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Abstract—The online anomaly detection has been propounded
as the key idea of monitoring fault of large-scale sensor nodes in
Internet of Things. Now the exciting progresses of research have
been made in online anomaly detection area. However, the highly
dynamic distributing character of Internet of Things makes the
anomaly detection scheme difficult to be used in online manner.
This paper presents a new online anomaly learning and detection
mechanism for large-scale service of Internet of Thing. Firstly,
our model uses the reversible-jump MCMC learning to online
learn anomaly-free of dynamics network and service data. Next,
we perform a structural analysis of IoT-based service topology
by Network Utility Maximization (NUM) theory. The results
of experiment demonstrate the method accuracy in forecasting
dynamics network and service structures from synthetic data.

I. INTRODUCTION

The Internet of Things is a new innovation service e-
cosystem for the Information and Communication Technolo-
gies (ICT). Currently, the complexity of IoT deployments
are increasing and evolving quickly, with addition of new
hardware components and system software. Such innovative
service are deployed on a variety kinds of sensors and actuator
for multiple context-aware applications, such as environment
monitoring, smart cities, smart homes/building management,
and health-care [1] [2]. However, the highly dynamic distribut-
ed manner of IoT makes the difficulty for the ability drawing
meaningful and precise inferencing from the collected IoT
data, which in turn requires having high sensor data quality.
Therefore, online anomaly detection becomes major issues due
to the extremely large scale of the resulting system, and the
high level of dynamism in the network [2].

The online anomaly detection in [3] is required for large-
scale context of IoT monitoring, being able to operate in a
highly dynamic distributed manner in real time, and nodes
work independently without the prior knowledge. The oper-
ation in highly dynamic distributed manner makes sense to
improve anomaly detection performance in WSNs[3], and pro-
longs the lifetime of the networks. If sensed data coming from
the sensor nodes in close vicinity are largely correlated, the
anomaly detector can significantly improve detection accuracy
and robustness by taking advantage of such spatial correla-
tions. However, communication capability is often much more
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constrained than its computational capability in a sensor node
[1]. As a result, the centralized data collection is impractical
for any sensor node alone by online anomaly detection [13].
Instead, a typical solution is that anomaly detectors are locally
built in member nodes within a neighborhood area, where
one head node is in charge of obtaining a neighborhood-
wide global normal profile through aggregating the local
summary information reported by the member nodes. Then,
each anomaly detector performs local detection with a global
normal profile. In the meantime, the operation in a highly
dynamic distributed manner requests that all sensor nodes
need to participate in in-network computation, such that the
life-cycle of a network can be prolonged due to an even
distribution of computational overhead over the entire network.
Most of the existing online anomaly detection techniques,
which analyze data in an offline manner, fail to handle
streaming data of sensor nodes [3]. Usually, offline detection
works in an intermittent fashion. During an idle period of
time, the network may have been damaged by random faults.
Therefore, the anomaly detectors should function in real time,
i.e., in an online manner. In addition, the normal profile may
change frequently in streaming data, and thus, online update
is essential for capturing the newest dynamics of data at
any time. Many online anomaly detection techniques may
work depending heavily on the prior knowledge, such as the
underlying distribution [3] [13].

Though many interesting progresses have been made toward
online anomaly detection, the research is still in an infant
stage. Furthermore, these anomaly detectors techniques only
work well in the applications with specific prior knowledge.
This needs provide the new online anomaly detectors with
maximized flexibility and adaptability. Taking into considera-
tion existing large-scale nodes and highly dynamic distribut-
ed, this paper presents a new online anomaly learning and
forecasting model for large-scale service of IoT. The main
contributions made in this paper include modeling large-scale
service performance variables from IoT node, the algorithm of
performance weakening parameter learning, and performance
weakening cycle forecasting process. The rest of this paper
is outlined as follows: An anomaly parameter learning and



forecasting model is proposed in Section II. Section III details
describes process of the anomaly parameter learning and
forecasting for large-scale IoT nodes. Finally, effectiveness of
the proposed scheme is verified by the experiments in Section
IV. Section V gives the conclusions of this paper.

II. RELATED WORK

The sensor device life-cycle forecasting is an area of active
research for IoT measurements. The measurement of sensor
device life-cycle can deviate from their predictable values
due to an unexpected event or without any known causes,
especially the S. R West in [4] presents the automated fault
detection and diagnosis by statistical machine learning in
HVAC systems. In addition to dynamic Bayesian Networks
and HMMs, data fusion is also used to combine fault detection
results from multiple fault models in an attempt to achieve
a more accurate fault detection outcome. The method in [4]
develops HMMs to learn probabilistic relationships between
groups of points during both normal and faulty operation.

