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ABSTRACT

Very high resolution images are promising for detecting
change regions and identifying change patterns. However,
the low overall separability makes it difficult to discriminate
change features. In this paper, a framework is proposed to
simultaneously detect change regions and identify change
patterns. A supervised approach is illustrated within this
framework, which is aimed at reducing the overlaps between
change classes by capturing the interclass difference and the
intraclass similarity. Experiments demonstrate the effective-
ness of the proposed approach.

Index Terms— Change detection, Change pattern, Fea-
ture classification, Feature transformation, Distance tuning.

1. INTRODUCTION

Detecting changes from multi-temporal images has been the
hot topic of remote sensing domain during the recent years.
With the development of very high resolution(VHR) satel-
lites(e.g., QuickBird 2 and WorldView 2), change detection
receives extensive attentions. Besides detecting change re-
gions, change types(or patterns) can also be recognized by
taking advantages of the improved spatial resolution. Howev-
er, the spatial resolution improvement enlarges the difference
between low-to-moderate resolution(LMR) images and VHR
images, and this difference makes VHR image change detec-
tion more challenging. Specifically, the difficulties of VHR
images change detection lie in the following aspects:
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1) Low separability of change features[1, 2]. For LM-
R images, changes are mainly characterized by spectral dif-
ferences, and objects can be reliably encoded by spectral re-
sponses. However, for VHR images, due to the low interclass
variability within an image (e.g., region A vs B in Fig. 1(a))
and the high intraclass difference across images(e.g., region
C in Fig.1(a) vs region D in Fig.1(b)), it is difficult to separate
the changed class from the unchanged class.

2) Ignorance of user-specific interests[3]. Most of the tra-
ditional approaches take less care of user-specific interests. In
fact, some types of changes(e.g., region E and F in Fig.1(a))
are salient in the appearance variation, but they are not of us-
er’s interests and should be considered as the unchanged class.

To address the above difficulties, in this paper, a novel
framework named SCRAPI(Simultaneous Change Region
And Pattern Identification) is proposed for VHR images,
which integrates two coherent tasks seamlessly, change re-
gion detection and change pattern identification. Different
from the traditional approaches, SCRAPI aims at projecting
each change pattern into a compact cluster and improving
the interclass discrimination by tuning the distance between
change features.

2. SCRAPI: FRAMEWORK AND ILLUSTRATION

Change detection is essentially the procedure to determine
the labels of change features. Specifically, let xi denote the
change feature from the ith element, and yi denote the la-
bel, respectively. yi = 0 means the unchanged class, and
yi = k(k > 0) means the ith change pattern. The key to
change detection is to reduce the overlap(e.g., Fig. 1(d)) and
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Fig. 1. Illustrations of difficulties in VHR image change detection. (a) and (b): Multi-temporal images, (c): Change feature
distributions of unchanged class and different change patterns. (d): Illustration of high overlaps between classes. (e): Illustration
of the overall separability improved by the proposed approach. In Figs.1 (c)-(e), for visualisation, high dimensional change
features are projected into 2d feature space.

learn a decision function f(·).

2.1. SCRAPI Framework

Despite the promising performance of local features(e.g.,
HOG(Histogram of Gradients), DAISY[4]) in representing
complex objects, the direct feature comparison will result
in the high intraclass difference due to the nonlinear map-
ping between multi-temporal images. For this reason, change
features are transformed by the discriminative projection.

In this paper, SCRAPI aims to jointly detect change re-
gions and identify change patterns by learning the projection:

min
D

r(D) (1)

s.t. d(Dxi,0) ≤ τ1, if yi = 0. (2)

d(Dxi,0) > τ2, τ2 > τ1, if yi > 0. (3)

d(Dxi, Dxj) > τ3, if yi > 0, yj > 0, and yi 6= yj . (4)

Where r(D) denotes the constraint onD, for instance, the
sparsity. d(a, b) is the distance between vectors a and b. Eqs.
(2) and (3) are expected to separate the changed class from
the unchanged class, and Eq. (5) is expected to discriminate

change patterns.

The above framework can be implemented in an unsuper-
vised manner if no training samples are available. Howev-
er, an implicit assumption about Eqs. (2) and (3) is that the
clustering center of the unchanged class is near the origin, 0.
However, the false changes caused by misregistration or the
changes that are not of user’s interests are far from the ori-
gin. Considering the violation of the unchanged class from
the origin and the high overlaps between the changed and un-
changed class, it is difficult for the unsupervised strategy to
separate mixed change features without extra priors. In other
words, the high overlap between different change classes can
be significantly reduced by utilizing training samples.

In the supervised context, there are no differences be-
tween the unchanged class and the other change patterns, and
the SCRAPI framework can be described as:

min
D

r(D) (5)

s.t. d(Dxi, Dxj) ≤ εm, if yi = yj = m. (6)

d(Dxi, Dxj) > τm,s, if yi = m 6= s = yj . (7)
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Where {(xi, yi)|i = 1, · · · , N} are training samples, and
N is the number of training samples.

