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Abstract— Nowadays, with the fast growth of Internet of
Vehicles (IoV), wireless communication techniques for IoV is
becoming more and more important for vehicular networks. To
achieve more reliable information and reduce the computational
complexity, receiver detection is one of the most significant
techniques. In this paper, several modified K-best detection
algorithms are developed to take advantages of the list decoder,
which provide a flexible performance and complexity trade-
off. Different from the existing algorithms, the proposed K-
best algorithms could make use of the a priori probability
to generate the list. Simulation results demonstrate that the
proposed low complexity algorithms can achieve a significant
performance gain over existing ones, especially for the networks
with high order constellations.

I. INTRODUCTION

Vehicular networks (VANETs) are gaining more and more

attention because of the rapid development of the wire-

less communication technologies. Thus, a huge amount of

services may be devised for much smarter transportation

systems. VANETs are regarded as the most promising tech-

nologies to support much safer and more efficient trans-

portation systems, which enable vehicles to quickly and

accurately collect significant and essential traffic information

and simultaneously notice other neighbouring vehicles.

With the increasing number of wireless devices accessing

VANETs, the data rate demand and the system capacity

drive the need for more sophisticated communications tech-

nologies. For the improvements in reliability and transmit

speed of the information transmission, multiple antennas

techniques are recommended to exploit spatial diversity for

VANETs, which use multiple antennas at both the trans-

mitter and receiver to improve communication performance.

Multiple-input multiple-output (MIMO) [1], [2] obtains sig-

nificant improvements in data throughput and link range

without extra bandwidth or transmit power. In MIMO sys-

tems, detection methods at receivers play an important role

in communication performance and system complexity.
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As known, the maximum likelihood (ML) detection

achieves the optimal system performance, but its complexity

increases with increasing number of antennas and the order

of constellation. Thus, a low complexity technique referred

to as sphere decoding (SD) is proposed for lattice code

decoding. This SD approach is extended to coded MIMO

systems [4], which iteratively detect and decode any linear

space-time mapper combined with an outer channel code.

Computing the exact log likelihood ratio (LLR) [4] requires

a complexity exponential in the number of antennas and

in the size of the constellation. A list SD and max-log

approximation are used to approach the optimal performance

with low complexity. However, the complexity of SD based

algorithms depends on signal-to-noise (SNR). Consequently,

a K-best SD is proposed for both uncoded and coded MIMO

systems [5], which has a constant complexity across whole

SNR region. Another different approach [6]–[9] to adopt

soft information in iterative detection and decoding is using

nonlinear interference cancellation.

In this paper, our main idea is to develop a class of

algorithms that can provide a flexible performance and

complexity trade-off for vehicular networks. In the proposed

modified algorithms, we also generate a list of K lattice

points. Different from [4] which uses max-log, we make use

of all the lattice points in the list to generate the LLR value,

i.e., sum-log. The way to generate the list is also different

from that in [4]. In the proposed algorithms, the a priori

probability is used to update the list at each stage, where the

a priori probability is approximated using Gaussian and non-

Gaussian approximations. We also discuss several variations

of the basic algorithms and efficient implementation in

MIMO-OFDM systems. Finally, simulation results approve

that the proposed algorithms achieve a superior performance

over existing ones particularly for the system with high order

modulation.

II. SYSTEM MODEL

In this paper, as shown in Fig. 1, a MIMO-OFDM sys-

tem with M̃ transmit antennas and N receive antennas is

considered. In an OFDM block, there are Ns subcarriers

and M transmitted data streams1. The constellation Qm is

used for stream m, and Cm denotes the number of bits

per constellation symbol. The incoming bits of each stream

m of length NsCmRm, m = 1, . . . ,M is encoded by a

1We have M ≤ M̃ due to possible beamforming at the transmitter. In
this case, we consider an equivalent channel with M transmit antennas
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Fig. 1. System Model.

channel code with rate Rm, resulting in a bit vector bm.