The E. U. Warriach in [5] presents a novel identifying
and classifying faults in wireless sensor networks by Hidden
Markov Models(HMMs). The proposed approach learns the
possible system outcome dynamically without any distinct
training period. Furthermore, it can be used to identify and
classify data and system faults considering the structural
relations between two kind of HMMs dynamically created.
Despite HMMs are effectively used to anomaly detection as
a method to model usual actions, there does not exist a well-
accepted method for detection of node and system data faults,
and their classification in wireless sensor networks. A cutting
data edge challenge is to develop the capability to carry out
fault diagnosis in terms of its identification and classification
for data and system faults.

In online anomaly detection approach for sensor device
life-cycle measurements, author in [6] solved the problem
of outlier detection in IoT and provide a technique-based
taxonomy framework to categorize current outlier detection
techniques designed for sensor nodes. Author also introduce
the key characteristics and brief description of current outlier
detection techniques using the proposed taxonomy framework
and provide an evaluation for each technique. Furthermore,
author present a comparative table to compare these techniques
in terms of the nature of sensor data, characteristics of outlier
and outlier detection. The shortcomings of existing techniques
for sensor nodes clearly calls for developing outlier detection
technique, which takes into account multivariate data and
the dependencies of attributes of the sensor node, provides
reliable neighborhood, proper and flexible decision threshold,
and also meets special characteristics of sensor nodes such
as node mobility, network topology change and making dis-
tinction between errors and events. The novel approach in
[7] utilized piecewise linear models of time series, which are
succinct, representative, and robust, and therefore enabled it to
(a)compute such models in near real-time, (b) create models
without prior knowledge about anomaly types that sensor data

might contain, and (¢) compare and communicate different
time series efficiently.

H. Sagha in [8] presents a method for detecting anomalies
in classifier ensembles. Author found that the method is
comparable with GLR and OCSVM. The advantages of the
method compared to them is that it avoids monitoring raw
data or features and only takes into account the decisions that
are made by their classifiers, therefore it is independent of
sensor modality and nature of anomaly. On the other hand,
author found that OCSVM is very sensitive to the chosen
parameters and furthermore in different types of anomalies
it may react differently. A hypergrid KNN-based anomaly
detection scheme in [3] is proposed to take advantages of the
simplicity and scalability of KNN-based anomaly detection
schemes. Based on the intuition of hypergrid, improvements
are made over the original KNN-based anomaly detection
schemes to meet the specific requirements. More importantly, a
method was proposed for estimating the parameters adaptively.
To the best of knowledge, the proposed scheme is the first one
working well without the need to manually adjust its parame-
ters. Meanwhile,these approaches for anomaly detection have
been applied in medical area. A lightweight anomaly detection
approach for medical WSNs is proposed in [9]. The proposed
approach is based on wavelet decomposition, hampel filter,
and boxplot, and it is able to achieve spatial and temporal
analysis, without prior knowledge of fault signatures. It is
suitable for online detection and isolation for faulty or injected
measurements with low computational complexity and storage
requirement.

It is known that device fault data of IoT exits the issues of
low quality and poor reliability. Some of the more prevalent
issues include hardware and software false errors and faults,
interference, widely variable environment dependent noise,
inconsistencies, and damaged sensors. However, the existing
anomaly detection technique for understanding possible re-
lation among a set of variables posits a shared conditional
probability distribution for the variables measured on each
individuals within a cluster of IoT. IoT is also often referred to
as cluster networks, where individuals in IoT are represented
by nodes, clusters are called modules, and the focus is on esti-
mating the relevant structure among modules. But, estimation
solely from sensor node-specific variables can lead to spurious
dependencies, and unverifiable structural assumptions are often
used for regularization. Here, this research an extended model
that leverages direct observations about the IoT in addition
to node-specific variables. By integrating complementary data
types, it could avoid the need for structural assumptions.

III. SYSTEM MODEL

A. Challenges of Online Anomaly Detection for Large-scale
loT

In the virtualization-based next generation Internet, a IoT
service delivery system is constructed by a large number of
small, low-cost sensor nodes distributed over a large area with
one or possibly more powerful sink nodes gathering readings
of sensor nodes. The sensor nodes are integrated with sensing,



processing and wireless communication capabilities. Each
node is usually equipped with a wireless radio transceiver, a
small microcontroller, a power source and multi-type sensors
such as temperature, humidity, light, heat, pressure, sound,
vibration, etc. The IoT is not only used to provide fine-grained
real-time data about the physical world but also to detect time-
critical events. A wide variety of applications of IoT includes
those relating to personal, industrial, business, and military
domains, such as environmental and habitat monitoring, object
and inventory tracking, health and medical monitoring, battle-
field observation, industrial safety and control, to name but a
few. In many of these applications, real-time data mining of
sensor data to promptly make intelligent decisions is essential
[10] [6].

