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Abstract—In this paper, we propose a novel two-step build-
ing extraction method from remote sensing images by integrating
saliency cue. We first utilize classical features such as shadow, color,
and shape to find out initial building candidates. A fully connected
conditional random field model is introduced in this step to ensure
that most of the buildings are incorporated. While it is hard to fur-
ther remove the mislabled rooftops from the building candidates
by only using classical features, we adopt saliency cue as a new fea-
ture to determine whether there is a rooftop in each segmentation
patch obtained from previous step. The basic idea behind the use
of saliency information is that rooftops are more likely to attract
visual attention than surrounding objects. Based on a specifically
designed saliency estimation algorithm for building object, we ex-
tract saliency cue in the local region of each building candidate,
which is integrated into a probabilistic model to get the final build-
ing extraction result. We show that the saliency cue can provide an
efficient probabilistic indication of the presence of rooftops, which
helps to reduce false positives while without increasing false neg-
atives at the same time. Experimental results on two benchmark
datasets highlight the advantages of the integration of saliency cue
and demonstrate that the proposed method outperforms the state-
of-the-art methods.

Index Terms—Buildings, fully connected conditional random
field (CRF), saliency.

I. INTRODUCTION

AUTOMATIC extraction of buildings from remote sensing
images is key to a wide range of applications, including

landscape analysis, three-dimensional urbanscene reconstruc-
tion, map updating, etc. To pursuit efficient, generic and accurate
extraction result, many approaches have been proposed in the
past few years [1]–[6]. Although important advances have been
achieved, it is still a challenging task to guarantee high-quality
building extraction result over various imagery. The main dif-
ficulty comes from the significant diversity of the appearance,

Manuscript received May 5, 2016; revised July 12, 2016; accepted August 11,
2016. Date of publication September 13, 2016; date of current version February
13, 2017. This work was supported in part by the National Natural Science
Foundation of China under Grant 61331018, Grant 61620106003, Grant
91338202, Grant 61502490, and Grant 61671451, and in part by the National
High-Tech Research and Development Program of China (863 Program) with
No.2015AA016402. E. Li and S. Xu contributed equally to this work and share
the first authorship. (Corresponding author: Xiaopeng Zhang.)

The authors are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China (e-mail: er.li@ia.ac.cn; shibiao.xu@ia.ac.cn; weiliang.meng@ia.ac.cn;
xiaopeng.zhang@ia.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2016.2603184

density, and structure complexity of buildings across different
regions.

To distinguish building rooftops from nonrooftop objects in
aerial or satellite images, a variety of cues were exploited in
previous work, such as shape, color, strong edges, corners, and
shadows. Notice that a single cue is insufficient to adaptively
identify rooftops under different circumstances, recent works fo-
cus on combining multiple cues to design more reliable descrip-
tors of buildings [3], [5], [6]. Such methods first select the most
probable rooftop candidates by integrating several cues and then
a stochastic optimization process is followed to further refine the
candidates. While these methods have demonstrated impressive
results, the problem is that the optimal balance between the num-
ber of missing rooftops and the number of mislabeled rooftops is
still hard to find. To obtain a low number of missing rooftops, one
has to keep as much as possible rooftops during the candidate
selection step. However, this is fragile since more undesirable
nonrooftop objects may be incorporated at the same time, which
will lead to a noticeable increase in the number of mislabeled
rooftops even after the following refinement procedure.

In this paper, we propose a novel method to address the above
problems by integrating the saliency cue during building extrac-
tion. Saliency, which is highly related to human visual percep-
tion, measures the importance and informativeness of one ob-
ject in the scene [7]. It is observed that human vision processing
system has a remarkable ability to automatically focus attention
onto several interested regions which have high visual saliency
within the field of view. By mimicking the mechanism involved
in human vision system when selecting candidate salient objects
in a scene, many models have been proposed to computationally
extract salient image regions, which broadly benefits applica-
tions including image segmentation, object recognition [8], [9],
and detection task [10], [11]. Motivated by this fact, we consider
exploring the saliency cue for building extraction from remote
sensing images, based on the assumption that rooftops have
higher saliency than the other objects nearby in the local con-
text. However, the challenge for remote sensing images is that
multiple buildings with complex appearance are involved in one
scene, which limits the straightforward application of existing
saliency detection model. To address this challenge, we develop
a two-step scheme with a novel use of saliency feature to obtain
a low number of both missing rooftops and mislabeled rooftops
in the final extracted result. We first follow the pipeline in [6]
to get an initial segmentation of rooftops. Given an image with
RGB information, the pipeline first decomposes the image into
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perceptually homogeneous regions by using Gaussian mixture
model (GMM) clustering model. Those segments belonging to
shadows and vegetations are identified according to the inten-
sity and greenness. Next, the remaining segments are classified
into probable rooftops and probable nonrooftops depending on
their shape, size, compactness, and surrounding shadow. Based
on the classification of these segments, a higher order multilabel
conditional random field (CRF) model is used to obtain the final
extraction result. However, in contrast to the GMM clustering
model used in the original pipeline, we introduce a full con-
nected CRF model for the segmentation, which allows us to de-
crease the number of missing rooftops. Then in the second step,
we adopt the saliency cue to determine whether there is a rooftop
in each segmentation patch obtained from previous step. The
calculated saliency map of each patch gives a good indication
of the presence of rooftops. The patches without obvious salient
objects will be assigned a low probability of containing rooftops,
which helps to discard the mislabeled rooftops efficiently. We
evaluate our method on publicly available benchmark datasets
and experimental results show that the proposed algorithm out-
performs the state-of-the-art building extraction methods.