The encoded bits are then modulated by a mapping function

xi,m = Mm(bm((i − 1)Cm + 1 : iCm)), i = 0, ..., Ns − 1,

where xi,m is the transmitted symbol over the i-th subcarrier

and the m-th antenna. The time domain sequence is then

generated by the Inverse Discrete Fourier Transform (IDFT)

of the data block x0,m, . . . , xNs−1,m, which is derived as

Xj,m =
1√
Ns

Ns−1
∑

i=0

xi,me2πij/Ns , j = 0, . . . , Ns − 1. (1)

The time domain symbol Xj,m is assumed to satisfy the

component-wise energy constraint E‖Xj,m‖2 = Es/M . A

cyclic prefix (CP) is added to mitigate the residual inter-

symbol interference (ISI) because of the previous OFDM

symbol. After parallel-to-serial (P/S) conversion, the signal

is transmitted from the corresponding antenna. The channel

between m-th transmit antenna and n-th receive antenna is

given as

hn,m(t) =

Γn,m−1
∑

l=0

αn,m,lδ(t− τn,m,l), (2)

where Γn,m denotes the number of taps, αn,m,l is the l-
th complex path gain, and τn,m,l is the corresponding path

delay. In this paper, the channel is set to be constant for each

OFDM data block, i.e. block fading channel.

At the receiver, after the corresponding process, the re-

ceived signal in frequency domain is derived as

yi,n =

M
∑

m=1

Hi,n,mxi,m + wi,n, (3)

where i = 0, . . . , Ns − 1;n = 1, . . . , N , n is the receiver

antenna index, wi,n is the additive white Gaussian noise

(AWGN) with 0 mean and variance σ2, and

Hi,n,m =
1√
Ns

Γn,m−1
∑

l=0

αn,m,le
−2π⌈τn,m,l/Ts⌋i/Ns , (4)

where Ts means the symbol duration. The vector form of

Eq. (3) is given as

yi = Hixi +wi, i = 0, . . . , Ns − 1. (5)

It is essential to mention that we can consider Eq. (5)

as a MIMO system on each subcarrier. For simplicity, the

subscript i in Eq. (5) is neglected for the following parts of

this paper.

III. ITERATIVE DETECTION AND DECODING

At the receiver, several iterations of soft information

exchange [4] occur between the decoder and MIMO detector

(Fig. 1). The MIMO detector in this case generates soft a

posteriori information L by processing the received signal

y and the a priori information LA from the decoder. This

reliability information is expressed by a posteriori probabil-

ity (APP) in the form of log-likelihood ratios (LLR). For

example, The LLR of bit xi(i = 1, 2, . . . ,Mx) is defined as

L(xi) = log
Pr[xi = +1]

Pr[xi = −1]
. (6)

Note that the amplitude levels −1 and +1 represent binary

0 and 1, respectively.

For the first iteration, the LA is initialized to 0, and the

extrinsic information LE = L−LA generated by the MIMO

detector is deinterleaved to serve as the a priori information

for the decoder. The decoder then generates the extrinsic

information for the next iteration. This process continues

until a stopping criterion is met, such as a predefined iteration

number or a performance bound. In the final iteration, the

decoder obtains the a posteriori information LD on the

uncoded bits b, which is sent to the slicer that outputs the

final bit estimates b̂.

As discussed above, soft information needs to be ex-

changed between the detector and decoder. The naive SD

algorithm can be modified to give soft information. One

jointly iterative detection and decoding method has been

proposed [4], which generates soft information by a list

version of the SD (LSD).

IV. MODIFIED K-BEST ALGORITHMS

A. Motivation

There are several issues with the existing algorithms in

Section II.

• Many practical wireless communications standards

(e.g., LTE) now adopt high order constellations such

as 64QAM or large number of antennas. The max-

log approximation in [4] may not work well with high

order constellations as the number of terms in the

summation computation is large. Moreover, the LSD

may be hard to be implemented in hardware directly

due to its sequential nature.



• The Gaussian approximation based algorithms avoid the

max-log approximation but the Gaussian assumption in-

curs some performance loss. It is commented in [8] that

the performance of Gaussian approximation algorithms

is not good for higher order modulations.

We wonder whether we could combine these two strategies

and take the advantages of both. The main contribution

in this section is summarized as follows. A combination

of K-best algorithm and the non-Gaussian approximation

is proposed. In the K-best algorithm, K branches are kept

at each decoding stage and the branches are pruned using

the non-Gaussian approximation. Instead of using only the

maximum of the K remaining metrics in K-best algorithms,

we use the sum of all the K metrics to compute the LLR.

The resulting algorithm is readily parallelized in hardware.

