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ABSTRACT

In this paper, we propose a passive image tampering detection
method based on modeling edge information. We model the edge
image of image chroma component as a finite-state Markov chain
and extract low dimensional feature vector from its stationary distri-
bution for tampering detection. The support vector machine (SVM)
is utilized as classifier to evaluate the effectiveness of the proposed
algorithm. The experimental results in a large scale of evaluation
database illustrates that our proposed method is promising.

Index Terms— tampering detection, image chroma, Markov
chain, stationary distribution

1. INTRODUCTION

Traditionally, a photograph implies the truth of what was happening.
However, people in the digital world now sometimes can not trust
image media since (maliciously) tampered images are often found
in the Internet even published in newspapers. With the development
of image editing software such as Adobe Photoshop, digital image
can easily be manipulated and hardly detected by human eyes. If
we take this issue for granted, it may eventually be harmful for our
digital world, especially for the credibility of news coverage. Many
researchers have worked on image forensics and a number of image
tampering detection techniques have been proposed in recent years.

Generally speaking, there are two types of approaches of im-
age tampering detection: active [1] and passive [2, 3] approaches.
Active approaches often require pre-processing (for example, wa-
termark embedding) to assist the authentication of digital images.
However, active approaches are not desired for practical use in daily
life since the image capture devices are not usually integrate with
watermarking embedding module. Passive approaches, which gather
evidence of tampering from images themselves, has more potential
for practical use and gains more attention among researches in im-
age forensics. In this paper we focus on passive image tampering
detection based on supervised learning techniques.

There are several techniques for passive image tampering detec-
tion proposed in the recent literature [4–11]. In [5] and [6], Johnson
and Farid developed a technique of tampering detection by analyz-
ing the inconsistency of lighting in image. But it may fail when
source images used for tampering are taken under similar lighting
conditions. Popescu and Farid [7] argued that color interpolation
(demosaicing) introduced specific correlations between neighboring
pixels of a color image, while image tampering might destroy or
alter them and based on this they proposed an image tampering de-
tection algorithm to check the periodicity of these correlations. Be-

sides, in [8], Dirik and Memon utilized artifacts created by Color
Filter Array (CFA) to detect image tampering. They proposed two
features. One is based on CFA pattern estimation and the other is
based on the fact that sensor noise power in CFA interpolated pixels
should be significantly lower than non-interpolated pixels. Actually,
CFA artifacts are hardly detected for many images with heavy JPEG
compression. Lukáš et al. [9] proposed a digital image tampering
detection method to detect camera pattern noise which is consid-
ered as an unique stochastic characteristic of imaging sensors. The
tampered region is determined when it is detected as lacking of the
pattern noise. However, this method is only applicable when the tam-
pered image is claimed to have been taken by a known camera or at
least we have images taken by the camera before. Shi et al. [10] pro-
posed a splicing detection method using effective features extracted
from image Markov transfer matrices. Experiments were carried on
Columbia image splicing detection evaluation dataset [12] and the
results were satisfying. Aiming at color image splicing detection,
we proposed an effective color image splicing detection approach
based on image chroma [11]. We found that the analysis on chroma
of color image was more reasonable for image splicing detection
than on illuminance because chroma could reflect more information
left by splicing which human eyes might not observe.

In this paper, we still apply our algorithm in image chroma chan-
nel for tampering detection. In our proposed approach, we model the
edge information of image chroma as Markov chain (MC) and ex-
tract low dimensional feature vector from its stationary distribution.
The dimension of feature vector of proposed method is much smaller
than that we used in [11]. Similar to [10, 11], we train a SVM clas-
sifier with these features for tampering detection task.

The rest of this paper is organized as follows. Our proposed fea-
tures for tampering detection are introduced in Section 2. In Section
3, the experimental results are reported and some analysis are given.
Conclusions are drawn in Section 4.

2. FEATURE EXTRACTION

It is well known that tampering often changes the composition of
an image. Even if the change cannot be perceived by human eyes,
some inherent statistical dependencies (especially the higher order
statistics) of image itself will be altered by tampering operation. In
this section, we will introduce how to extract effective features for
image tampering detection.
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2.1. Thresholded Edge Image

Since image content is too strong to cover up tampering clues, in our
approach we use edge information of image instead of image itself
to extract features. We employ the mask M to convolute with an
image chroma (Cb or Cr component) to get its edge information (see
Equation 1) which we name as edge image in the rest of this paper.
YCbCr is a family of color spaces just like RGB. Y is the luminance
component and Cb and Cr are the blue-difference and red-difference
chroma components. Cb or Cr component has little image content
while most of image content is preserved in Y component. We find
the image chroma is very useful for color image tampering detection.
Since human are more sensitive to luminance than to chroma, even
if tampered image looks natural to human, some unnatural clues will
be left in chroma channel. Therefore, we could make use of the
chroma information of the image for tampering detection.