The proposed approach expands upon the recent work in [6]
and improves the original method by making several key con-
tributions as follows:

1) We develop an original two-step scheme for building ex-
traction from remote sensing images based on a novel
use of visual saliency feature. Compared with the method
in [6], a new step is proposed which integrates visual
saliency cue for a further refinement of the building ex-
traction result. To better describe the visual saliency of
rooftops in remote sensing images, a specifically designed
saliency estimation algorithm is also proposed.

2) We also introduce a fully connected CRF model for the
segmentation of rooftops in the first step of our method,
which brings an additional improvement in the global
accuracy.

II. RELATED WORK

There has been extensive work in the area of building extrac-
tion from remote sensing imagery over the years. In this section,
we will give an overview of the most relevant work.

Much of the work in the field identifies building rooftops
by using single cue, such as shapes [12], strong edges [1],
corners [2], and shadows [13]. For example, Liu et al. [12] pro-
posed model matching techniques based on node graph search
to find the correct building rooftop shape. However, the method
is restricted to building rooftops with separated and rectilinear
structure. Saeedi and Zwick [14] detected line segments at
several levels on the original image, and then generated the true
rooftop hypotheses based on the extracted straight lines and the
initial image segments. The method is sensitive to the quality
of the extracted edge map. Sirmacek and Ünsalan [2] present a
scale invariant feature transform keypoints based method for ur-
ban area extraction and building detection. Their method needs
a priorly given building templates for the subgraph matching,
which makes it difficult for images containing variety of build-
ings with complex shapes. Ok et al. [13] proposed a shadow-
based framework to extract building rooftops from single optical

very high resolution (VHR) satellite images. They first obtained
the potential building regions based on shadows and light
direction by applying a fuzzy landscape generation approach,
and then utilized CRF optimization at pixel level to detect the
final building regions. The method tends to generate incomplete
rooftop extraction result if the shadows are broken due to noise
and occlusion. Both Femiani et al. [15] and Ok [5] improved the
method by running the CRF optimization globally and removing
mislabeled rooftops with incorrect shadow information.

Recently, using combination of multiple cues has gained
much attention since it is more robust for more complex scenes.
Sirmacek and Ünsalan [16] combined shadow, edge informa-
tion, and roof color in a two-step process. In their method,
coarse rooftop candidates were selected first using shadow and
color, then Canny edge map was utilized to verify the proposals
and refine the rooftop contour. Cote and Saeedi [4] based their
extraction method on shapes and corners. They first segmented
the input image into smaller blobs through k-means clustering
algorithm and selected the candidate rooftop blobs according to
their shapes. Corners were then detected to refine the outline of
rooftops through level set curve evolution method.

A major challenge of combining multiple cues is dealing with
the heterogeneity among different features. To address the chal-
lenge, probabilistic model is exploited for its fault tolerance
against noise and uncertainty in the extracted features. Benedek
et al. [3] integrated several low-level features, including local
gradient orientation density, roof homogeneity, roof colors, and
shadows through a hierarchical framework. A multitemporal
Marked Point Process (MPP) model combined with a bilayer
Multiple Birth and Death stochastic optimization process was
performed to flexibly fuse the heterogeneous features. More re-
cently, Li et al. [6] proposed a novel higher order CRF-based
method to achieve accurate rooftops extraction, which incor-
porated pixel-level feature and segment-level feature for the
identification of rooftops.

In addition to the classical features, new features are also
proposed for more accurate building extraction. Kovacs and
Sziranyi [17] introduced a novel aerial building detection
method based on region orientation as a new feature. The orien-
tation feature was estimated from local gradient analysis and ap-
plied in various steps to integrate with multiple classical features
throughout the whole framework. Later, Kovacs and Ok [18] de-
veloped a building detection approach by integrated urban area
knowledge, which was obtained based on the feature points
produced by the modified Harris for edges and corners method.

Saliency cue, as a more general feature with adaptivity to
different circumstances, has also been introduced in [19] for
the target detection in satellite images. Their method aimed
to detect and classify variable target objects in high-resolution
broad-area satellite images by using saliency and gist features,
but without discussion on the extraction of target objects. Zhao
et al. [20] focused on airport target recognition of aerial images
based on saliency-constraint feature. Several recent works
attempt to exploit the benefits of using saliency cue for building
extraction from remote sensing images. Yang et al. [21] took
advantage of visual saliency and Bayesian model to rapidly
locate rooftop areas. They directly calculated saliency map
in the whole image, however, the globally generated saliency
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Fig. 1. Comparisons of the image presegmentation results using fully connected CRF model and GMM clustering method. (a) Original image. (b) Result of
using GMM clustering method. (c) Result of using the four-neighbor grid CRF model. (d) Result of using the proposed fully connected CRF model. (e) The ground
truth of rooftops. In (b)–(d), different colors represent different clusters. Notice the improvements of the rooftop segments contained in the green rectangles.

map is insufficient to reveal all of the potential rooftops with
varying appearance. Cretu and Payeur [22] trained a support
vector machine using descriptors derived from visual attention
for the detection of buildings in aerial images. Their method
had the limitation of requiring manually segmented masks for
buildings and streets for the training. In our work, saliency
cue is exploring in the local context of rooftops, which can
provide more reliable measurement of the presence of rooftops.
Furthermore, we integrate the saliency cue with classical
features in an effective manner through probabilistic model and
thus no user interaction is required.

III. EXTRACTION ALGORITHM

The proposed method takes a remote sensing image with only
RGB information as input. The whole process of our algorithm
mainly consists of two steps: An initial segmentation of rooftops
and a following refinement of the segmentation results by uti-
lizing saliency cue. In the first step, we apply the same method-
ology as in [6] except that a new fully connected CRF model
is adopt to overcome the loss of recall caused by inaccurate
presegmentation in the original approach. In the second step,
we compute the saliency map for each of the extracted rooftop
and refine the segmentation result by integrating saliency cue
into a probabilistic model. In the following, we will elaborate
the details of each step.

