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Abstract—Aiming to reduce the computation and implement 

compliant control, this paper proposes a novel inverse dynamics 
control strategy based on the floating-base rigid body system. The 
control strategy assumes that each leg of the quadruped robot 
organizes itself into an independent autonomous system, a serial 
robot. Based on this assumption, the kinematics and the dynamics 
models of the quadruped robot have been created. The dynamical 
model supposes two different models according to the leg’s state. 
In the stance phase the serial robot affixes its base frame to the 
shank and iterates the rigid body dynamics algorithms from the 
knee joint to the body. When the serial robot is in the swing phase, 
the dynamics algorithm is propagated from the hip joint to the 
shank, whose computing direction is just the reverse against the 
direction of which the serial robot is in the stance phase. The 
quadruped system doesn’t need the fixed base to the system and 
avoids calculating the virtual joints of 6-DOF. Therefore, the 
algorithm proposed in this paper makes real-time computation of 
the quadruped robot dynamics possible. In order to evaluate the 
efficiency of the inverse dynamical control strategy, experiments 
are accomplished based on a practical quadruped robot. The 
experiments, which were done on a rubber mat and on asphalt, 
demonstrated that the quadruped robot is able to walk adaptively.  
 Index Terms – quadruped robot; inverse dynamics; floating-base 
system. 

I. INTRODUCTION 
n the past two decades,  lots of investigations have been 

done focusing on quadruped robots. For example, J. Zico 
Kolter proposed complete control architectures [1] and Michael 
Mistry implemented the inverse dynamics control of the 
floating-base systems [2]. Both models of the kinematics and 
the dynamics, which relate the world coordinate system to the 
global environment, are based on the quadruped’s body. In fact, 
the body-based models not only need the perception of the 
environments, such as the contact of the ground, but also 
require more attention to the global circumstances such as the 
placement of the feet in the next steps. Even though Jonas Buchi 
and Michael Mistry developed an approach that is capable of 
computing the inverse dynamics algorithm for the floating-base 
systems without measuring the contact forces [3], there are still 
lots of complicated works needing to be done in the 
decomposition of the constraint Jacobin and the calculation for 
eliminating the contact forces involved in dynamics. 

In [4], Marc H. Raibert constructed a planar quadruped robot 
with springy legs and modeled the legs as an inverted pendulum 
system with the assumption that the quadruped can be regarded 
as four serial robots. Through introducing the concept of a 
virtual leg to use the legs in pairs, such as the trot, the pace and 
the bound, the control system used the one-legged algorithm 
based on the inverted pendulum model, a finite state machine 
and virtual legs to make the quadruped robot run with a trotting 
gait. In fact, the concept of a virtual leg can be extended to the 
walking gait that combines with the rigid-body dynamics 
algorithms. 

Roy Featherstone explored a substantial collection of the 
most efficient algorithms for calculating rigid-body dynamics 
[25]. Based on the theories of the floating base rigid-body 
dynamics [5], the representation of the quadruped robot body 
unattached to the world is created through adding a virtual 
6-DOF joint, which connects the fixed base and the floating 
base, between the base frame affixed to the robot and the world 
coordinate system affixed to the ground. However, the extra 
virtual 6-DOF joint adds a lot of new calculations, especially 
when the quadruped robot is considered as four separate serial 
robots. 

Fig.1 is the picture of the quadruped robot in this research, in 
which each leg has one hip pitch joint and one knee pitch joint. 
The prototype of such a pitch-pitch type quadruped robot also 
possesses one passive compliant prismatic DOF at each toe. 
Addressing the features of the robot in this research, we 
propound a novel inverse dynamics control strategy which 
reduces the computations and implements the compliant control 
of the quadruped. The control strategy is divided into four parts: 
the forward kinematics, the inverse kinematics, the inverse 
dynamics, and the trajectory generation. The forward 
kinematics imagines the quadruped robot as four virtual serial 
robots whose base frames are affixed on the trunk. The inverse 
kinematics is treated as a numerical optimization, which finds 
the local optimal solution in the joint space according to the 
characteristics of the quadruped robot locomotion and 
reconciles the case of multiple solutions and the case of no 
solution. The inverse dynamics partitions a stride of a cycle as 
the stance phase and the swing phase. In different phase use 
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different dynamics model, then there is no limitations on the 
contact forces at the feet and there is no need to calculate the 
extra virtual 6-DOF joints that is usual in floating-base rigid 
body system. The trajectory generation considers all the serial 
robots as a whole robot and integrates the stability of the 
walking robot into path planning. Through cutting down the 
calculation of the virtual 6-DOF joint, the inverse dynamics 
control strategy finds the required vector of joint torques and 
makes the real-time control possible. 
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Fig. 1                                                   Fig. 2 