In this section, we assume squared-QAM is used at

all transmit antennas, which is the case in many wireless

communications standards. But the proposed algorithm can

be readily extended to other general constellations. With

squared-QAM, we can write (5) as a real system, i.e.,
[

ℜ(yi)
ℑ(yi)

]

=

[

ℜ(Hi) −ℑ(Hi)
ℑ(Hi) ℜ(Hi)

] [

ℜ(xi)
ℑ(xi)

]

+

[

ℜ(wi)
ℑ(wi)

]

, (7)

where ℜ(·) and ℑ(·) are the real and the imaginary parts of

(·), respectively. With a slight abuse of notations, we still

use (5) to represent the real system (7) in this section with

the entries of xi from PAM.

B. K-Best algorithm with Distribution Approximation

In this subsection, we consider extending the K-best algo-

rithm in computing the LLR value. The LSD only considers

the maximum term among all the 2
∑M

m=1
Cm−1 terms, and

the list is generated by using Pr(y|x1, ..., xM ) only without

using the a priori information Pr(xm′ ), m′ = 1, ...,M .

Moreover, when the LSD comes to the i-th data stream, it

only checks the symbols satisfying



ỹi −Ri,ixi −
M
∑

j=i+1

Ri,j x̃i





2

+
M
∑

j=i+1



ỹj −
M
∑

l=j

Rj,lx̃l





2

≤ r2, (8)

where the QR decomposition of H is H = QR, Ri,j is the

(i, j)-th entry of R, ỹ = QHy and x̃j is the trial value of

xj . The key idea is to use the Gaussian approximation or

non-Gaussian approximation as a metric to guide the search

taking into account the effects of stream i on streams 1, ..., i−
1.

As LSD, we also want to find a list of K lattice points.

Different from LSD, we try to find a list Li,±1 containing

K points for each bi = ±1. The LLR value of the bit bi in

[4] is then approximated as

L(bi|y) ≈ log

∑

x∈Li,+1
Pr(x|y)

∑

x∈Li,−1
Pr(x|y) . (9)

The second difference from the LSD is that we use sum-

log rather than max-log. The third difference lies in the way

we generate the list. We want to find K lattice points x ∈
Xi,±1 such that Pr(x|y) is maximized rather than Pr(y|x)
is maximized, where the a priori information is exploited

in the former case. There are two ways to generate the list

using modified K-best algorithm: sum-algorithm and max-

algorithm.

1) Sum-Algorithm: For the sum-algorithm, at the initial

step, assuming that bi belongs to data stream m, we first

check each x̃ ∈ Xm
i,±1 to find the K candidates such that

Pr(xm|y) is maximized and add m into a set V . We can

write Pr(x̃m|y) as

Pr(x̃m|y) =
∑

x−m

Pr(x−m, x̃m|y)

∝
∑

x−m

Pr(y|x−m, x̃m) Pr(x−m). (10)

Direct computation of (10) requires 2
∑M

m=1Cm − 1 sum-

mation, which may be computational prohibitive. We can

replace the summation in (10) as an integral

Pr(x̃m|y) ∝
∫

∑

x−m

Pr(y|x−m, x̃m)f(x−m)dx−m, (11)

where f(x−m) is the matched pdf of x−m, which could

be either Gaussian or non-Gaussian. For example, with

Gaussian approximation, we have

Pr(x̃m|y) ∝ exp
(

−(y −H−mµ−m − hmx̃m)H

R−1
m (y −H−mµ−m − hmx̃m)

)

, (12)

where µ−m and Rm are defined as

µ−m = [µ1, . . . , µm−1, µm+1, . . . , µM ]
T

Rm = H−mdiag{ν21 , . . . , ν2m−1, ν
2
m+1, . . . , ν

2
M}HH

−m

+σ2IN (13)

with mean µ and variance ν2. The K x̃m with largest

Pr(x̃m|y) are added into a list L, which is initialized to

be φ.

The progress then goes to x1, x2, . . . , xM . Before it

reaches xj , j 6= m, we have V = m, 1, . . . , j − 1 and

the list L contains K candidates, each of which has the

form xV = [xm, x1, . . . , xj−1]
T . For each xV ∈ L, we

compute Pr(xV , x̃j |y) for each x̃j ∈ Qj . Among the

resulting K|Qj|[xT
V , x̃j ]

T , we only choose K of them such

that Pr(xV , x̃j |y) is maximized, update the list L with the

K chosen vectors and add j into V . We can approximate

Pr(xV , x̃j |y) in the same way as in (11). In case of Gaussian

approximation, we have

Pr(xV , x̃j)

∝ exp
(

−(y −H−{V,j}µ−{V,j} −HVxV − hj x̃j)
H

R−1
{V,j}(y −H−{V,j}µ−{V,j} −HVxV − hj x̃j)

)

,

(14)



where µ−A constitutes the entries of µ that are not in A,

H−A is consisted of the columns of H that are not in A and

R{V,j} = H−{V,j}diag{ν2
{V,j}}HH

−{V,j} + σ2IN . (15)

The process ends when j = M .