A. Initial Segmentation

The goal of this step is to select potential rooftops from remote
sensing image through an initial segmentation. We follow a
similar pipeline as in [6] to obtain the initial building candidates.
We observe that the method in [6] is able to maintain a relatively
high precision on various images, however, the recall becomes
unstable when it comes to images containing rooftops with large
noise. The prime reason for the dramatic decreasing of recall
in this case is the unreliable presegmentation generated by the
GMM clustering. Since the GMM method merely clusters pixels
in color space, the rooftops with corrupted color and low contrast
are broken into small pieces, which were incorrectly identified
as nonrooftops in the next step due to their irregular shapes. Such
a failure case is shown in Fig. 1(b), even a smoothing operation
is performed on the image before the GMM clustering, it is still
hard to attain reliable segments of the rooftops contained in the
green rectangles.

In order to reduce the presegmentation errors, we propose to
employ the fully connected CRF model for the presegmentation.
Different from traditional grid CRF model, a fully connected
model establishes pairwise potential on every pair of pixels in
the image. Thus, the Gibbs energy of a fully connected model
takes the form:

E(x) =
∑

i∈V
ψi(xi) +

∑

i∈V,j∈V
i �=j

ψij (xi, xj ) (1)

where V represents the set of all image pixels,ψi andψij denote
the unary potential and pairwise potential, respectively, and xi
is the label taken by pixel i. Another difference is that the
pairwise potential of our fully connected model is defined as the
combination of spatial information and color contrast [23]. Let
Ii, Ij and pi, pj denote the color and pixel coordinates of pixels
i, j, respectively, then the pairwise potential is expressed with
the following term:

ψij (xi, xj ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if xi = xj

ω1exp
(
−‖Ii−Ij ‖2

2θβ
− ‖pi−pj ‖2

2θα

)

+ ω2exp
(
−‖pi−pj ‖2

2θλ

)
, otherwise

(2)
here ω1 and ω2 are the weight coefficients controlling the im-
pacts of spatial term and color term, parameters θα , θβ , θλ denote
the bandwidth of the Gaussian kernel function. θα , θβ control
the degrees of nearness and similarity, and θλ is used to charac-
terize the effect of removing small isolated regions [23].

The proposed fully connected model improves the preseg-
mentation quality in two aspects. First, the pairwise potential
is defined over all pairs of pixels, which allows the model to
capture long-range interactions; thus, the segmentation of ob-
jects associated with long-range context is augmented. Second,
unlike the commonly used pairwise potential where only color
contrast is considered, the proposed pairwise term incorporates
both color contrast and spatial distance. Therefore, the pro-
posed model is able to generate more accurate segmentation of
objects with noise caused by sampling and proximity to other
objects. Fig. 1(d) illustrates the benefits of using fully connected
model.

Specifically, once the pixels of a given image are classified
into ten classes using GMM clustering as did in [6], we initial-
ize the unary potentials of the proposed fully connected CRF
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Fig. 2. Saliency map computed by different methods on the obtained image patch RI . (a) Image patches. (b) Results of GS method [26]. (c) Results of SF
method [25]. (d) Results of wCtr method [31]. (e) Results of MR method [24]. (f) Results of our saliency estimation algorithm. (g) Ground truth. Brighter color
indicates higher value.

model from the classification and then obtain the refined pre-
segmentation through optimizing the CRF model. Based on the
new presegmentation result, segments belonging to vegetation
and shadows are first extracted using color features. Then, the
remaining segments are classified into probable rooftops and
probable nonrooftops depending on geometric shape feature
and shadow information, i.e., we use area size, eccentricity, and
compactness to identify irregular segments that are not likely to
belong rooftops and further prune out the probable rooftops by
checking the shadow information among its neighboring seg-
ments. Finally, we perform a higher order multilabel CRF seg-
mentation based on the initial classification of the pixels through
above steps. The proposed new presegmentation result is able
to produce more accurate segmentation for the rooftops, which
effectively reduces the number of rooftops that are misclassified
as probable nonrooftops, thus achieving high recall in the initial
segmentation of rooftops.

B. Saliency-Based Refinement

1) Saliency Detection for Rooftop: The goal of this step is to
further refine the segmented rooftops generated from above step
by removing the mislabeled rooftops. This is not easy since we
have already integrated multiple cues to identify rooftops in the
first step, such as geometric shape, shadows, and color. Thus, the
remaining mislabeled rooftops often share several features with
actual rooftops. In order to single out the mislabeled rooftops,
different cues should be taken into account. Inspired by recent
work on saliency detection, we propose to exploit saliency infor-
mation for further verification of rooftops. The basic idea behind
the use of saliency information is that rooftops are more likely
to attract visual attention than surrounding objects. Therefore,
high saliency value should be detected in the local area where
the rooftop is located. If no salient part is detected, then the

probability of the area containing a rooftop is assumed to be
low. Since remote sensing images are not taken to frame in-
dividual object, we calculate the saliency map in the vicinity
of each rooftop segment resulting from the initial segmentation
rather than working on the whole image.