Fig. 1(a) The quadruped robot with the hip pitch joints and the knee pitch 
joints; 

Fig. 2 The kinematic model of the quadruped robot 
This paper is organized as follows. In section the 

nomenclature and the robot model are introduced, and the robot 
model in kinematics is expatiated. The inverse dynamics control 
strategy will be explained in Section . Section  gives the 
experiments and discusses the trajectory curves and the current 
curves. Then, Section  concludes the paper. 

II. ROBOT MODEL IN THE KINEMATICS 
The robot shown in Fig. 1 has revolute joints at both the hips 

and the knees, and passive prismatic joints located in the feet. 

A. The Robot Kinematics 
Although the inverse dynamics control is widely used in 

fixed-base manipulator robots, the inverse dynamics 
application in the quadruped robot has been stymied because of 
its dependence on the accuracy of dynamics models and the 
amplified numerical problems that can arise due to matrix 
inversion [3]. In this research, we simplify the quadruped robot 
as four serial robots and assume that these robots fix their base 
frames on the trunk. These serial robots are open kinematic 
chains which consist of rigid links. The feet are the final links of 
the chain that make up the four serial robots. (See Fig. 2.)  

Fig. 2 shows the skeleton of the kinematic model, on which 
the base frames{ }RF , { }RH , { }LH  and { }LF  are located at the 
trunk. As the quadruped robot is divided into four separated 
parts, the base frames attach themselves to the trunk, which 
correspond to the four hip joints. 

As all the joints are revolute joints, we utilize Rodriguez’s 
rotation formula to compute the rotation matrix from an 
axis-angle representation [7].  The rotation matrix ( 1)te  can be 
expressed by: 

( 1) 2( 1)sin ( 1) (1 cos )e E      (1) 
where || || 1 , the notation 1 stands for the 3 3  

cross-product tensor associated with the angular velocity vector 
, which is defined as ( 1)v v , for any Cartesian vector 

v . Equation (1) converts from angle-axis representation to 
rotation-matrix representation. 

After using Rodriguez’s rotation formula to map a rotation 
matrix into an angular vector, the orientations of the hip frame 
and the knee frame are represented by the 3 1  unit vectors 

H RFa  and K RFa . The directions of these angular vectors are 
determined by the rotational directions of the relevant motors, 
which are illustrated in the Fig. 2. The vectors K RFb and F RFb  
are equivalent to the position vectors involving translational 
frames. 

III. THE INVERSE DYNAMICS CONTROL STRATEGY 
The flow chart in Fig. 3 illustrates the ordered set of the 

forward kinematics, the inverse kinematics, the inverse 
dynamics, and the path generation. Under the skeleton of the 
forward kinematics, the path generator plans the foot locations 
in the task space. Then, the inverse kinematics translates those 
locations into joint angles which are expressed in the joint space. 
These discrete joint angles join in a trajectory, in a continuous 
form, through the smooth function that is a part of the path 
generation and appears between the inverse kinematics and the 
inverse dynamics in the flow chart. (See Fig. 3.) With the 
trajectory points the inverse dynamics derives the required 
torques at the corresponding joints. 