Devices anomaly data measured and collected by IoT is
often unreliable. The quality of anomaly data sets may be
affected by noise and error, missing values, duplicated data,
or inconsistent data. The limited resource and capability in IoT
make the anomaly data generated by sensor nodes unreliable
and inaccurate. Especially when battery power is exhausted,
the probability of generating erroneous data will grow rapidly
[11]. On the other hand, operations of sensor nodes are
frequently susceptible to environmental effects. The vision
of large scale and high density IoT is to randomly deploy
a large number of sensor nodes (up to hundreds or even
thousands of nodes) in harsh and unattended environments.
It is inevitable that in such environments some sensor nodes
malfunction, which may result in noisy, faulty, missing and
redundant data. Furthermore, sensor nodes are vulnerable to
malicious attacks such as denial of service attacks, black hole
attacks and eavesdropping [12] [6].

The section considers that above internal and external
factors lead to unreliability of anomaly data, which further
influence quality of raw data and aggregated results. Extracting
useful knowledge from raw sensor data is extremely important
to ensure the reliability and accuracy of anomaly data before
the decision-making process. The context of IoT and the nature
of anomaly data make design of an appropriate online anomaly
learning and forecasting more challenging. Therefore, the main
challenging of online anomaly learning and forecasting are:

1) Resource constraints. The low cost and low quality
sensor nodes have stringent constraints in resources, such as
energy, memory, computational capacity and communication
bandwidth. Most of traditional outlier detection techniques
have paid limited attention to reasonable availability of compu-
tational resources. They are usually computationally expensive
and require much memory for data analysis and storage. Thus,
a challenge for outlier detection in WSNs is how to minimize
the energy consumption while using a reasonable amount of
memory for storage and computational tasks.

2) High communication cost. In WSNs, the majority of
the energy is consumed for radio communication rather than
computation. For a sensor node, the communication cost is
often several orders of magnitude higher than the computation
cost [6]. Most of traditional outlier detection techniques using
centralized approach for data analysis cause too much energy

consumption and communication overhead. Thus, a challenge
for outlier detection in WSNs is how to minimize the commu-
nication overhead in order to relieve the network traffic and
prolong the lifetime of the network.

3) Distributed streaming data. Distributed sensor data com-
ing from many different streams may dynamically change.
Moreover, the underlying distribution of streaming data may
not be known a priori. Furthermore, direct computation of
probabilities is difficult [6]. Most of traditional outlier de-
tection techniques that analyze data in an offline manner do
not meet the requirement of handling distributed stream data.
The techniques based on the a priori knowledge of the data
distribution also cannot be suitable for sensor data. Thus, a
challenge for outlier detection in WSNs is how to process
distributed streaming data online.

4) Dynamic network topology, frequent communication fail-
ures, mobility and heterogeneity of nodes. A sensor network
deployed in unattended environments over extended period
of time is susceptible to dynamic network topology and
frequent communication failures. Moreover, sensor nodes may
move among different locations at any point in time, and
may have different sensing and processing capacities. Each
sensor node may even be equipped with different number and
types of sensors. Such dynamicity and heterogeneity increase
the complexity of designing an appropriate outlier detection
technique for WSNs.

5) Large-scale deployment. Deployed sensor networks can
have massive size (up to hundreds or even thousands of sensor
nodes). The key challenge of traditional outlier detection
techniques is to maintain a high detection rate while keeping
the false alarm rate low. This requires the construction of an
accurate normal profile that represents the normal behavior
of sensor data [6]. This is a very difficult task for large-
scale sensor network applications. Also, traditional outlier
detection techniques do not scale well to process large amount
of distributed data streams in an online manner.

6) Identifying outlier sources. The sensor network is ex-
pected to provide the raw data sensed from the physical world
and also detect events occurred in the network. However, it
is difficult to identify what has caused an outlier in sensor
data due to the resource constraints and dynamic nature of
WSNs. Traditional outlier detection technique often do not
distinguish between errors and events and regard outlier as
errors, which results in loss of important hidden information
about events. Thus, a challenge of outlier detection in WSNs is
how to identify outlier sources and make distinction between
errors, events and malicious attacks.