For each rooftop candidate R obtained from the initial seg-
mentation, we calculate its ROI RI as the region within the
bounding box of R. To compensate for the blurry of the bound-
ary of the buildings, we enlarge the bounding box by 100% so
that the whole rooftop is ensured to be contained in the image
patch RI . We borrow the framework from [24] to estimate the
saliency value of each pixel in RI . We have investigated sev-
eral modern saliency detection methods [24]–[28], while all of
these methods are able to give reasonable result in some image
patches, their results tend to be affected by intensity artifacts
caused by shadows or illumination ambiguity. Moreover, the
methods are hard to handle image patches without noticeable
foreground objects (see Fig. 2). We build our saliency estima-
tion algorithm based on the two-stage framework in [24], since
it provides us a flexible and efficient way to involve additional
prior knowledge about the characteristic of rooftops during the
saliency estimation. In our implementation, we use superpixels
instead of pixels for saliency detection. This not only accelerates
the calculation but also achieves a smoother saliency detection
result, as demonstrated in many studies [29]. Specifically, we
adopt the SLIC algorithm [30] to generate superpixels for RI .
Then, we represent image RI as a graph G = (V,E) where
V = {v1 , . . . , vn} denotesN generated superpixels andE is the
set of undirected edges connecting adjacent superpixels in V .

We first generate an initial saliency map through analyzing the
commonly used prior knowledge for saliency detection: contrast
prior and center prior, which are supported by psychological
evidence [7] [29]. As we expect the extracted salient region to
coincide with probable rooftops contained in RI , three saliency
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Fig. 3. Pipeline of estimating saliency cue. (a) Original image. (b) Boundary connectivity measure in (4). (c) Region contrast measure in (3). (d) Background
constraints measure in (6). (e) Initial saliency map from (7). (f) Final saliency map from (10). Brighter color indicates higher value.

measures based on the prior knowledge are proposed for saliency
estimation:

1) Region Contrast: Image region with high contrast sur-
roundings generally attracts more visual attention [29].
We measure the region contrast of vi by summing its
weighted appearance distance to all other superpixels,
with the following term:

RC(vi) =
N∑

j=1

exp(−D2
s (vi, vj )/σ

2
c )Dc(vi, vj ) (3)

hereDs(vi, vj ) is the Euclidean distance between the cen-
ters of superpixels vi and vj , Dc(vi, vj ) is the Euclidean
distance between their average colors in Lab color space,
and σc controls the strength of spatial weighting.

2) Boundary Connectivity: As suggested by attention theory
about visual saliency [7], the location of salient object is
more likely to be close to the center of image, which means
image boundary are mostly background [31]. This is not
true for remote sensing images, since multiple buildings
can be found in different locations over a whole region.
However, in our case the image is divided into several re-
gions based on the initial segmentation result of buildings;
therefore, we can assume that the expected salient part is
located in the center area of each region. We quantify this
cue by calculating the connectivity between superpixel vi
and image boundary:

BC(vi) =
Lenb(vi)√
Len(vi)

(4)

where the length of region vi’s perimeter Len(vi) is de-
fined by summing the weighted geodesic distance from vi
to each superpixel in the image

Len(vi) =
N∑

j=1

exp(−G2(vi, vj )/σ2
s ) (5)

where geodesic distance G(vi, vj ) is defined as the ac-
cumulated edge weights Dc(vk , vk+1) along the shortest
path (vi, . . . , vk , vk+1 , . . . , vj ) from vi to vj , and σs con-
trols the distance sensitivity of the boundary connectivity.
Similarly, Lenb(vi) represents the length of region vi’s
perimeter on boundary, which only sums the distances
from vi to the superpixels on the image boundary.

3) Background Constraints: Isolated shadows and vegeta-
tions in the image may cause misleading saliency detec-
tion result. Therefore, we introduce additional background

constraints for shadows and vegetations extracted in the
first step:

BS(vi) = δ(vi) (6)

here δ(vi) is 1 if vi belongs to shadows or vegetations and
0 otherwise.

Fusing these saliency measures together, we initialize the
saliency map for RI as

S1(vi) = (1 −BC(vi)) ·RC(vi) · (1 −BS(vi)). (7)

We then compute the final saliency map through manifold
ranking on a graph [24]. The initial saliency map is binary
segmented with an adaptive threshold set as the mean saliency
over the entire saliency map, and the superpixels with saliency
value above the threshold are viewed as the labeled queries in
a ranking problem. Then, the saliency value of each element in
V is expressed as its ranking score according to its relevance to
the queries. Let the saliency values of superpixels in set V be
f = {fi}Ni=1 , we thus find the optimal saliency value by solving
the following optimization problem:

f̄ =arg min
f

⎛

⎝
∑

(i,j )∈E
ωij

∥∥∥∥∥
fi√
dii

− fj√
djj

∥∥∥∥∥

2

+
N∑

i=1

λi ‖fi − yi‖2

⎞

⎠

(8)
here y = {yi}Ni=1 is an indication vector, where yi = 1 if S1(vi)
is greater than the threshold and yi = 0 otherwise, λi controls
the impact of labeled query vi , ωij is the weight defined on edge
connecting superpixel vi and vj :

ωij = exp

(
−‖Ii − Ij‖2

2σ2

)
(9)

the strength of edge weight is controlled by constantσ, and dii =∑
j ωij . Considering that the ranking function is quadratic,

we can optimize it efficiently by least-square method. Con-
sequently, resulted optimal saliency value f can be written as

f = (D − ΛW)−1y (10)

where Λ = diag{ 1
1+λ1

, . . . , 1
1+λn

}, D = diag{d11 , . . . , dnn}
and W represents the weight matrix [ωij ]n×n . Notice that here
we deduce f using unnormalized Laplacian matrix to achieve
better performance as revealed in [24]. Once getting the final
saliency map for superpixels, we assign the saliency value of
each pixel as that of the superpixel it belongs to. Fig. 3 illus-
trates the results of each individual step during the saliency map
estimation.
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Fig. 4. Benefits of introducing saliency cue. The first four columns (a) shows how saliency cue helps to recover the missing parts of rooftops. The last four
columns (b) shows how saliency cue helps to suppress mislabeled rooftops. For each example, from left to right we show the original image, close-up view of red
rectangle area, initial rooftop extraction result from the first step in the red rectangle area, estimated saliency maps of rectangle area.