E = |M ⊗ I| , (1)

where E is the edge image of an image chroma I and |•| is the
operation of takeing absolute value. In our experiments, we set

M =

⎡
⎣
−1 −2 −1
−2 12 −2
−1 −2 −1

⎤
⎦ .

Of course, other masks can be used to get edge images like Sobel,
LoG etc.

We find that 90% of edge image’s pixel values are below fifteen
in our experiments as shown in Figure 1. Therefore, we can choose
a reasonable value T to threshold edge image, and meanwhile, do
not change the statistical regularity of it so much. Thresholding is
according to the following rule:

e(i, j) =

{
e(i, j) e(i, j) < T

T e(i, j) ≥ T
, (2)

where e(i, j) is the value of an edge image at location (i, j).

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gray−level value 

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Cb Channel
Cr Channel

Fig. 1. The average gray-level value cumulative probability distri-
butions of 10,246 edge images of Cb and Cr components of color
images including authentic and tampered images, respectively.

2.2. Markov Chain

From above we know that the thresholded edge image’s pixel val-
ues are integers from 0 to T. Hence, we can further model the edge
image as a finite-state Markov chain (MC) to capture its interpixel
dependencies. Markov chain is a well known statistical tool to model
adjacent pixels’ statistical dependency for steganalysis and splicing
detection [10]; and transition probability matrix (TPM) can be used
to characterize it. In this paper, we use a finite-state MC to model

thresholded edge image, and further use one-step TPM to character-
ize it. The horizontal (0◦) direction one-step TPM Phcan be calcu-
lated in following way:

Ph
m,n = P{ν(i, j + 1) = n|ν(i, j) = m}

=

∑H
i=1

∑W−1
j=1 δm,n(ν(i, j), ν(i, j + 1))∑H
i=1

∑W−1
j=1 δm(ν(i, j))

, (3)

where m,n ∈ {0, 1, . . . , T} are states of Markov chain. ν(i, j) is
gray-level value of a W ×H image at location (i, j) and

δm,n(A,B) =

{
1 if A = m and B = n

0 Otherwise
.

In the same way, we can get other directions (45◦, 90◦, 135◦) one-
step TPMs which are named P d, P v and P−d, respectively.

For a finite-state MC, there always exist a stationary distribution
π which is a vector with entries sum up to 1 and satisfies the equation
π = πP , where P is a TPM. We use the stationary distribution as
feature vector, thus the dimension of the feature vector is T + 1.

As we know, the stationary distribution of finite-state MC is al-
ways exists, but may not be unique. However, if all elements of its
TPM are positive, which means the chain is irreducible and ergodic,
the stationary distribution is unique. This can be proved by the fol-
lowing theorem [13]:

Theorem 1 For an irreducible ergodic Markov chain, limn→∞ Pn
ij

exists and is independent of i. Furthermore, letting

πj = lim
n→∞

Pn
ij , j ≥ 0,

then πj is the unique nonnegative solution of
⎧⎪⎨
⎪⎩

πj =
∑

j πiPij , j ≥ 0,

∑
j πj = 1.

πj is called the limiting probability that the chain is in state j.

For the irreducible ergodic Markov chain, its limiting probability
distribution π= (π1, π2, . . . , πj , . . .) is exactly its stationary distri-
bution. Thus, its stationary distribution is unique.

In our experiments, we found that almost all TPMs have their
elements positive and satisfy Theorem 1. However, we can not guar-
antee other cases outside our experiments. In order to make our
proposed method more general, we added a positive perturbation to
TPM and then scaled each row of the matrix to make its L1 norm
be one. Hence, we can make sure the stationary distribution of our
modeled Markov Chain of the thresholded edge image to be unique.

2.3. Frame Work of Proposed Method

In [11], we find that the chroma channel of a color image is more
suitable for image splicing detection than illuminance channel. In-
spired by this observation, we again applied our proposed method
in chroma channel for tampering detection. The frame work of our
proposed method is shown in Figure 2. A RGB color image is first
converted to YCbCr color space and chroma component (Cb or Cr
channel) is used. Then, we calculate the stationary distribution of the
thresholded edge image of chroma to server as a feature vector. The
dimension of the feature vector is T + 1 where T is the predefined
value used for thresholding edge image. In Section 3, effectiveness
of proposed low dimension feature vector for tampering detection
will be testified.
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Fig. 2. A frame work of our proposed method

Fig. 3. Examples of authentic images (all in the top row) and their
forgery counter parts (all in the bottom row)

3. EXPERIMENTAL RESULTS

3.1. Image Database

The only two available public image databases for tampering de-
tection, specially for splicing detection, are provided by DVMM,
Columbia University [12]. They are simple and small scale. In
order to provide a more realistic and more challenging evaluation
database for image tampering detection, we constructed a color im-
age database to test our proposed approach. The CASIA tampered
image detection evaluation database (CASIA TIDE) v2.0 [14] con-
sists of 7,491 authentic and 5,123 sophisticatedly tampered color
images of different sizes varying from 240 × 160 to 900 × 600.
This database is with larger size and more realistic and challenging
tampered images with complex splicing as well as blurring. The au-
thentic images are collected from the Corel image dataset, websites
and our own images captured from digital cameras. The tampered
images are generated by the following ways:

• we randomly cut-and-paste image region(s);
• the cut image region(s) can be processed with resizing, ro-

tation or other distortion and then be pasted to generate a
spliced image;

• the post-processing (such as blurring) is considered after cut-
and-past operation to finish the tampered image generation;

• difference sizes (small, medium and large) of tampered re-
gions are concerned.