A. The Inverse Kinematics 
With the assistance of the inverse kinematics algorithm, the 

path generator to be mentioned in subsection C only needs to 
give the desired location of certain chosen points in task space. 
Normally, computing the set of joint angles to achieve the 
desired states depends upon solving the equations obtained 
from the forward kinematics. As the analytical methods need to 
consider the situations with multiple solutions or even no 
solution, we adopt the numerical methods to get the 
approximate joint angles in this research. 

     
Fig. 3                                                Fig. 4 

Fig. 3 The flow chart of the inverse dynamics control 
Fig. 4 The state of the quadruped robot swinging its leg 

 
Let : (3)nf R SE , ( )f represent the forward kinematics 

of the quadruped robot. The inverse kinematics formula can be 
stated as follows: (3)G SE , find nR  such that ( )f G . 
Here f  is the forward kinematics map, is the joint angle 
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vector and G is the desired position and orientation. If we 
introduce ( )F and suppose that ( ) ( )F f G , the inverse 
kinematics problem becomes an optimization problem which 
can be stated as the following: find nR such 
that min{|| ( ) ||}F . Since G defines the forward kinematics 
constraints, the problem can be regarded as a nearest-neighbor 
nonlinear bounded optimization. 

The algorithm for solving the optimization problem is listed 
as follows: 

Step 1: import the position of the feet under the base frames 
and calculate the object G ; 

Step 2: initialize the joint vector with any given values 
ini and propagate ( )inif to obtain the corresponding positions 

and orientations; 
Step 3: evaluate the function ( )F  by computing the error 

between ( )f  and the object G , whose value is normalized by 
solving the potential function ( ) || ( ) ||P F ; 

Step 4: if the error is less than a constant value then stop the 
iterative routine, otherwise calculate the correction ; 

Step 5: make ini then propagate ( )f and back to 
step 3. 

The potential function ( )P is  
2 2( ) || || || ||obj cur obj curP p p w w    (2) 

Here objp represents the objective position vector of these 
frames like{ }RF , { }H RF and{ }K RF , which are calculated 
from step 1, curp is the current position vector calculated from 
step 2 or from step 5,  and are coefficients, objw is the 
objective angular vector calculated from 3 3 rotation matrix 
[6], which can be obtained from step 1, and curw is the current 
angular vector obtained from step 2 or from step 5. 

B. The Inverse Dynamics 
The trajectory points , , and  can be obtained through 

the forward and the inverse kinematics, next, in this section, the 
required vector of joint torques, ,  needs to be found. In order 
to faster develop equations of motion, express them succinctly 
in symbolic form, and to derive dynamics algorithms quickly, 
we use the spatial vector with six dimensions instead of three 
dimensions. The motion of the links contained in the quadruped 
robot is expressed as the sum of six elementary motions: the 
linear velocities of oxv , oyv , and ozv , and the angular velocities 

of ox , oy , and oz . That is [ , , , , , ]T
ox oy oz ox oy ozv v v . 

The quadruped robot is a floating-base system in which the 
base is free to move, rather than being fixed in space [5]. 
Generally, the inverse dynamic control adds a fixed base to the 
system and a new virtual 6-DOF joint connecting the fixed base 
and the floating base. This method requires lots of extra 
computation on the virtual joints. As the inverse dynamics is a 
question of finding the forces required to produce a given 
acceleration in the quadruped robot, in a rigid-body system, 

there exists a strategy that doesn’t need to calculate the extra 
virtual joints. The inverse dynamics algorithm based on 
recursive Newton-Euler relations imagines the quadruped robot 
as four separated robots as stated in the previous sections, i.e., a 
leg with a virtual body consisting of a serial robot, and defines a 
stride of a cycle as two states: the stance phase and the swing 
phase. When the serial robot is in the stance phase, the hip joint 
responds to the body’s acceleration and gravity, as well the knee 
joint is answerable to the acceleration and gravity of all the parts 
up to the knee. When the serial robot is in the swing phase, the 
knee joint only needs to be in charge of the uplift of the shank 
and the hip joint responds to the thigh and the shank which are 
below the hip. The dynamic model, which we will go into detail 
next, chooses different parts to be the base according to the 
different phases, and then there is no need to calculate the extra 
virtual joints. 