The estimated saliency map provides an insightful description
of the existence of rooftops. If there is rooftop within ROI RI ,
it has the ability to recover the missing parts of rooftops that the
initial segmentation fails to detect. As illustrated in Fig. 4(a), the
initial segmentation produces incomplete extraction results for
the gabled rooftops, however, the saliency map creates much
better representation of the whole rooftop. More importantly,
if there is no rooftop within ROI RI actually, saliency map
indicates a low probability of the existence of rooftops in this
patch. As shown in Fig. 4(b), part of road is mislabeled as
rooftops due to the adjacent shadows. While this error is hard
to avoid in previous method, the estimated saliency map clearly
suggests that the patch is unlikely to contain rooftops.

2) Refinement: The obtained saliency map allows us to fur-
ther refine the segmented rooftops from the first step. We opti-
mize the final segmentation results by integrating saliency cue
into a fully connected CRF model as discussed in Section III-A.
Thus, the unary potential in (1) is divided into two components,
appearance potential and saliency potential:

∑

i∈V
ψi(xi) =

∑

i∈V
ψAi (xi) +

∑

i∈V
ψSi (xi) (11)

here ψAi (xi) is the appearance potential defined as the negative
log of the likelihood of label xi being assigned to pixel i, and can
be deduced from the initial segmentation results of Section III-A
as did in [6]. For the saliency potential ψSi (xi), we accumulate
the saliency map of each candidate rooftop to form the final
saliency map f̄ of the whole image, then define ψSi (xi) as

ψSi (xi) = −exp(θs · f̄i) (12)

here we use an exponential function to emphasize the saliency
cue and θs denotes the scaling factor for the exponential, which
we empirically set to 1.5. We finally optimize the fully con-
nected CRF model over the whole image through the mean field
approximation algorithm described in [32].

IV. EVALUATION

In this section, we evaluate our approach on various challeng-
ing real world datasets. We first perform quantitative evaluation

on the publicly available benchmark datasets provided in [3]. We
also illustrate the improvement of the proposed method com-
pared to several state-of-the-art methods on benchmark datasets
provided in [18]. Parameter settings and limitations of the pro-
posed methods will be discussed last.

A. Evaluation Metrics

We evaluate our results on pixel level by computing the widely
used precision (P ), recall (R), and F-score (F1) measures [33],
which are defined as

P =
TP

TP + FP
, (13)

R =
TP

TP + FN
, and (14)

F1 =
2PR
P +R

. (15)

Here, TP represents true positives and corresponds to the
number of pixels correctly labeled as rooftop in both ground
truth and segmentation result. FP represents false positives
and corresponds to the number of pixels mislabeled as rooftop.
FN represents false negatives and corresponds to the number of
pixels mislabeled as nonrooftop.F1 measures the overall perfor-
mance through the weighted harmonic of precision and recall.
Additionally, we also evaluate the object-level performance by
counting the missing and falsely labeled rooftops (MO and FO,
respectively), and then calculate the F-score at object level using
the same formula. We utilize an overlapping threshold of 60%
to determine the number of MO and FO as described in [13].

B. Evaluation on the SZTAKI-INRIA Benchmark

The SZTAKI-INRIA dataset [3] consists of nine aerial
and satellite images from different geographical regions and
contains 665 buildings with significantly different building
appearance. The manually annotated ground truth data are also
provided for validation. Detailed properties of the dataset can
be found in [17].
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TABLE I
NUMERICAL OBJECT-LEVEL AND PIXEL-LEVEL COMPARISON BETWEEN STATE-OF-THE-ART BUILDING DETECTION METHODS AND THE PROPOSED METHOD

(SCRF) WITH BEST RESULTS IN BOLD, ON THE SZTAKI-INRIA BENCHMARK DATASET

Dataset Object-level performance Pixel-level performance

EV SM MPP OSBD HCRF Prop. SCRF EV SM MPP HCRF Prop. SCRF

Name #obj MO FO MO FO MO FO MO FO MO FO MO FO P R P R P R P R P R

BUDAPEST 41 11 5 9 1 2 4 3 1 1 0 0 0 0.73 0.46 0.84 0.61 0.82 0.71 0.90 0.75 0.84 0.81
SZADA 57 10 18 11 5 4 1 4 0 2 3 2 1 0.61 0.62 0.79 0.71 0.93 0.75 0.85 0.86 0.84 0.90
COTE D’AZUR 123 14 20 20 25 5 4 4 6 3 4 3 2 0.73 0.51 0.75 0.61 0.83 0.69 0.75 0.81 0.74 0.84
BODENSEE 80 11 13 18 15 7 6 8 7 4 3 3 3 0.56 0.30 0.59 0.41 0.73 0.51 0.84 0.76 0.80 0.79
NORMANDY 152 18 32 30 58 18 1 4 10 16 7 7 6 0.60 0.32 0.62 0.55 0.78 0.60 0.79 0.67 0.76 0.76
MANCHESTER 171 46 17 53 42 19 6 NA NA 20 3 10 4 0.64 0.38 0.60 0.56 0.86 0.63 0.82 0.67 0.79 0.80
Overall F-score 0.827 0.771 0.936 0.948 0.948 0.967 0.517 0.631 0.726 0.786 0.805

Fig. 5. Comparisons between the proposed method and the state-of-art methods. The result of EV, SM, MPP, and OSBD methods are from [17]. The red arrows
in (e) and (f) indicate the incorrect segmentation results of the HCRF method and the OSBD method, respectively. (a) Original image. (b) EV [16]. (c) SM [34].
(d) MPP [3]. (e) HCRF [6]. (f) OSBD [17]. (g) Proposed SCRF. (h) Ground Truth.

