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ABSTRACT
With the growth of tagged images, researchers are using this
highly semantic tag information to assist some vision tasks
such as image clustering. However, users may not tag some
images at all or some of the images are partially annotat-
ed, and this will lead to performance degradation, which is
rarely considered by previous works. To alleviate this prob-
lem, we propose a new model for image clustering assisted
by partially observed tags. Our model enforces sparse repre-
sentations obtained through sparse coding and latent tag rep-
resentations learned via matrix factorization to be consistent
with the partial image-tag observations. The partition of im-
age database is finally performed using clustering algorithms
(e.g., k-means) on the sparse representations. Extensive ex-
periments demonstrate that the proposed model performs bet-
ter than the state-of-the-art methods.

Index Terms— Image clustering, partially observed tag
information, multi-view clustering, sparse coding

1. INTRODUCTION

Image clustering, which assigns images into different groups,
plays an important role for image organization and visualiza-
tion [1]. Traditional image clustering algorithms usually re-
sort to visual features such as the SIFT descriptor. However,
using such low-level visual features is always ineffective be-
cause of the problem of the semantic gap [2, 3]. Researchers
are now exploring the textual information surrounding the im-
ages, such as the tags, as complementary high-level semantic
information to boost the clustering performance.

Several works have been proposed fusing visual and tex-
tual features to improve clustering [4, 5, 6, 7, 8]. Cai et al.
[4] proposed a hierarchical clustering model to fuse the visu-
al, textual and link information for clustering of Web image
search results. Similarly, Peng et al [9] utilized tags to obtain
topics as the first clustering layer and then used the visual
features for more sophisticated clusters. Furthermore, Rege
[8] proposed a co-clustering based framework for simultane-
ously integrating visual and textual features and then graph
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theory was applied for the final clustering. Recently, multi-
view clustering, which fuses multiple sources of information
for clustering tasks, provides a natural way for combining the
visual and textual features. It achieves nice results and draws
significant attention nowadays [10, 11, 12, 13, 14]. Generally,
a wide variety of multi-view clustering works aim at finding
a low dimensional embedding among multiple features, and
the complementary information is expected to be maximized
in this learned latent space. Several typical examples such as
[15, 16, 11, 17, 18] obtain promising clustering results.

Although some works have been proposed for image clus-
tering utilizing both visual and textual features, few of them
consider the scenario that the textual information is incom-
plete, which commonly exists in real applications. Compared
with the visual features that can be extracted by representa-
tive descriptors, images sometimes may not be annotated or
only given a few tags that are not abundant for image descrip-
tion. In this circumstance, conventional methods may face the
problem of performance degradation due to the great depen-
dency on the complete textual information. It should be noted
that several works [17, 18] have been proposed to solve the in-
complete view problem for multi-view clustering. However,
these methods mainly focus on the text data (e.g., Web pages
clustering) and may not be suitable for image clustering.

In this paper, we propose a novel model that focuses on
image clustering assisted by partially observed tag informa-
tion. Our model utilizes tags to assist learning of the visual
representations, which consists of two parts. The first part is
sparse coding. We learn sparse representations based on visu-
al features, which can capture salient structures of the images
[2]. In the second part, we learn the latent representation for
each tag, and keep the sparse representations and the tag rep-
resentations being consistent with the partial image-tag ob-
servations. Furthermore, an importance matrix is employed
to deal with the situation that a tag is related to an image but
not be observed. Finally, image clustering is achieved by per-
forming clustering algorithms (e.g., k-means) on the learned
sparse representations.

Our contribution in this paper is summarized as follows:
1) A novel model for image clustering assisted by partially
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observed tag information is proposed, which is designed for
the scenario that the tags for some images are totally miss-
ing or partially observed. To the best of our knowledge, this
scenario is rarely considered for image clustering. 2) An ef-
fective optimizing algorithm for the proposed model is devel-
oped. And extensive experiments on three real world datasets
show that the proposed model obtains better clustering results
compared with several state-of-the-art methods.