Some examples of CASAI TIDE v2.0 are shown in Figure 3.

3.2. Classifier

Support Vector Machine (SVM) is an optimal and efficient classifier
which is commonly used for machine learning systems. Since our
work in this paper only focuses on feature extraction rather than the
design of classifier, we utilize the LIBSVM [15] as the classifier in
our experiment and a RBF kernel is chosen. Five-fold grid searching
is used to select parameters for the classifier.

3.3. Detection Performance

In our experiment, we set T = 8 and 15 to threshold edge images,
respectively. Instead of using four directions TPMs of thresholded
edge image, i.e., Ph, P d, P v and P−d, only P−d was involved.
This is because the stationary distribution of the four matrices are
almost the same and experimental results implies that we use P−d

can improve the detection accuracy compare with other three matri-
ces.

As we know, in classifier training and testing stages, we should
keep balance of the number of authentic and tampered images.
Hence, 5,123 authentic (randomly select from 7,491 authentic im-
ages) and 5,123 tampered images were selected to construct exper-
imental database. The training samples (3,000 authentic and 3,000
tampered image) were randomly selected from the database. The
remaining images were used in testing. We ran RBF kernel SVM
classifier with the parameters C and γ which were determined by
grid searching. Experiments with different thresholds T s on same
train and test database were carried out. The detection results using
different image channels (Y, Cb and Cr) and different thresholds are
shown in Table 1.

Table 1. Experiment results of proposed method

T = 8 T = 15
Y Cb Cr Y Cb Cr

AR 65.4% 94.7% 94.9% 66.5% 95.6% 95.5%
FPR 35.5% 7.3% 7.3% 36.3% 6.7% 6.7%
FNR 33.7% 3.2% 3.0% 30.9% 2.1% 2.2%

AR is detection accuracy rate. FPR and FNR are false positive
rate and false negative rate, respectively. We make tampered images
as positive samples and authentic images as negative samples in our
experiments. The dimensions of feature vectors with T = 8 and
T = 15 are 9 and 16 respectively. The effectiveness of our proposed
feature is testified by the experiment with high detection accuracy
and low FPR and FNR.

From Table 1 we can find that features extract from chroma (Cb
or Cr) component perform much better than that from Y component,
which coincide with what we have found in [11]. Though the detec-
tion accuracies of T = 8 is little lower than those of T = 15, the
complexity of classifier training is much lower. Figure 4(a) shows
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(a) The proposed method
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(b) The method proposed in [11]

Fig. 4. ROC curve of each component using proposed method (a)
and the method proposed in [11] (b) with T = 8 on CASAI TIDE
v2.0

the corresponding ROC curve of each component with T = 8. Table
2 shows the detection results of comparison experiment using the
method proposed in [11] and Figure 4(b) are corresponding ROC
curves. From these tables and figures, we find that performances of
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Table 2. Experiment results of the method proposed in [11]

T = 8
Y Cb Cr

AR 66.9% 96.7% 96.8%
FPR 32.0% 4.3% 4.6%
FNR 34.1% 2.4% 1.8%

these two methods are close, but the method in [11] needs boosting
feature selection and dimension of the feature vector is much higher
than our new approach. Figure 5 shows ROC curves of the exper-
iment using proposed method on Columbia Uncompressed Image
Splicing Detection Evaluation Dataset [12].
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Fig. 5. ROC curve of each component using the proposed method
with T = 8 on Columbia Uncompressed Image Splicing Detection
Evaluation Dataset

4. CONCLUSIONS

In this paper, we have proposed a low dimension feature vector ex-
traction method for color image tampering detection. We modeled
the thresholded edge image of image chroma as a Markov chain and
considered its stationary distribution as features for tampering detec-
tion. The experimental results have illustrated that the proposed 9-D
feature vector is very effective for tampering detection.

In our approach, we only modeled the statistical dependency be-
tween two adjacent pixels of an image which can be characterized by
one-step transition probability matrix of Markov chain. In fact, the
actual dependency of image is not limited to just two adjacent pixel,
hence, in our future work, the dependency among more than two ad-
jacent pixels would be considered for further analysis. Though the
work in this paper is only focus on image tampering detection, we
are looking forward our proposed method can be useful at other sim-
ilar forensics task like device source classification and steganalysis.
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