Thus, the main challenge faced by outlier detection tech-
niques for WSNs is to satisfy the mining accuracy require-
ments while maintaining the resource consumption of WSNs
to a minimum [6]. In other words, the main question is how to
process as much data as possible in a decentralized and online
fashion while keeping the communication overhead, memory
and computational cost low [6].



B. Online Anomaly Learning and Forecasting Model from
Large-scale Service of IoT

In service-oriented IoT environments, the utility-based co-
operation service environment is composited by service con-
sumers, service-oriented intermediaries, and service provider.
Service consumer utilizes physical resources in a service-
oriented network infrastructure by requesting infrastructure
service from the service provider. Through such an infrastruc-
ture service paradigm, service encapsulates shares of network-
ing resource from different service-oriented intermediaries in
a set of service components, which are then assembled into
an end-to-end service network topology by service-oriented
intermediaries. Therefore, the service-oriented intermediaries
consist of a series of tandem service components of 10T, each
of which is a logical abstraction of the IoT large-scale nodes
[14]. Fig.1 shows the online anomaly learning and forecasting
model from IoT devices profiles.
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In the model, we propose an integrated probabilistic model
inspired by node status and stochastic service block model-
s, to learn dependency structures from the combination of
node status data and service status data. We consider node
performance data in terms of directed edges (interactions) and
service status data using stochastic service block. Explicitly,
by convergence two data types, a node which is likely to have
directed edges to members of a module as well as correlation
with variables of module will be assigned as parent. A shorter
version of this work was presented in [15]. The use of node
status data enhances computational tractability and scalability
of the method by restricting the space of possible dependency
structures. We also show theoretically that the integration of
node status data leads to model identifiability without extra
structural assumptions.

IV. THE ANOMALY PARAMETER LEARNING AND
DETECTION USING RIMCMC

A. Modeling Nodes Variables and Services Status Data from
loT Context

In this paper, we will first define a multivariate normal
performance variables for nodes status profilel,...,N in current
IoT condition, denoted as X; ~ N(u;,X),where X; is a
N x 1 vector, with NV being the total number of nodes. The
covariance and mean capture two different aspects of the

model regarding global dependency structures and context-
specific effects of parents, respectively, as described below in
[16].

the section define the covariance ¥ to be independent of
conditions and representing the strength of potential perfor-
mance effects of one variable upon another, if the former is
assigned as a parent of the modular containing the latter. In
the section of gene expressions, > may represent the affinity
of a anomaly-factor protein to a target gene promoter. The
modular dependencies between performance variables imposes
a structure on Y. To construct anomaly tree structure, we relate
sensor node variables to their parents through a regression
X; = WX, + € ,where ¢ = R(m;,I). W is a N x N
sparse matrix in which element W, is nonzero if variable r
is assigned as a parent of the node containing variable n. Here
we assume W,,,. has the same value for Vn € My,Vr € P,
which leads to identifiability of model (as explained in section
3. Then, assuming I —W is invertible, X; = (1—W)~'e which
implies > = (I — W)~T(I — W)~ 'Therefore, we impose the
unit dependency tree structure over X through W, which is
easier to interpret based on A, S assignments.

The combination of different activities are represented as a
decision tree for each modular of node k (figure 1). We rep-
resent a context-specific program as dependencies of variable
means on parents activities in each context, such that u for
modular of node k is a linear mixture of means for parents
of that modular of node: pf = X5 ~ryFer where Ryis the
number of parents P, and 7] are similar for all conditions %
occurring in the same context. Thus, in general we can write
v; = I';y], where « contains the means of parents 1,..., R
in condition c¢. The N x R matrix I'; has identical rows for
all variables in one modular of node based on the assignment
functions A, S. The graphical model is summarized in figure
2. Thus the model for modular of node variables would be:
X ~R(Cyr, (I —W)"T(1 —Ww)7L).

Given independent conditions, the probability of da-
ta X = [Xi,..,X;] for ¢ conditions given parameter-
s can be written as multiplication of multivariate normal
distributions for each condition: P(X|A,S,0,%,2%) =
HleP(Xi\AS,(Z)QZ,ZS), where ) = 6q,...,0. denotes
the set of condition-specific parameters 6, = v, I';for i =
1,...,Jand Z° denotes the set of parent split-points for all unit.
Then for each condition we have:P(X;|A,S,0.,%, Z%) =
W exp(—3(X; —7)TE71(X; — ;). Hence, this
model provides interpretations for two types of influences
of parents. By relating the distribution mean for variables
in each modular of node and in each condition to means
of their assigned parents (figure 1.B), we model condition
specific effects of parents. Based on the states of parents
in different contexts (partitions of conditions), this leads to
a bias or large signal variations in node variables. Whereas,
small signal changes (linear term) are modeled through the
covariance matrix Y which is independent of condition and
is only affected by the global wiring imposed by dependency
structures.