2. MODEL

2.1. Problem overview

We use XT to represent the transpose of a matrix X . Xi

and Xi indicate the i-th row and the i-th column of X re-
spectively. Xij is the entity of i-th row and j-th column of
X . For two matrices with the same size, we use ⊙ to denote
the element-wise product. Suppose we have n images and its
visual feature is denoted as X ∈ ℜp×n with p as the dimen-
sionality. As for the textual feature T , assume that we have q
tags and if the i-th tag is annotated to the j-th image, Tij is
assigned to be 1, otherwise 0. It should be noted that T can be
incomplete, which means some of the images have no tags or
some tags of an image may be missing. Our task is to cluster
such partially tagged images.

2.2. Formulation

Inspired by sparse coding, we assume that an image can be
represented as a spare linear combination of the learned dic-
tionary. Furthermore, we learn the latent representation for
each tag and use this latent feature to assist the learning of
sparse coding. Thus, the objective we are going to optimize
is listed as follows:

min
B,S,C

||X −BS||2F + α||S||1

+ λ(
∑

ij∈O (Tij − CiSj)
2
+ β||C||2F )

s.t. ||Bt||2 ≤ 1, ∀t
(1)

where B and S are the learned dictionary and the sparse rep-
resentation respectively. C is the latent representation for all
the tags and O is the observed tag-image set. The parameters
α, λ and β are scalars balancing different terms. The con-
straints on B is usually adopted by sparse coding as in [19].
After the optimization of (1), we can use the clustering algo-
rithms, such as k-means, on S for final data partitioning.

The purpose of the third term in (1) is to enforce the
learned two representations to be consistent with the partial
image-tag observations. More specifically, we model the
consistency using the latent factor model via matrix factor-
ization, namely, we constrain the dot product of the learned
tag representation and the sparse representation to approach
the matrix T . Intuitively, CiSj can be viewed as a linear sum
that represents how the i-th tag is related to the j-th image.
By doing so, the sparse representations of two images will be

close if they have similar tag information. The term ∥C∥2F is
a regularizer to avoid over-fitting.

In our hypothesis, Tij = 0 can be interpreted as either the
i-th tag is not related to the image j or it is missing. So we
employ an importance matrix I ∈ ℜq×n with the same size
of T to alleviate the missing situation. Similar to [20], Iij is
assigned to be a small value when Tij = 0. And the objective
is reformulated as:

min
B,S,C

||X −BS||2F + α||S||1

+ λ(
∑

ij Iij(Tij − CiSj)
2
+ β||C||2F )

s.t. ||Bt||2 ≤ 1, ∀t
(2)

where I is defined as follows:

Iij =

{
a if Tij = 1
b if Tij = 0

(3)

where a and b are two scalars satisfying a > b > 0.
Finally, we write the above equation as a compact matrix

form:
min
B,S,C

||X −BS||2F + α||S||1
+ λ(||L⊙ (T − CS)||2F + β||C||2F )

s.t. ||Bt||2 ≤ 1, ∀t
(4)

where L = I1/2 is the element-wise square root of matrix I .

3. SOLUTION

Since the variables B, S and C are coupled together and it
may be difficult to solve them jointly, we propose to optimize
the three variables alternatively until convergence. Note that
the convergence analysis is similar to that of sparse coding
[19] and is omitted here due to space limitation.

Solve S with B and C fixed. The problem becomes:

min
S

∥X −BS∥2F + λ ∥L⊙ (T − CS)∥2F + α∥S∥1 (5)

For each column Si, we have:

min
Si

∥∥∥∥[ Xi√
λLi ⊙ Ti

]
−
[

B√
λdiag (Li)C

]
Si

∥∥∥∥2+α∥Si∥1
(6)

where diag(v) denotes a diagonal matrix with its diagonal el-
ements being the vector v. This is a standard sparse represen-
tation problem, which can be solved using SLEP packages1.