As the four serial robots are similar to each other in the 
dynamics, we will analyze one of them here to get insight on the 
relationships between different links. Fig. 5 shows the 
configuration of the serial robot, which is composed of the body, 
the hip joint, the thigh, the knee joint and the shank. 

B.1)  The Stance Phase 
When the serial robot stands on the ground in the stance 

phase, the dynamic model supposes the shank to be the base. 
The origin of the base frame is located at the knee joint and then 
the body becomes the end. The hip joint responds mainly to the 
acceleration of the body and is resistant to the body’s gravity. 
The knee joint supports the movements of the body and the 
thigh from below. (See Fig. 5(a).) 

According to Newton-Euler’s equations in [7] and the spatial 
vectors of six-dimensional vectors in [5], the inverse dynamics 
of the serial robot in the stance phase are given by 

g
h S Sb

b b b b bg
h b

f f
I I ,    (3) 

g
k h S St

t t t t tg
k ht

f ff
I I  ,   (4) 

h
h h h h

h

f
u P a a ,         (5) 

k
k k k k

k

f
u P a a  ,        (6) 

where hf  and kf  are the forces, h and k are the torques of 
the hip joint and the knee joint respectively, the superscript 
g means the gravity, S

bI is the spatial inertial tensor of the body 
and S

tI is the spatial inertia tensor of the thigh; b and t are the 
spatial velocity of the body and the spatial velocity of the thigh, 

b represents the spatial acceleration of the body, and 

t represents the spatial acceleration of the thigh, the symbols 

ha and ka are the angular vectors stated in the section , which 
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are equal to H RFa  and K RFa , respectively, hP  is the position 
vector of the hip joint relative to the base frame and kP is the 
position vector of the knee joint relative to the base frame, the 
symbols hu and ku  represent the joint actuator torque of the hip 
joint and the joint actuator torque of the knee joint, respectively. 
The spatial inertia tensor formed as SI defines the relationship 
between the rigid body’s velocity and momentum, which is a 
6 6  matrix and can be calculated according to [5, 6, 7, 29]. 
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(a)          (b) 
Fig. 5(a) The serial robot in the stance phase. Fig. 5(b) The serial robot in the 

swing phase 
B.2)  The Swing Phase 

When the serial robot swings in the air, the base frame of the 
serial robot is located at the body and its origin coincides with 
the hip joint. It means that the root of the serial robot is the body 
and the hip joint responds to the upward lift of all the parts of 
the leg. The knee joint responds to the ascent of the shank and 
the resistance against the gravity of the shank. 

The order of computing joint torques in the swing phase is 
the opposite direction of the order of computing joint torques in 
the stance phase, which propagates the forces and torques from 
the shank to the body. Fig. 5(b) shows the forces and the torques 
in the swing phase. The relationship between the forces and the 
torques is given by 

g
k S SS

S S S S Sg
k S

f f
I I ,     (7) 

g
h k S St

t t t t tg
h kt

f ff
I I , (8) 

h
h h h h

h

f
u P a a ,        (9) 

k
k k k k

k

f
u P a a ,         (10) 

where S is the spatial velocity of the shank, S is the spatial 
acceleration of the shank, S

SI corresponds to the shank’s spatial 
inertia tensor, hP represents the position vector of the hip joint 
relative to the base of the body, and kP represent the position 
vector of the knee joint under the base frame, whose original 
location coincides with the hip joint. 

These equations are evaluated link by link, starting from the 
link of the body in the stance phase or starting from the link of 
the shank in the swing phase, and work inward from 

end-effectors toward the base of the serial robot. The joint 
actuator torques can be derived by applying ,  and to the 
recursive Newton-Euler equations. 

C. The Path Generation 
Finding the joint forces and torques not only needs the 

robot’s geometrical and inertial parameters, but also should not 
exclude the robot’s joint motions. The joint motions in joint 
space are converted from the natural description of the robot’s 
feet in the task space in terms of the forward kinematics, the 
inverse kinematics and the path generation. 