Table I lists the numerical object-level and pixel-level com-
parisons of the proposed saliency-based CRF method (SCRF)
against five state-of-the-art approaches: EV [16], SM [34],
MPP [3], OSBD [17], and HCRF [6]. It is shown that the pro-
posed method achieves overall improvement over the best of
state-of-art method (HCRF) by 2% at pixel level and 2% at
object level.

Fig. 5 offers qualitative comparison results on a selected site
from COTE D’AZUR dataset. EV [16] method is able to lo-
calize most of the rooftops through extracted shadow informa-
tion and estimated illumination direction. However, the method
gives poor rooftop outlines as it strongly relies on detecting
accurate and complete edge feature of rooftops, which is also
an error prone task. Another limitation of EV method is that
it can only handle buildings with rectangular shape. SM [34]
method fails to capture the dark gray buildings in the right bot-
tom corner of Fig. 5(a), since it is sensitive to low contrast with
surroundings. The method also lacks the ability to detect inho-
mogeneous objects. MPP [3] method adopts probabilistic model
to fuse multiple cues, which improves both MO and FO. How-
ever, the method is also restricted to rectangular buildings; thus,
erroneously cutting across the buildings with complex shapes,
as shown in the left part of Fig. 5(d).

While both OSBD [17] method and HCRF [6] method are able
to produce high quality result at object level, notable artifacts
still persist at the boundaries of several extracted buildings,
which reduce the performance at pixel level. The OSBD method
tends to merge two blobs close to each other during the shape
refinement step and thus wrongly labels part of road as buildings,
as indicated by the red arrow in Fig. 5(f). The HCRF method
avoids introducing false positives in this area by discarding
small blobs when selecting the candidate rooftops, but has the
downside that some parts of rooftop are also discarded if the
presegmentation fails to represent the shape of the rooftop. Such
a failure case is shown in Fig. 5(g), the HCRF method only
captures part of the building as indicated by the red arrow, due
to the incorrect presegmentation result on this building.

Compared with state-of-the-art methods, the proposed
method achieves better pixel-level accuracy and maintains com-
parable performance at object level on the given sample image.
Compared with the OSBD method, our method inherently re-
duces false positives at pixel level since it is based on HCRF
method. And compared with the original HCRF method, our
SCRF method improves the recall significantly at the cost of a
slightly decrease on precision. Our method improves the recall
from two aspects: first, the improved presegmentation approach
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TABLE II
NUMERICAL OBJECT LEVEL AND PIXEL LEVEL OF HCRF METHOD, APPLYING OUR APPROACH WITHOUT USING SALIENCY CUE (PROP.SCRF W/O SALIENCY),

AND THE PROPOSED METHOD (SCRF) WITH BEST RESULTS IN BOLD, ON THE SZTAKI-INRIA BENCHMARK DATASET

Dataset Object-level performance Pixel-level performance

HCRF Prop.SCRF w/o Saliency Prop.SCRF HCRF Prop.SCRF w/o Saliency Prop.SCRF

Name #obj MO FO MO FO MO FO P R F1 P R F1 P R F1

BUDAPEST 41 1 0 0 1 0 0 0.90 0.75 0.81 0.82 0.81 0.81 0.84 0.81 0.82
SZADA 57 2 3 2 3 2 1 0.85 0.86 0.85 0.83 0.90 0.86 0.84 0.90 0.87
COTE D’AZUR 123 3 4 3 5 3 2 0.75 0.81 0.77 0.72 0.85 0.78 0.74 0.84 0.79
BODENSEE 80 4 3 3 4 3 3 0.84 0.76 0.79 0.79 0.80 0.79 0.80 0.79 0.79
NORMANDY 152 16 7 6 10 7 6 0.79 0.67 0.72 0.70 0.78 0.74 0.76 0.76 0.76
MANCHESTER 171 20 3 9 5 10 4 0.82 0.67 0.73 0.76 0.81 0.78 0.79 0.80 0.79
Overall F-score 0.948 0.959 0.967 0.786 0.796 0.805

Fig. 6. Comparison with the state-of-the-art method (HCRF) on MANCHESTER dataset. (a) Original image. (b) Result of HCRF. (c) Result of the proposed
SCRF method. Correct results (TP) are shown in green, false positives are shown in blue, and false negatives are shown in red.

helps us to reduce the number of false negative rooftops; sec-
ond, the integration of saliency cue further recovers the missing
part of a whole rooftop. More importantly, the saliency cue suc-
cessfully prevents the increase of false positive rooftops at the
same time. We run our method without using saliency cue and
give the numerical result in Table II, showing how the two steps
affect the overall performance.

To better demonstrate the advantages of our method, a more
challenging example is given in Fig. 6. The image is taken
from MANCHESTER dataset and contains a lot of rooftops
with low contrast, image noise, and self-shadows, which
makes rooftop extraction more difficult for the state-of-the-art
methods. Table I shows weak performances of state-of-the-art
methods on this dataset. Our method outperforms all of the
compared methods and improves the object-level accuracy and
pixel-level accuracy by 3% and 6% over the state-of-the-art
performance. Qualitative results in Fig. 6 confirm the benefits

of the improved presegmentation and the integration of saliency
cue. More results of our method are given in Fig. 8.

C. Evaluation on the VHR Benchmark

We also evaluate the pixel-level performance of our method
on the VHR Benchmark provided in [18]. The VHR bench-
mark dataset contains 14 image patches acquired from two
different satellites, IKONOS-2 (1m), and QuickBird (60 cm).
All imagery includes four multispectral bands (B, G, R, and
NIR) with a radiometric resolution of 11 bits (16 bits images)
per band. Ground truth data and the result of four state-of-
the-art approaches including Grabcut [13], Multi-label Parti-
tioning (MLP) [5], SSDF [35], and Urban Area Knowledge
Integration-based method (UAKI) [18] are also provided along
with the dataset.