In order to analyze anomaly of IoT service performance,



we let anomaly performance data as a directed edge between
aparent r € 1,..., R and node n € M}, when 7 is assigned as
a parent of the modular r € P, is defined as a directed link
L,_,, where:

P(B, € P, —» n € Mi|A, S, ;) ~ Bernoulli(ny) (1)

The parameter 7j, defines the probability of parent 7 influ-
encing modular M}, (figure 2). In the gene network example,
an interaction between a Transcription Factor protein binding
to a motif sequence, upstream of target genes, which is
common in all genes of a modular can be observed using
ChIP data. Therefore, directed interactions from parents to all
nodes in a modular would be

PBu, A, S,mp) = [[ T P(BronlA S.mh) (@
rePy neMj,

where 7y, is the vector of 7, for all » € P, and for all nodes
we have:

I
-

P(BJ|A, S, ) I PB.-nlA S, )
k=17r€Pyr n€Mj
K
— H (WZ)Srk(l _ 7_[_2)|J\4k|—srk
k=1r€P,x
H (ﬂ_o)s’r‘k(l _ 7_[_0)|Mk|—87‘k (3)
7%#Pak
with m = mq,...,m and s, = ZneMk(BT%n) is the

sufficient statistic for the network data model and |Mj| is
the number of nodes in modular k£ and 7 is the probability
that any non-parent can have interaction with a module. In
gene regulatory networks, my can be interpreted as basal
level of physical binding that may not necessarily affect
gene transcription and thus regulate a gene. In the context
of stochastic block models, the group of parents assigned
to each modular can be considered as an individual block
and thus our model can represented as overlapping blocks of
nodes. The likelihood of the model M = A,S.0.%,Z% «
given the integration of node variables and service component
data is: P(X,B|M) = P(X|A,S,0,%,Z%)P(BJA, S, 7).
With priors for parameters M the posterior likelihood
is:P(M|X,B) x P(M)P(X, B|M).

B. Anomaly Performance Parameter Learning Process

To realtime update means of the profile data , We use a
Gibbs sampler to obtain the posterior distribution P(X, B|M)
and design Metropolis-Hastings samplers for each of the
parameters (), ¥, © conditioned on the other parameters and
data X, B. We use Reversible-Jump MCMC [16] for sampling
from conditional distributions of the assignment and structure
parameters A, S. we only need to sample one value for
means of parents assigned to the same module. This set of
means of distinct parents v; are sampled with a Normal

Input: NodePer formanceParameter Data, NetworkData

Output: Performance Weakening: P(S|A, 0,3, Z°r, X, B)

1 fort =1to T do

2 Sample AU+ given AU) using Alg2 in (Azizi et al.,2014);
3 Sample SU+1D) given S() using Alg3 in (Azizi et al.,2014);
4 for node k =1 to K; do

5 Propose wiJrl ~ N(wiJrl, I);

6 Accept with probability P,,,update $(j 4 1);

7 for parents r =1 to R; do

8 Propose zz(ﬁ_l) ~ N(zz(]), I); accept with Pp,p;

9 Propose 7r£<g+1) ~ N(TK’; 7 T); accept with Pp,p;
10 end

1 end

12 for condition ¢ =1 to I do

13 Propose u;“’q) ~ N(uzm, I); accept with P,p;

14 Propose 'y]:(“'l) ~ N('yz(‘n, I); accept with P, p;

15 end

6 end

Algorithm 1: Node Performance Parameter Learning [16]

proposal (Algorithm 1). Similarly we sample the parameters
Vi 24, T, » corresponding to parent r € P, of module
k, from normal distributions. To update covariance 3, each
distinct element of the regression matrix W corresponding to
a module %, denoted as wy, is updated. Due to the symmetric
proposal distributiorjl; 1the proposal is accepted with probability
P, =minl, %‘)‘fjﬁ),where MU =A,8,0,%, Z%x.