2) Max-Algorithm: Different from the sum-algorithm

where Pr(xV , x̃j |y) is maximized consecutively, in the max-

algorithm, we maximize Pr(x̃|y) directly. At the first step,

for each x̃m ∈ Xm
i,±1, we find the corresponding x̃−m such

that

x̃−m = arg max
x−m∈X−m

Pr(x̃m,x−m|y)

= arg max
x−m∈X−m

Pr(y|x̃m,x−m) Pr(x̃m,x−m),

(16)

where X−m includes all possible lattice points. We put K
x̃m into the list L such that Pr(x̃m, x̃−m|y) is largest and

add m into a set V . As solving (16) has a high complexity, we

therefore replace Pr(x̃m,x−m) with its continuous Gaussian

or non-Gaussian approximations and relax the discrete set

X−m into a continuous set C−m.

When C−m is bounded, the boundary on xj is defined by

the largest and smallest elements in Qj . For example, when

Qj = {−3,−1, 1, 3}, we choose −3 ≤ xj ≤ 3. When the

non-Gaussian approximation is used, we need to solve

x̂−m = arg max
x−m∈C−m

‖y−H−mx−m − hmx̃m‖2

+2σ2rT−mx−m + σ2xT
−mA−mx−m. (17)

As (17) is quadratic in x−m, when the objective function of

(17) is convex, x̂−m can be found using convex optimization

tools. If not, we find a local minimum around

arg max
x−m∈C−m

‖y −H−mx−m − hmx̃m‖2. (18)

We can set x̃−m = x̂−m or map x̂−m to the closet lattice

point in X−m. Comparing with (8), (17) uses the a priori

information through r−m and A−m and it counts the effect

of symbols x̃m on Pr(x̃m, x̃−m|y).
The process then goes to x1, x2, . . . , xM . Before it reaches

xj , j 6= m, V = m, 1, . . . , j − 1 and the list L and each

x̃j ∈ Qj , we find the corresponding x̃−{V,j} such that

x̃−{V,j} = arg max
x−{V,j}∈X−{V,j}

Pr(x̃V , x̃j ,x−{V,j}|y).
(19)

Among the resulting K|Qj |[xT
−{V,j}, x̃j ]

T , we only choose

K of them such that Pr(x̃V , x̃j ,x−{V,j}|y) is maximized,

update the list L with the K chosen vectors and add j into

V . As in (17), we can approximate x̂−m by solving

x̃−{V,j} = arg max
x−{V,j}∈X−{V,j}

‖y −H−V,jx−V,j

−HV x̃V − hV x̃V‖2 + 2σ2rT−mx−m

+σ2xT
−mA−mx−m. (20)

where the notations are similar to those in (14) and (17).

The difference between the sum-algorithm and the max-

algorithm lies in the fact that the effects of x−{V,j} is

removed from Pr(x̃V , x̃j ,x−{V,j}|y) by summing over all

possible x−{V,j} in the former case while we take the max

x−{V,j} maximizing this probability in the latter case. The

max-algorithm is similar to the decision feedback sphere

decoding algorithm in [12] for uncoded MIMO systems.

When C is unbounded and Gaussian approximation is used,

it is easy to see that solving (16) is equivalent to solving

min
x−m∈C−m

‖y−H−mx−m − hmx̃m‖2

+(x−m − µ−m)HΛ−m(x−m − µ−m). (21)

where Λ−m = diag{ν21 , . . . , ν2m−1, ν
2
m+1, . . . , ν

2
M}. In this

case, the sum algorithm is equivalent to the max algorithm.

The basic two algorithms can also be extended in various

ways. We give a brief introduction of some important vari-

ations in the following.

3) Common List Algorithm: One disadvantage of the two

basic list algorithms is that we need to find two lists (one for

+1 and the other for −1) for each bit’s LLR computation.