The quantitative comparison of our method with state-of-the-
art approaches is given in Table III. As shown in the table, the
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Fig. 7. Comparison with state-of-the-art methods on VHR benchmark [18]. Correct results (TP) are shown in green, false positives are shown in blue, and false
negatives are shown in red. (a) Original image. (b) Grabcut [13]. (c) MLP [5]. (d) SSDF [35]. (e) UAKI [18]. (f) Prop. SCRF. (g) Original image. (h) Grabcut [13].
(i) MLP [5]. (j) SSDF [35]. (k) UAKI. [18]. (l) Prop. SCRF.

proposed method is able to generate much better results than all
of the other state-of-the-art approaches on 10 of the 14 image
patches, and shows overall improvement over the UAKI method
on all performance measures, with significant improvements for
several images. While all of the methods mentioned in Table III
adopt shadows as an important cue for the identification
of rooftops, consequently, they also suffer from the noisy,
incomplete, and ambiguous observation of shadows in the
images. Redundant shadow information, which usually comes
from mislabeled shadows caused by dark regions and shadows
cast by walls and fences, tends to introduce large false positive

areas. On the other hand, lost shadow information due to noise
and occlusion, often results in large false negative areas. To
overcome these limitations, MLP [5] utilizes a global multilabel
graph partitioning strategy to recover the missing rooftops as
result of lost shadow information; thus, the method can obtain
much higher recall. SSDF [35] and UAKI [18] further improve
the performance, however, they are still susceptible to unreliable
shadows. Two examples are given in Fig. 7, notice the missed
rooftops without distinct shadows in the first example and the
mislabeled rooftops due to misleading shadows in the second
example. Unlike the above methods, our method can detect
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Fig. 8. More example results of the proposed method on the two benchmark datasets. The first three images are taken from Budapest, Normandy and Cot dAzur
datasets in SZTAKI-INRIA benchmark, respectively. The last three ones are taken from image patch 3, 6, and 14 in VHR benchmark, respectively. Correct results
(TP) are shown in green, false positives are shown in blue, and false negatives are shown in red.

rooftops even when there is no visible shadow information
with the help of our improved presegmentation. Furthermore,
integration of saliency cue allows us to effectively alleviate the
precision loss incurred by the misleading shadows.

Finally, as pointed in [18], the VHR benchmark dataset is pur-
posefully selected to uncover the potential of the UAKI method.
This explains the worse performance of our method on four
images than the UAKI method. However, even in this case we
still achieve an overall performance improvement, which further
justifies the efficiency and robustness of the proposed saliency
cue-based method.

D. Parameter Settings

The proposed SCRF method mainly involves the following
parameters: Parameters for the fully connected CRF model and
parameters for saliency estimation.

1) Fully Connected CRF Model Parameters: Fully connected
CRF model is used twice in the proposed method, for the
presegmentation in Section III-A and the final rooftop re-
finement in Section III-B2. We employ the same parameter
settings for both of the two steps, since there are no signif-
icant differences between the two energy functionals. For
the parameters used to calculate the pairwise potential as
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TABLE III
PIXEL-LEVEL QUANTITATIVE RESULTS FOR GRABCUT [13], MLP [5], SSDF [35], UAKI [18] AND THE PROPOSED METHOD WITH BEST RESULTS IN BOLD,

ON THE VHR BENCHMARK DATASET

Dataset Pixel-level performance

GrabCut MLP SSDF UAKI Prop.SCRF

Image Patch P R F P R F P R F P R F P R F

#1 59.1 58.6 58.8 36.5 56.8 44.4 60.9 69.5 64.9 81.2 75.0 78.1 83.8 84.9 84.3
#2 70.8 49.8 58.5 76.8 78.9 77.8 79.8 76.1 77.9 74.3 86.4 79.9 82.2 89.6 85.7
#3 60.4 76.3 67.4 60.1 90.2 72.1 59.5 69.4 64.1 69.2 89.0 77.9 84.3 81.6 82.9
#4 54.6 64.8 59.3 52.4 76.7 62.3 63.5 54.4 58.6 86.6 78.8 82.5 79.5 83.2 81.3
#5 71.5 61.7 66.2 70.2 89.5 78.7 88.8 78.3 83.2 91.0 88.1 89.6 94.2 88.8 91.4
#6 46.3 80.0 58.7 23.8 74.4 36.1 67.1 83.8 74.5 87.4 68.2 76.7 82.0 85.9 83.9
#7 77.5 83.2 80.3 77.2 87.3 81.9 80.1 82.3 81.2 81.7 88.8 85.1 83.9 88.2 86.0
#8 72.2 69.4 70.8 68.1 86.9 76.4 83.5 70.0 76.2 86.4 83.6 85.0 83.9 86.4 85.1
#9 47.4 62.3 53.9 40.6 72.6 52.6 78.5 88.5 83.2 89.9 90.2 90.0 94.7 90.6 92.6
#10 30.6 71.5 42.8 20.0 71.4 31.3 72.2 75.0 73.5 61.0 73.0 66.4 74.3 87.6 80.4
#11 70.1 92.2 79.6 77.9 95.9 86.0 75.8 94.6 84.2 83.7 87.0 85.3 83.6 93.0 88.0
#12 46.5 17.3 25.2 41.1 32.2 36.1 37.0 7.74 12.8 84.4 81.0 82.7 81.8 79.9 80.8
#13 62.6 52.3 57.0 67.6 86.0 75.7 77.1 69.6 73.1 86.2 85.1 85.6 80.7 83.6 82.1
#14 61.1 43.1 50.5 66.6 71.3 68.8 73.2 67.4 70.2 84.3 85.9 85.1 85.1 79.5 82.2
Average 57.5 61.9 59.6 53.1 78.1 63.2 75.5 71.7 73.5 83.5 84.4 83.9 84.0 86.4 85.2