Learning the assignment of each node to a module, involves
learning the number of modules. Changing the number of
modules however, changes dimensions of the parameter space
and therefore, densities will not be comparable. Thus, to
sample from P(A|S, 0,3, Z%7, X, B), we use the Reversible-
Jump MCMC method [16], an extension of the Metropolis-
Hastings algorithm that allows moves between modulars with
different dimensionality. In each proposal, we consider three
close move schemes of increasing or decreasing the number of
units by one, or not changing the total number. For increasing
the number of units, a random node is moved to a new module
of its own and for decreasing the number, two units are
merged. In the third case, a node is randomly moved from
one modular to another modular, to sample its assignment
(Algorithm 2 in [16]. To sample from the dependency structure
(assignment of parents) P(S|A,(, %, Z%r, X, B), we also im-
plement a Reversible-Jump method, as the number of parents
for each unit needs to be determined. Two proposal moves are
considered for S which include increasing or decreasing the
number of parents for each modular, by one [16].

C. Utility Maximization of Online Anomaly Detection Process

In IoT-based service topology, this paper defines service
anomaly forecasting model that consist of service-oriented
intermediaries and service providers, denoted by i=1,2,....r .
Let C; be the capacity profile of node i, C' = [¢1, ca, ..., ¢p).
Rate of service consumers denoted by x;,j = 1,2, ..., s. Each
node j has k% available path 1,/ = 1,2, ..., p from the node j to
the logical destination node 7 corresponding to the service that
is being consumed by a user. There are k' acyclic paths for



source j represented by a s x k?0-1 matrix H that describes
the mapping of nodes ¢ on paths I,I = 1,2, ...p for particular
users j , Defines the J x k matrix as:

1, if path [ of source j uses resource @

il {O,

H defines the IoT-based service topology, let w’ be a k7 x I
vector where the jth this require w; € [0,1] for multipath
messages routing. Collects the vectors w® , into a k X s
block diagonal matrix M. Let be the set off all such matrices

corresponding to multipath routing as

otherwise

H = [h!,h2, ... h]

M = {m|m = diag(w', ...,w®) € [0, 1] TTws = 1}

As mentioned above, H defines the set of paths available to
each source and also represents the IoT-based service topology.
M defines how the sources load balance across the multiple
paths. This paper defines a j X s routing matrix » = H M that
specifies the fraction of j flow at each resource . The set of
all multipath routing matrices is

R={rlr=hxmmeM,hecH}

A multipath routing matrix in R is one whose entries are
in the range [0, 1]:

>1,
Ry = {_ :

The path of sourcej is denoted by 17 = [R1j, Roj, ...
the jth column of the routing matrix R .

In order to resolve service anomaly forecasting model
between service consumers and service provider, this pa-
per defines Service Utility Maximization (SUM) from IoT
Network Utility Maximization (NUM) theory [19] [20]. The
algorithms of SUM consider a service-oriented network where
each source j has a utility function Uj(x;) as a function of its
total transmission rate x; . The service anomaly forecasting
model problem over source rate vector x;, for a given fixed
routing matrix R, is:

if resource ¢ is in a path of source j

otherwise

7Rrj]T

max y  max{Uy(w;) = > g(wj,dj,hy)] @)
j=1 e

st. rr<c )

The goal is to maximize aggregate user utility by varying x;
(but not R), subject to the linear flow constraint that path loads
cannot exceed service-oriented capacity. Congestion-control
algorithms implicitly solve (2), with variants maximizing
different utility functions. In the formulation, g(.) is base
cost function on service quality (delay d; , hot h; ). It is

well-known that the utility functions can be picked based on
several different grounds. First, a utility function can capture
a user‘s degree of satisfaction with a particular throughout.
Second, a utility function can be viewed as a measure of the
elasticity of the traffic. Third, the aggregate utility captures
the efficiency of the system in allocating bandwidth to the
traffic. Fourth, some utility functions can lead to fair resource
allocation. A particular family of widely used utility functions
is parameterized by oo > 0 : if @ = 0, then U,(x;) = log(x),
else Uj(z;)=(1—a) '2{1—a) . Maximizing these fair utilities
over linear flow constraints leads to rate-allocation vectors that
satisfy the definitions of a-fairness in the economics literature.
Equation (1)optimizes ’social welfare” by maximizing utility
over both source rates and routes. However, (4) is not a convex
problem because the feasible set specified by R(t)xz < c is
generally not convex.