When the total number of bits is large, this may incur a

high computational complexity. To reduce the complexity, we

propose using the same list L for all bits’ LLR computation.

The list is generated by choosing the K lattice points such

that Pr(x|y) is maximized. Both the sum-algorithm and the

max-algorithm can serve this purpose. Different from the

basic algorithms which start from xm, we start from x1

to x2, . . . in the common list algorithm, where xj is from

Qj , ∀j = 1, . . . ,M . Finally, the LLR value of the bit bi is

then approximated as

L(bi|y) ≈ log

∑

x∈Xi,+1∩L Pr(y|x) Pr(x)
∑

x∈Xi,−1∩L Pr(y|x) Pr(x) . (22)

When x ∈ Xi,+1 ∩ L = φ, the LSD in [4] proposes using

a predetermined saturated LLR value ±B, e.g., B = 8. We

propose using
∑

xm∈Xm
i,+1

Pr(xm) Pr(y|xm) with Gaussian

or non-Gaussian approximation for Pr(y|xm) or using

max
xCi,±1

Pr(x) Pr(y|x) (23)

where Ci,±1 is the real relaxation of Xi,±1.

4) Parallel Algorithm: In the basic algorithms, we gen-

erate the list by visiting xm, x1, . . . , xM sequentially. We

can also generate the list in parallel by generating a list Li

for each xi, where Li is generated by choosing the best

Ki elements in Qi to maximize Pr(xi|y). Finally, the list

is given by L = L1 × L2 × . . . × LM , which is of size

K =
∏M

i=1. In this case, different lists Li can be generated

in parallel, which is suitable for hardware implementation.

5) Bit-wise Algorithm: The basic algorithms proceed from

symbol to symbol. Both algorithms can also run on bits. For

example, when set partitioning mapping is used, we have

seen that the 2C -PAM can be written as a weighted sum of

bits. Both algorithms can work on bits by replacing x in both

algorithms with b.
We can also derive bit-wise algorithms for arbitrary map-

pings. We take the sum-algorithm as an example. To compute

L(bi|y), we start with bi and compute Pr(bi = ±1|y) =



∑

x∈Xi,+1
Pr(x|y). In (11), we replace every xj except xm

with a Gaussian or non-Gaussian continuous variable and

Pr(bi = ±1|y) is computed by summing over all possible

xm in Xm
i,±1. We can even approximate xm as a continuous

variable. For example, when xm is assumed to be Gaussian,

we can compute the matched mean and variance as

µm,i,±1 =
∑

xm∈Xm
i,±1

Pr(xm)xm (24)

and

ν2m,i,±1 =
∑

xm∈Xm
i,±1

Pr(xm)|xm|2 − |µm,i,±1|2. (25)

When the non-Gaussian distribution is used, we can get the

distribution by fitting the distribution over the symbols in

Xm
i,±1 only. We can obtain Pr(bi = ±1|y) as (12). When the

algorithm reaches bit bj and its corresponding symbol is x′
m

, where symbols x′
m+1, . . . , x

′
m−1, xm+1, . . . , xM have not

been visited. Let bj = [b1, . . . , bj , bi]
T . For any b̃j from the

list L, we can compute the matched mean and variance for

x′
m as

µm′,bj,b̃j
=

∑

xm′∈Xm′

bj,b̃j

Pr(xm′)xm′ (26)

and

ν2
m′,bj,b̃j

=
∑

xm′∈Xm′

bj,b̃j

Pr(xm′)|xm′ |2 − |µm′,bj ,b̃j
|2,

(27)

where Xm′

bj ,b̃j
is the set of constellation points for x′

m such

that the corresponding bits in bj is equal to b̃j . The rest

of the algorithm is identical to that of the symbol based

algorithm.

The advantage of the bit-wise algorithms is that some

symbols can be pruned early when the first few bits of the

corresponding symbols are not chosen in the list with K
elements.

V. SIMULATION RESULTS

In this section, a 2 × 2 MIMO-OFDM system with 1024
subcarriers and 960 subcarriers are considered for data trans-

mission. It is assumed that perfect knowledge of channel state

information is known at the receiver. Power P is assigned

at each transmit antenna. The Extended Vehicular A model

(EVA) [11] is assumed in this section with delay profile

[0 30 150 310 370 710 1090 1730 2510]ns and power profile

[0 − 1.5 − 1.4 − 3.6 − 0.6 − 9.1 − 7 − 12 − 16.9] dB.