Fig. 9. Variation of accuracy with different parameter settings in (2). In each plot, nonvarying parameters are fixed as their optimal settings.

defined in (2), we initialize the parameters following the
guidelines in [23] and then vary the parameters to search
the optimal settings on our own dataset. The experimen-
tal results reveal that parameters ω2 and θλ have relatively
little impact on the accuracy of the final result, as shown in

Fig. 9(d) and (e), which was also indicated in [23] . Thus,
we set ω2 = θλ = 1.0, the same as suggested in [23]. For
parameters θα , θβ , and ω1 , we test different parameter set-
tings on the two benchmark dataset, and the effects of pa-
rameter variation are shown in Fig. 9(a)–(c).ω1 weighs the



LI et al.: BUILDING EXTRACTION FROM REMOTELY SENSED IMAGES BY INTEGRATING SALIENCY CUE 917

Fig. 10. Effects of choosing different σc and σs for saliency estimation. Nonvarying parameters are fixed as their optimal settings σc = 0.25, σs = 10.
(a) σc = 0.05. (b) σc = 0.15. (c) σc = 0.25. (d) σc = 0.5. (e) σc = 1. (f) σc = 5. (g) σc = 10. (h) σc = 20.

Fig. 11. Failure cases. (a) Rooftops with nonuniform color appearance and similar color with background; (b) The proposed method fails to capture the whole
rooftops. Ships in (c) are mislabeled as rooftops by the proposed method (d). Correct results (TP) are shown in green, false positives are shown in blue, and false
negatives are shown in red.

impact of spatial term and color term. Large values of ω1
leads to oversmooth segmentation result, which slightly
improves the recall, but at the cost of significant drop in
precision, as shown in Fig. 9(a). θα controls the spatial
range of pairwise interaction. Accuracy increases as θα
grows from 1 to 5, since the spatial smoothness helps to
remove pixel-level noise in the local range of rooftop.
However, as θα keeps growing, longer range interaction
is considered. Therefore, rooftops that have similar color
with background would be smoothed into the background,
since they are now viewed as the noise in the background.
As a result, recall decreases substantially, as shown in
Fig. 9(b). θβ modulates the effects of color contrast. There
is little change in accuracy when θβ gets low values. But
when θβ is too high, neighboring rooftops with similar
colors would be merged and therefore causes more false
positives and decreases the overall accuracy, as shown
in Fig. 9(c). Through grid search in a reasonable range,
we find the optimal setting as θα = 10.0, θβ = 19.0, and
ω1 = 5.0 based on the experimental result.

2) Saliency Estimation Parameters: For the edge weight σ in
(9), we apply the same value as θβ since they share similar
characteristic. For the other two weighting parameters σc
and σs in (3) and (5), we experimentally set to 0.25 and
10 in our implementation. Results of testing a few differ-
ent parameters of σc and σs on two sample images are
shown in Fig. 10 and for the balance weight λi , different
with the constant setting for all pixels as done in [24],
we value the weight based on the background constraints
BS(vi) defined in (6) to suppress the influence of shad-
ows and vegetations. By experimentation, we set λi = 10

if BS(vi) > 0 and λi = 0.1 otherwise. Regarding the pa-
rameter for superpixel generation, we specify the pixel
number within each superpixel as 40 instead of fixing the
number of superpixels, which gives better performance.

Other parameters, which mainly inherit from [6], are kept
the same except for the eccentricity threshold and compactness
threshold. We slightly decrease these two value to 0.10 so as to
incorporate the rooftops with extremely irregular shape in the
VHR benchmark dataset.

E. Limitations

First, our method assumes center prior and contrast prior for
the estimation of saliency map, which are fairly common as-
sumptions also made in other works. However, in dense area
full of buildings, these two assumptions may be violated and
thus the proposed region contrast and boundary connectivity
saliency measures are insufficient to reflect the visual appear-
ance of the rooftops, which leads to performance degradation.
One typical failure case is shown in Fig. 11(a) and (b). In this
case, the center area of rooftop is background, violating our cen-
ter assumption. Furthermore, the region contrast measure fails
to capture some rooftops due to their nonuniform color appear-
ance and similar color with background area. To remedy this
problem, more intelligent saliency estimation method will be
explored in the future.

Second, even if the proposed saliency cue helps us to exclude
most of the mislabeled rooftops, a few false positives still persist.
Such as the ships in Fig. 11(c), which have regular shape and
highly salient appearance similar to rooftops. Therefore, the
saliency cue is insufficient to remove the erroneously labeled
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rooftops in this case, as shown in Fig. 11(d). Combination using
of additional features [17], [18] might address these issues.

V. CONCLUSION AND FUTURE WORK

We propose a novel two-step method for improving building
extraction from remote sensing images. An improved preseg-
mentation method based on fully connected CRF model is first
used to reduce the false negatives, and then the method lever-
ages saliency cue in the second step to further reduce the false
positives. A specially designed saliency estimation algorithm is
also introduced to make it suitable for detecting rooftops. Com-
pared with several state-of-the-art methods on two benchmark
datasets, the results show that our method achieves improved
performance and that it generalizes well across varying image
conditions. In future work, we plan to investigate more intelli-
gent saliency estimation method to further improve the accuracy.
In addition, using combination of other available cues is also a
promising avenue for future research.
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