Now replace the problem by defining the K7 x I vectors
4’ in terms of the scalar 27 , and the K7 x I vectors w’ as
the new variables:

y =z (6)

The mapping from (z;,w’) to y/ is one-to-one; the inverse

of (5) is #; = ITy* and w’ = y7 + x;. Change the variables

in (1) and (2) from (z;,0mega’) to y’ , by substituting z; =
ITy* and rc = Hy, obtaining the equivalent problem:

S

T T j o
r;lg(;)( U;(I"y”) Z 9"y, dj, hy) (7
j=1 9€G;
st. Hy<ec 8)

Provided that the functions U;(.) and g(.) are strictly
concave, this is a strictly concave problem with a linear con-
straint, and therefore, has no duality gap. To find a distributed
algorithm that solves (4) and (5), this verify the problem
through its Lagrangian dual. Is:

S

L{y,p) =Y _[U;(I"y) = > 9"y dj,hy)] (9

Jj=1 9geG;

S

—ij(Hy—c) (10)

j=1

Under a more critical assumption of strict concavity on
utility functions, there always exists a unique optimal solution
x to the maximization problem. Where p = [p*, p?, ..., p*]"
is a J x I vector of Lagrange multiplies associated with the
capacity constraint on resource j. Letting p;; = X5_, Hp/
and p = [pj1,Dpj2, ...,pjks]T. They continue by formulating
the objective function of the dual problem as:

D) = STy — S oIy, d;, hy)]

9€G;

(1)

Jj=1



12)

S S
> iy’ + ) pje
j=1 j=1

Let B;j(y’,p;) be defined as

> gy, dj, hy)] (13)

S
Bj(y’,p;) = mggZ[Uj(nyj) -
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> i’ (14)
j=1
Since D(p) is separable in s , we can swap the order of

the maximization and the summation, forming the following
equivalent equation:

S

D(p) =>_ Bi(y',p;) + Y _pjc (15)
j=1

Jj=1

The dual problem of (4) and (5) corresponds to minimizing
over the dual variables, i.e.

minD(p) (16)

Since the objective function of the primal problems (4) and
(5) is strictly concave, the dual problem is always differen-
tiable. The gradient of D is

5D s K
R B J xS
5o = ¢ 22 My an
j=11i=1
Where y;* comes from the solution of B;(y’,p;) . Using
gradient descent iterations on the dual variables yields the

following equation:

P+ =)+ B~ S)SE Hyys ()] (18)

Where y;® is the solution of the following optimization
problem at time t:

it +1) =maxU;(I"y’) = > g™y d; hy)  (19)
Yy
J geG;

—yi Pt H} (20)
i=1

The combine solution of (16),(17) completes the SUM
algorithm that solves (1). The resources alter the rates of each
source y5(t+1) by this feedback from downlink resource via
congestion prices p*. Each resource maximizes the utility for
source j while balancing the price of the placing load on a
path [ . The path price is the result of the source rate with
the price per load for path [. The result of the rates yj (t+1)

TABLE I
NODE THROUGHPUT AND OVERALL UTILITY

Nodes ¢=0.01 2=0.03 2=0.05

Node A (243.77,256.23) | (233.56,266.44) | (221.24,268.55)

Node B (243.77,256.23) | (233.56,266.44) | (221.24,268.55)

Node C (243.77,256.23) | (233.56,266.44) | (221.24,268.55)

Node D (243.77,256.23) | (233.56,266.44) | (221.24,268.55)

Service (243.77,0) (233.56,0) (221.24,0)
provider E

Service (0,256.23) (0,266.44) (0,268.55)
provider F

Service (243.77,0) (233.56,0) (221.24,0)
provider G

Service (0,256.23) (0,266.44) (0,268.55)
provider H

Service (243.77,0) (233.56,0) (221.24,0)
provider J

Service (0,256.23) (0,266.44) (0,268.55)
provider K

Overall 78.55 77.89 77.01

Utility

at the resources determines the total traffic that traverses one
resource. The resulting load through each resource serves as
this feedback that is used to compute the congestion price p'.
As it is classified as a separable, strictly concave nonlinear
optimization problem with linear constraints; the combine of
a gradient projection algorithm applied to such a problem is
well known for sufficiently small step sizes a > 0 .

V. RESULT

To validate our proposal, we have used data collected
from sensors deployed in an actual living lab realized in
the context of smart beijing city, in particular, pressure, PIR,
acoustic, temperature, humidity, and light intensity sensors.
We examined the measurements collected every 5 seconds in
30 consecutive days at a base station. For the dataset, the
ground truth is also available. The dataset is of medium size,
consisting of slightly more than 50000 samples.