The path generation contains the path generator and the 
smooth function. The path generator starts from the path points 
defined by a human user in the task space and converts them 
into a set of desired joint angles by application of the inverse 
kinematics stated in the subsection A. As the quadruped robot is 
viewed as four separated serial robots in the kinematics and the 
dynamics, this path generator will consider the feet locations 
within a cycle in task space by integrating all the imagined 
separated robots into one. 

The locations of the feet which are defined based on their 
respective base frames have two cases: the case of the leg in the 
stance phase and the case in the swing phase. When the serial 
robots stand on the ground, i.e. in the stance phase, the 
programming of the movement of the feet actually means the 
programming of the body’s movement, as the feet are at fixed 
points on the ground. When the serial robots swing in the air, 
the programming of the feet’s movement is the path of the feet. 

The path generator also takes into account the stability of the 
quadruped, whose leg has two degree of freedoms. The robot 
with pitch-pitch type joints cannot stretch its feet out of the 
sagittal plane that is configured by the front leg and the hind leg 
at the same side. That means the classical stability criteria 
composed of the support polygon doesn’t fit the type robot 
referenced in this research and the robot has difficulty in 
moving in the transverse plane. The quadruped robot guarantees 
its stability by retracting the diagonal leg to prevent the system 
from tumbling. (See Fig. 4.) The leg whose diagonal leg shrinks 
correspondingly swings and steps out compliantly in the Fig. 4. 

Then the smooth function, which appears between the 
inverse kinematics and the inverse dynamics in the flow chart of 
the Fig. 3, connects the set of joint angles by cubic polynomials. 
Given the waypoints, there is a unique piecewise-cubic spline 
that smoothly passes through the points. 

IV. THE EXPERIMENTS 
As stated in the kinematics and in the dynamics, it is 

necessary to identify the stance phase and the swing phase. 
There are two methods to accomplish this. The first one uses the 
contact sensor and the other one tags the flag in the arrays of 
data offline. We utilize the second method in this research in 
order to ensure the idea can be widely used. The sequence of the 
foot lifting is denoted as RF-LH-LF-RH, in which the RF 
represents the right front leg, the LH represents the left hind leg, 
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the LF represents the left front leg, and the RH represents the 
right hind leg. 

If we consider that the quadruped robot walks from the initial 
state showed in Fig. 2, the arrays of the location data, which are 
defined in the task space, are expressed as: 
RF: [[0, -H, 0, 0]; [NS, -H+KAH, 10, 1]; [4NS, -H+d*KAH, 15, 1]; [6*NS, 
-H+2*KAH, 20, 0]; [5*NS, -H+KAH, 25, 0]; [3*NS, -H+MAH, 45, 0]; [2*NS, -H, 
50, 0];[2*NS, -H, 70, 0]; [0, -H, 75, 0];[-NS, -H, 95, 0]; [-NS, -H, 100, 0]; [-NS, 
-H-KAH, 110, 1]; [2*NS, -H+d*KAH, 115, 1];[5*NS, -H+KAH, 120, 0]; [5*NS, 
-H+KAH, 125, 0]]; 
LH: [[0, -H, 0, 0]; [NS, -H+MAH, 20, 0]; [0, -H, 25, 0]; [-2*NS, -H-KAH, 35, 1]; 
[NS, -H+1.5*d*KAH, 40, 0]; [3*NS, -H+KAH, 45, 0]; [2*NS, -H, 50, 0]; [2*NS, -H, 
70, 0]; [0, -H, 75, 0];[0, -H, 95, 0];[0, -H, 100, 0]; [0, -H+MAH, 120, 1];[-NS, -H, 125, 
0]]; 
LF: [[0, -H, 0, 0]; [NS, -H, 20, 0]; [0, -H, 25, 0];[-2*NS, -H, 45, 0]; [-2*NS, -H, 50, 
0]; [-2*NS, -H-KAH, 60, 1]; [NS, -H+d*KAH, 65, 1]; [4*NS, -H+KAH, 70, 0]; 
[3*NS, -H, 75, 0]; [0, -H+MAH, 95, 0]; [0, -H, 100, 0];[0, -H, 120, 0]; [-NS, -H, 125, 
0]]; 
RH: [[0, -H, 0, 0]; [NS, -H, 20, 0]; [0, -H, 25, 0]; [-2*NS, -H, 45, 0]; [-2*NS, -H, 50, 
0]; [-2*NS, -H+MAH, 60, 0]; [-2*NS, -H, 70, 0]; [-3*NS, -H, 75, 0]; [-3*NS, 
-H-KAH, 85, 1]; [-NS, -H+d*KAH, 90, 1]; [0, -H+KAH, 95, 0]; [0, -H, 100, 0];[0, -H, 
120, 0]; [-NS, -H, 125, 0]]. 
All the arrays of the data define the foot locations of one cycle 
with the walking gait, where NS is the stride, H represents the 
height of the foot under its kinematics base frame, KAH is 
compensation value, d corresponds to the leg shrinking quantity 
when the relevant leg is in the swing phase, and MAH is the 
diagonal leg shrinking quantity to stabilize the quadruped robot. 
On the whole, the first elements of the arrays represent the stride 
of the leg and the second elements of the arrays represent the 
height of the feet compared to the relevant base frames. The 
third elements are time series, whose units can be the second or 
the millisecond. The time elements help the cubic polynomial to 
fit the data with continuous time. The fourth elements in the 
subarray label the swing phase with the flag 1 and the stance 
phase with the flag 0. As the swing phase or the stance phase is 
the period of time, the flag 1 or the flag 0 means that the time 
progresses from the start of one phase to the beginning of the 
next. For example, the swing phase starts with the RF leg from 
the time 10 through the time 15 till the time 20, i.e., during the 
time 10 till the time 20 the RF leg is in the swing phase. 