And Turbo code is used with the transfer function of the

PCCC G(D) =
[

1, g0(D)
g1(D)

]

[12], where g0(D) = 1 +D2 +

D3, g1(D) = 1 +D +D3. 64 QAM and Gray mapping are

set in the simulation.

A. BER Comparison of Different Algorithms

We first consider fixed scheduling, where both data

streams transmit using transport block size (TBS) 1916.

The bit error rates of different algorithms after simulating

20000 subframes are shown in Fig. 2. The channel varies
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Fig. 2. BER comparison of different algorithms in a 2× 2 MIMO-OFDM
system over the EVA channel.

independently from subframe to subframe. All algorithms

except MMSE-No SIC use 6 iterations. It is clear that all the

iterative algorithms benefit from the information exchange

between the demodulation and decoder as compared with

MMSE-No SIC. We can see that by using only the max term

in MAP MLM (Max-log) incurs a 0.5 dB loss over MAP at

BER= 10−3. MMSE-Soft SIC only has a 0.1 dB loss over

MLM at BER= 10−3. But the former only needs to sum over

64 terms while the latter needs to compute 32× 64 = 2048
terms, respectively. With the proposed K-best algorithms, K-

Best, K = 64 has a 0.08 dB gain over MLM and K-Best-Bit,

K = 4 has a 0.15 dB gain over MLM at BER= 10−3. Note

that K-Best-Bit, K = 4 only needs to sum over K = 4 terms

in the LLR computation but with improved performance over

MMSE-Soft SIC. LSD with L = 512 incurs a 1 dB loss

over MAP at BER= 10−3 but with a higher complexity than

MMSE-Soft SIC and the proposed K-best algorithms. The

proposed K-Best algorithm achieves a good performance and

complexity trade-off.

B. Effects of the List Size K

In Fig. 3, the performance of the K-best algorithms are

compared with different list size K . We can see that for

both K-Best and K-Best-Bit doubling K gives a 0.5 dB

gain at BER= 10−3. In high SNR, the error floor is also

reduced by increasing K . But doubling K also means that the

complexity is roughly doubled. Moreover, more exponentials

are needed to compute in the LLR computation, which is

very expensive in hardware implementation. In practice, we

may question whether the 0.2 dB gain is worth for the more

complicated hardware implementation.

C. Throughput Comparison of Different Algorithms

The BER performance does not translate to the throughput

performance directly in practice. In Fig. 4, we compare the

throughput gain of different algorithms over MMSE No-SIC.

The throughput gain is obtained after averaging 50 channel

realizations. For each channel realization, We can see that the



0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

K−Best, K=32
K−Best, K=64
K−Best−Bit, K=2
K−Best−Bit, K=4
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MIMO-OFDM system over the EVA channel.
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Fig. 4. Throughput gain comparison of different algorithms over MMSE
No-SIC in a 2× 2 MIMO-OFDM system over the EVA channel.

throughput gain of all the algorithms except LSD decreases

as SNR increases. This is because in high SNR the MIMO

channel capacity with finite constellation is saturated to 6
bits/s/Hz as the largest constellation is 64QAM. In high SNR,

all algorithms can approach this limit. The throughput of

LSD is small in low SNR is because the list size is small

in this case. K-Best-Bit, K = 4 achieves almost the same

throughput as MAP in all SNRs. Both K-Best, K = 64 and

K-Best-Bit, K = 4 achieve more than 5% gain over MMSE

Soft-SIC when SNR is greater than 5 dB but the former two

are potentially less complex than the latter one.

VI. CONCLUSIONS

Currently, to meet the data rate of IoV, there is a significant

interest in the design of MIMO receiver. In this paper, we

have developed several low-complexity modified K-best al-

gorithms for MIMO-OFDM vehicular networks, which could

provide a flexible performance and complexity trade-off. The

proposed algorithms are different from the conventional K-

best algorithm in the way how the K best candidates are

generated and updated and how the LLR value is computed.

Further, when K = 1, the proposed algorithms become an

improved soft version of V-BLAST algorithm. When K =
+∞, they reduces to the optimal MAP detection. Simulation

results on LTE systems demonstrate that the proposed low

complexity algorithms can achieve a significant performance

gain over existing ones with high order constellations.
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