar-
ranged in an unconstrained way. The database is split into
five disjoint sets, each containing roughly 200 documents. For
our experiments, we use 403 documents from set 0 and 1
for training, 200 documents from set 2 for validation and
203 documents from set 3 for testing. In order to measure
the method’s ability to distinguish text strokes from non-text
strokes, we derive the corresponding ground truth of context
categories to text or non-text as suggested by the database
authors [4].

B. Feature normalization

In order to make the feature density function closer to
a Gaussian distribution, we preprocess features using power
transform with the coefficient set to 0.5. Thus,

f ′ = sgn(f)
√
|f |. (10)

Further more, we normalize the values of each feature based
on the mean µ and standard deviation σ in order to standardize
the feature values into the same scale. The normalized feature
value is calculated as

f ′′ = (f ′ − µ)/σ. (11)

C. Hyperparameters and experimental setting

In the feature extraction of single strokes and pairs of
strokes, we follow the strategy of [15] that two strokes are
considered as temporal and spatial neighbours if the temporal
and spatial distances between them are less than thresholds
3.5s and 4 pixels. The unary and pairwise networks are
networks with one hidden layer. The number of nodes in the
hidden layers of unary and pairwise networks are 10 and 5,
respectively. The activation function of the hidden layer is

sigmoid function and the activation function of output layer
is identity function. In the training process, a second order
gradient descent algorithm, limited-memory BFGS [12] is used
to minimize the loss. We adopt the libLBFGS 1 library for
implementation.

Since the initial parameters of NNs affect the final classifi-
cation accuracy, we randomly initialize these parameters from
U(−0.01, 0.01) to train the model and repeat each experiment
for 20 times. Our method is implemented by C++ and all
experiments are performed on a computer with an Intel Core
I7-4790 CPU(3.60GHz).

D. Results

The experiment results are shown in TABLE III. The col-
umn of ’mean rate’ shows the average and standard deviation
of the classification accuracy in 20 experiments. The column
’minimal rate’ and ’maximal rate’ shows the minimal and
maximal accuracy achieved in 20 experiments. The column
of ’time’ shows the computation time for classification on the
entire test set and does not include the time taken for feature
extraction.

As far as we know, this is the best accuracy result achieved
by a single model. Compared with [15], the mean accuracy
of our model 97.80% is higher than the mean accuracy
97.56% achieved by its best global context based classifier
GSC26 LSTM. The maximal and minimal accuracy 97.72%
and 97.96% are also higher than its 97.30% and 97.81%. In
addition, the classification time of our model 0.69s is also
faster than GSC26 LSTM with 1.62s. Compared with its com-
bined classifiers integrating global context and local context,
the maximal accuracy of our model 97.96% is equal to the
accuracy achieved by its best local context integrated classifier
PCC combined with GSC26 LSTM and GPC19Q LSTM.
Since we don’t ensemble classifiers to improve the accuracy,
we don’t compare our result with its ensemble accuracy
98.30%.

The another advantage of our model is the number of
parameters. The unary network contains 23 input nodes, 10
hidden nodes and 2 output nodes; while the pairwise network
contains 19 input nodes, 5 hidden nodes and 4 output nodes.
Thus, the total number of parameters of our model is 386.
In contrast, van, et al. [15] used four-layered networks with
two fully connected recurrent hidden layers and the number
of units in these two layers are 10 and 30, whose parameters
are much more than ours.

As we have seen, our method achieves higher accuracy with
fewer parameters on this task. It validates the effectiveness of
this combined model and the joint training approach to learn
the parameters. Fig. 2 shows two documents with successfully
classified strokes.

E. Evaluation of errors

Fig. 3 shows examples with misclassified strokes. In Fig. 3
(a), a formula with big size is misclassified as non-text since its

1http://www.chokkan.org/sofminimal and tware/liblbfgs/



Algorithm 1 Computation of the gradient for one document
Input: Training example (x̂, ŷ)
Output: Gradients ∇wU and ∇wP of the negative conditional log likelihood with respect to the unary network and pairwise

network
1: Forward pass to compute FU (x̂,yt;w) and FP (x̂,yt,yt+1;w), ∀t.
2: Compute marginal probabilities P (yt|x̂;w) and P (yt,yt+1|x̂;w) by sum-product algorithm.
3: Set the errors [P (yt|x̂;w) − δ(yt = ŷt)] of the unary network and use backward propagation to calculate the gradient

∇wU
(t), ∀t. Set the errors [P (yt,yt+1|x̂;w) − δ(yt = ŷt)δ(yt+1 = ŷt+1)] of the pairwise network and use backward

propagation to calculate the gradient ∇wP (t, t+ 1), ∀t.
4: The gradient of the unary network is ∇wU

=
∑

t ∇wU
(t).

5: The gradient of the pairwise network is ∇wP =
∑

t ∇wP (t, t+ 1).

TABLE III
RECOGNITION RATE FOR TEXT/NON-TEXT STROKE CLASSIFICATION BY DIFFERENT METHODS

method mean rate(%) minimal rate(%) maximal rate(%) time(s)

Indermühle [5] - - 97.01 -

Delaye [1] - - 97.23 190.00

GSC26 LSTM [15] 97.56 97.30 97.81 1.62

PCC [15] - - 97.96 3.23

our model with two-step training 96.56 ± 0.10 96.38 96.73 1.68

our model with joint training 97.80 ± 0.08 97.72 97.96 0.69

(a)

(b)
Fig. 2. Examples with successfully classified strokes. Test strokes are shown
in black, non-text strokes are shown in red.

size is much bigger than the usual size of texts in the database.
In order to correct errors of this type, more scale invariant
features should be extracted. In Fig. 3 (b), multiple strokes
are misclassified because of the lack of modeling spatial
relationship. It seems that integrating spatial information may
help to solve this problem.

F. Compared to two-step training

This part we evaluate the difference between joint training
and two-step training. We define our compared model as
follows:

P (y|x;w,θ) =
1

Z(x;w)
exp{

∑
t

∑
yt

θytFU (x,yt;w)

+
∑
t

∑
yt,yt+1

θyt,yt+1FP (x,yt,yt+1;w)}.

(12)
We first train the unary classifier and pairwise classifier with

softmax loss and fix these classifiers to learn the parameters θ
of the CRF model. We also repeat the experiment for 20 times
with different initialization for comparison. The compared
results are shown in TABLE III. As we can see, the mean
classification accuracy achieved by two-step training model is
1.24% lower than the joint training model, which shows the
superiority of joint training approach.

V. CONCLUSION

In this paper we present a combined model of CRFs and
NNs for text/non-text stroke classification in online handwrit-
ten documents. The unary potentials and pairwise potentials
in CRFs are both formulated by NNs to build more powerful
representation. We discuss how to compute the gradient of



(a)

(b)
Fig. 3. Examples with misclassified strokes. Correct strokes are shown in
black. Text strokes misclassified as non-text strokes are shown in blue. Non-
text strokes misclassified as text strokes are shown in red.

this combined model with exact inference algorithm and
back propagation. We achieve impressive performance on the
IAMonDo database with fewer parameters and faster speed,
which demonstrates the effectiveness and superiority of this
combined model. We also compare the difference between the
two-step training approach and joint training approach, and
analyze the common misclassifications of our model.

One future direction is to consider integrating the spatial
information in CRFs, e.g. model the spatial relationship by
another NNs, and jointly train the combined model. Since the
CRF structure will be more complex after including the spatial
relationship, the exact computation of marginal probability
will be impossible and some kind of approximation is needed.
It remains to be a problem to derive an effective approach
to jointly train the combined model of NNs and CRFs with
complex structure.
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