2.2. SCRAPI Illustration

For illustration, a novel approach is presented within the
SCRAPI framework:

min
W,ξ

1

2
‖WWT ‖(2,1) + λ

∑
i

ξi (8)

s.t. hi,j(‖x̃i − x̃j‖22) ≥ 1− ξl, (9)

x̃i =Wx, (10)

ξl ≥ 0,∀l. (11)

Where hi,j = −1 if yi = yj , and hi,j = 1 if yi 6= yj .
Eq. (9) is aimed at enlarging the distance between differen-
t classes and enhancing the similarity within the same class.
For convenience, we set x̃l = x̃i−x̃j and hl = hij . ‖Q‖(2,1)
means the mixed (2, 1)-norm, it is obtained by firstly comput-
ing the 2-norm of across the rows of Qi, and then the 1-norm
of the vector v(Q) = (‖Q1‖2, · · · , ‖Qm‖2). Compared with
1-norm, the mixed (2, 1)-norm is promising in producing a
sparse solution while preserving the data structure. Based on
some derivations as in [5], the Lagrange dual version of the
above problem is obtained:

max
α
−1

2

∑
i,j

αiαjhihjKD(zi, zj) +
∑
i

αi

s.t. 0 ≤ αl ≤ λ,∀l,∑
l

αlhl = 0.

(12)

where KD(zi, zj) = [zTi zj ]
2. The above problem is a s-

tandard quadratic program, and it can be solved by a variety
of approaches, such as the interior point method, active set
method, etc.

For each change feature x to be classified, k virtual
couples zx

(j)
i = (x,x

(j)
i ) need being constructed for each

change pattern j, where x
(j)
i (i = 1, · · · , k) are the nearest

neighbors of x within the training subset of the jth change
pattern. For the virtual couple z, the label is determined by

f(zx
(j)
i ) = sgn(

∑
l

αlhlKD(zl, zx
(j)
i )). (13)

f(zx
(j)
i ) = −1 means that the label of x is the same as x(j)

i .
The final label of x is determined by voting on the above k∗n
decisions, where n is the number of change classes(including
the unchanged class).

3. EXPERIMENTS

For space limitation, only the results on one data set are
illustrated. Other four classifiers are used for comparison:
Bayes classifier, SVM, decision tree[6] and Adaboost. The
performance is measured by MA(missed alarms), FA(missed
alarms) for each change pattern and OA(overall classification
accuracy). The change features are DAISY-feature-based
difference[1]. Training samples are generated by randomly
choosing 30% of the pixels from the ground truth for each
change class, and different approaches used same training
samples. The performances are listed in Tab. 1, and the
results detected by different approaches are shown in Fig.
2, where two change patterns, the addition and removal of
buildings are highlighted in blue and red, respectively.

From Fig. 2 and Tab. 1, it can be inferred that: (1)
Bayes classifier is limited in modeling complex change fea-
tures, and SVM is inadequate to deal with the high overlap
between different change patterns. (2) Decision tree and Ad-
aboost are more effective in dealing with high-dimensional
change features. For instance, OAs are improved from 78.4%

by Bayes classifier, 84.6% by SVM to 89.2% by decision tree
and 86.8% by AdaBoost, respectively. (3) As can be observed
from Fig.1(h), by the proposed approach, MA and FA are re-
duced significantly, some errors caused by decision tree and
AdaBoost are being corrected by tuning the distance between
change features, which is implemented by the projection ma-
trix W . The above comparisons illustrate the advantages of
the proposed approach.

4. CONCLUSION

The pure usage of representative feature representation or dis-
criminative feature classification is limited in addressing the
difficulties of VHR image change detection. A novel frame-
work is proposed for simultaneously detecting change regions
and identifying change patterns, and the effectiveness of the
framework is illustrated in the supervised learning. The nov-
elty of the proposed framework lies in the powerful ability
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Fig. 2. Change detection result comparison. (a) and (b): Multitemporal images, 1190 × 1404; (c): Ground truth; (d): Bayes;
(e): SVM; (f): Decision tree; (g):AdaBoost; (h):SCRAPI.

Table 1. Performance Comparison

approach change region change pattern1 change pattern2 OA(%)FA MA FA MA FA MA
Bayes 149440 49632 23165 127731 30583 25827 78.4
SVM 70137 71961 39516 23181 35436 499473 84.6

Decision tree 51812 34816 21324 43460 30016 24876 89.2
AdaBoost 93120 24020 18116 59448 22148 49916 86.8
SCRAPI 32100 15584 12524 22532 15136 21644 94.9

in simultaneously modeling two coherent tasks and learning
projection for improving the interclass variability. Our future
work will focus on enhancing the interclass separability by
other advanced techniques such as multiple kernel learning.
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