Solve C with B and S fixed. The problem is written as:

min
C

∥L⊙ (T − CS)∥2F + β ∥C∥2F (7)

For each row Ci, the problem is simplified as:

min
Ci

∥∥T idiag(Li)− CiSdiag(Li)
∥∥2 + β

∥∥Ci
∥∥2 (8)

where we can easily obtain the analytic solution for Ci.
1http://parnec.nuaa.edu.cn/jliu/largeScaleSparseLearning.htm
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Solve B with S and C fixed. We have the following prob-
lem:

min
B

∥X −BS∥2F s.t.∥Bt∥2 ≤ 1, ∀t (9)

which can be optimized through the Lagrangian method. Sup-
pose the size of the dictionary is k, then it becomes:

L (B,ϕ) = ∥X −BS∥2F +
k∑

t=1

ϕt

(
∥Bt∥2 − 1

)
(10)

where ϕt is a positive scalar indicating the Lagrange multi-
plier. Based on the derivation to B, we can obtain the closed
form solution as:

B = XST
(
SST + φ

)−1
(11)

where φ is a diagonal matrix with its t-th entity being φtt =
ϕt. And it can be optimized through the Lagrange dual prob-
lem min

φtt≥0
Tr

(
XST (SST + φ)

−1
SXT

)
+ Tr(φ), which is

easily solved using conjugate gradient. The whole procedure
of the proposed image clustering method is clearly summa-
rized in Algorithm 1.

Algorithm 1 Partially Tagged Image Clustering (PTIC)
Input:

Visual feature X , partially observed tag matrix T , the la-
tent dimensionality of S and the number of clusters;

1: Initialize B and C by random matrices.
2: while not converge do
3: Fix B and C, update S using (6);
4: Fix S and B, update C using (8);
5: Fix S and C, update B using (11);
6: end while
7: Perform the k-means clustering algorithm on S.

Output:
Image groups based on the preset number of clusters

4. EXPERIMENTS

4.1. Evaluation datasets

Pascal VOC 2007 dataset2: It consists of 20 categories with
a total of 9,963 image-tag pairs. We use the Color feature
as the visual representation and there are a total of 399 tags.
Furthermore, those image-tag pairs with multiple categories
are removed. Finally we have 5,649 image-tag pairs with 30
images have no tags.

NUS WIDE dataset3: The database is collected from
Flickr and it consists of 269,648 images in 81 categories. Six
types of low level features are extracted and the 500D bag of
words description is utilized as the visual feature here. As

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

for the tag, the 1,000D tag collection is used. We select the
first ten categories with each class consisting of 200 images
as a subset to evaluate the proposed method. Note that in this
database, 723 images have no tag information.

MIR Flickr dataset4: It has 15,000 image-tag pairs dis-
tributed in 38 categories. The authors provide seven types of
low-level features and 2,000D most frequently used tags. The
960D GIST feature is employed as the visual feature here.
Furthermore, we select 5 categories with the largest numbers
of images as a subset for the experiments. In total, we have
7,933 image-tag pairs with 1,355 images have no tags.

4.2. Experimental settings

We compare our model with the baselines “k-means” and “S-
parse Coding” that use no tag information, and representative
works “PairwiseSC”, “CentroidSC” [15] and “PVC” [18] u-
tilizing both visual and tag features. For the methods ‘Pair-
wiseSC” and “CentroidSC”, we follow [15] and choose the
mean value of the Euclidean distance between all data points
as the standard deviation for constructing the Gaussian ker-
nel. As for “PVC”, which is designed for incomplete feature
representations, is implemented using the code released by
authors.

For our method “PTIC”, the dimension of sparse coding
is chosen to be 300 for the three datasets and we will test its
influence in the parameter selection part. Besides, we empir-
ically assign the values of the importance matrix to be 1 and
0.01 in all the experiments like in [20]. As k-means is used
in all the experiments, it is run 20 times with random initial-
ization. Two widely used metrics, i.e., the accuracy (ACC)
and the normalized mutual information (NMI), are utilized
to measure the clustering performance. Readers may refer to
[21] for more details about their definitions.

4.3. Experimental results

Table 1 shows the clustering accuracy and normalized mu-
tual information of different methods on the three databases.
Overall, it can be seen that our method outperforms all the
compared methods. Since tag information has much high-
er semantic representation than that of visual features, “k-
means” and “Sparse Coding” algorithms obtain much worse
results than the other methods using tag information.