In the section, we describes the occurrence of data and
system faults from 50 sensor nodes samples by applying the
RIMCMC method to the given dataset. The dataset exhibited
a mixture of offset, gain and stuck-at data anomalys because
of system faults such as the service messages faults. We
forecast utility maximization of anomaly by MATLAB CVX
tool [21]. The capacities of the intermediary nodes are less
than the aggregate capacity of the services; this allows us to
easily study how IoT service adapts the allocation of flows
through changing incoming rates and external parameters such
as measured average delay. The capacity of each intermediary
and service provider is 600 requests per second. The topology
is represented in the J x K 0-1 matrix shows in table.l.
Service messages faults forecasting scene is constructs by
IoT-based service topology and assembling resources from
four service-oriented intermediaries (Nodes A, B, C, D),
which are configured to forward requests for either type of
service from the consumers to the service logical destination
node. Considering the scenarios in which the service-oriented
provider environment (Service provider E, Service provider F,



Service provider G, Service provider H, Service provider J,
Service provider K) offers the semantically equivalent service
to two consumers (Servicel, and Service2). Service 1 starts a
service session g; for transmitting a stream of video packets,
while Service 2 generates a service session go to deliver a
flow of audio traffic. Both Service 1 and Service 2 require a
small cost price. The traffic parameters for g; are peak rate
s = 2Mb/s , sustained rate § = 1Mb/s, and the maximum
burst size 0 = 100kbits. the traffic parameters for go are
peak rate s = 3Mb/s , sustained rate 6 = 0.7Mb/s, and
the maximum burst size o = 200kbits. Each intermediary is
assumed to provide service with a maximum transmission unit
M = 1000bytes.

Each Node of service traffic holds two congestion prop-
erty of delay-sensitive, and hop-count-sensitive in IoT-based
service topology. The delay-sensitive congestion property d
is weighted by the ry parameter; if a service is not delay-
sensitive, then ry = 0 for the service, otherwise, it should be
selected to be proportional to the overall utility gained from the
service. The property compares the total service delay dg for
each path against a delay threshold ¢,; if the measured delay
exceeds the threshold, the exponential term of the function
grows quickly to divert traffic away from paths containing the
offending nodes. d; is computed by multiplying the relevant
portion of the topology matrix H with a vector z; of measured
service delays at each node:

ds = {(HS)TZS}

Hop-count-sensitive congestion property hgis weighted by
the parameter; if a service is not sensitive to the hop count,
then for the service, otherwise it should be selected to be
proportional to the overall utility gained from the service. It
show the ability of the IoT-based service to maximize the
overall utility of the system while favoring path that have
smaller hop counts.

hs = {(H*)"r"}
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Fig. 2. Node Overall Utillity at g=0.01

In this experiment, this varies the input rates at g(delay —
sensitive, hop — count — sensitive). g the measured at
each Node for Service 1 requests. As the g approaches and
subsequently passes the ¢ threshold (0.01 ), it show that

the allocations for Service 1 requests should tend to avoid
paths that contain each Node. Service 2 requests should be
insensitive to the g measurements.

250 7

Requests per second

Node

M Servicel MServicel 10

Fig. 3. Node Overall Utillity at g=0.03

This experiment begins with the vector H = [1100111110],
this means that all nodes are currently processing service 1
requests in an average of 1 delay unit (milliseconds). When
all offered loads are all 500 requests per second, the system
should allocate 1/2 of the resources to Service 1, and the other
1/2 to Service 2.

150 -

Requests per second

BServicel MService 2 10 Node

Fig. 4. Node Overall Utillity at g=0.05

As while this continues to increase the g at each Node for
Service 1 traffic, we see that the system slowly reduces the
amount allocated to Service 1 paths that include each Node
until the threshold is met. Then,the system explicitly avoids
allocating any traffic to Service 1 paths that include each Node.
The system is aware of Service 2 to g, so as Service 1 traffic
is diverted away from each Node, Service 2 traffic is diverted
to each Node in order to make better use of the available
resources. This can be clearly seen in Fig.2,3,4, where traffic
is routed on to alternate paths in order to maintain the overall
utility of IoT-based service topology.

VI. CONCLUSION

The paper proposes a new online anomaly learning and fore-
casting model for large-scale service of Internet of Thing. The
proposed model learns the dependency structures of dynamics
network and service data from highly dynamic distributed
IoT system. Furthermore, our model uses the reversible-jump
MCMC learning to online learn anomaly-free of dynamics



network and service data. It can be used to identify and classify
anomaly data of dynamics network and node variables, which
considers the structural relations between nodes dynamical-
ly created. We then perform to estimate the parameters of
IoT-based service topology by network utility maximization
theory. The results of experiment shows high performance on
synthetic data and interpretable structures from an actual living
lab realized in smart Beijing city. The future work will focus
on the scalable of the framework to a larges set of anomaly
types and a broader probability evaluation with actual datasets
coming from real-world.
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