“PairwiseSC” and “CentroidSC” aim to find a latent space
that makes the visual and tag representations being similar,
and this will harm the learning process if some of the images
have no tag at all. In constrast, our model utilizes tags to assist
the learning process of the sparse representations, which may
be less affected when confronting the scenario that the tag
information is incomplete.

As for “PVC”, it learns a unified latent representation for
data points having complete visual and tag features based on

4http://www.cs.toronto.edu/ nitish/multimodal/index.html
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Methods
VOC NUS MIR

ACC (%) NMI (%) ACC (%) NMI (%) ACC (%) NMI (%)
k-means 12.13 (0.27) 6.11 (0.11) 19.95 (0.85) 6.51 (0.29) 31.66 (0.03) 5.69 (0.01)

Sparse Coding[19] 15.22 (0.71) 6.08 (0.42) 20.13 (0.82) 6.58 (0.36) 32.31 (0.65) 6.04 (0.16)
PairwiseSC[15] 53.20 (1.63) 52.23 (1.31) 38.62 (0.67) 26.00 (0.63) 41.17 (0.59) 9.26 (0.15)
CentroidSC[15] 50.76 (2.47) 49.86 (2.08) 38.51 (1.84) 31.64 (1.16) 41.49 (0.03) 8.48 (0.01)

PVC [18] 52.97 (2.20) 51.51 (1.71) 31.08 (1.64) 23.05 (1.16) 35.71 (1.47) 6.65 (0.74)
PTIC 56.56 (2.38) 53.37 (0.93) 42.06 (1.81) 34.57 (1.13) 43.13 (0.04) 9.89 (0.02)

Table 1. Clustering results on the VOC, NUS and MIR databases. Numbers in parentheses are the std. deviations.

non-negative matrix factorization, which is effective for deal-
ing with the text data. Compared with “PVC”, we can ob-
tain the salient structures through sparse coding on the visual
feature and assist the learning process through matrix factor-
ization on the tag feature, which is more suitable for partially
tagged image clustering.

4.4. Results of partially observed tag information
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Fig. 1. Clustering results when some images have partially
observed tags on the VOC dataset.

In this section, we evaluate the performance of our
method facing the situation that some images have partially
observed tags, which is different from Section 4.3 in which
some images have no tags at all. This is also a practical sce-
nario because the users may omit some tags when annotating
images. To mimic such a scenario, we randomly remove a
certain percentage of tags. We only report the results on the
VOC database due to space limitation here and the other two
datasets show similar results. From Figure 1, it can be seen
that our model performs better with the increasing percent-
ages of tags removed. This may be because the importance
matrix we use can alleviate the tag missing situation to some
degrees. As most of the tags being further removed, our mod-
el has no prominent improvements over the other methods,
and this is reasonable since the tag information is too scarce
to be good complementary information.

4.5. Parameter selection

In our model, λ balances the sparse coding of visual fea-
tures and the matrix factorization for partially observed tag
features. It is empirically selected through searching at the
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Fig. 2. NMI vs. dimension on the VOC dataset.

interval [1, 20]. As for the regularizer parameter α, it is cho-
sen following the rules of the SLEP package. Here, we test
the clustering performance vs. the latent dimension of sparse
representations. To save space, only the results on the VOC
dataset are reported, and other two databases show similar re-
sults. In Figure 2, VOC-Absent10%, VOC-Absent30% and
VOC-Absent50% mean 10%, 30% and 50% percentages of
tags are removed on the VOC dataset respectively. As the
dimension of sparse representations increases, more informa-
tion can be embedded and thus better clustering performance
can be obtained. However, when the dimension is large e-
nough, the clustering results keep steady because of the satu-
rated representation ability of features.

5. CONCLUSION

In this paper, we have proposed a novel image clustering
method that utilizes partially observed tags as complemen-
tary information. By enforcing both the sparse representation
and the learned latent tag representation to be consistent with
the partial image-tag observation, we can learn better image
representations for final clustering. To this end, we have also
developed an effective iterative optimization algorithm. Ex-
tensive experiments have demonstrated the effectiveness of
our proposed method.
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