           
Fig. 6                                              Fig. 7 

Fig. 6 The joint angles in the joint space     Fig. 7 The foot locations in the 
task space 

The dashed lines represent the angles of the knee joints and the solid lines 
represent the hip joint angles. The horizontal axis represents time steps, and the 
vertical axis represents the joint angle. 

With the locational data the inverse kinematics converts them 
into the joint variables and the cubic spline connects them into 
continuous curves. (See Fig. 6) The values of these parameters 
are as follows: NS is 40mm, H is 2 2(750) F mm, KAH is 6mm, 
d is 3, and MAH is 20mm, where F represents the first element in 
the array. 

In order to check the correctness of these joint angles, we 
employ the forward kinematics to transform these angles to the 
foot locations in the task space. (See Fig. 7.) The values in the 
vertical axis are negative, because the base frames located at the 
hip joint and the directions of these axes are opposite to the 
positional direction under the base frames. 

The solid curve in the top graph is the RF foot locations in the 
task space and the dashed curve in the top graph is the RF’s 
diagonal foot locations, the LH foot locations. The solid curve 
in the lower part of the graph represents the LF foot locations 
and the dashed curve is the RH foot locations. Fig. 8 gives the 
foot information in the sagittal plane and shows that the 
diagonal leg shrinks a little back to keep the robot’s stability 
before the leg lifting. 

From the Fig. 7 we can make sure that the quadruped robot 
with the joints motion can walk without tumbling. However, in 
order to generate the desired trajectory for the robot, it is 
important to find the actuator torques and forces. Through the 
path generation formulae, all the joint angles, angular velocities 
and angular accelerations can be passed to the inverse dynamics 
as time variables. When the forth elements is 1 in the subarrays, 
the dynamics adopts the model of the swing phase and when the 
forth elements is 0 the dynamics becomes the stance model. 

         
Fig. 8 The joint velocities, the joint accelerations and the torques 

It is can be found that the torques of the hip joints follow 
tightly upon the hip joint velocities. The phenomenon indicates 
that the joint velocity is the main reason that responds to the 
joint torque. It can also be observed that the torque curves at the 
knee joints are similar to the angular accelerations’ curves. 
From this point the knee joint torques are affected mostly by the 
joint accelerations. 

 
(a)            (b) 

Fig. 9 The current curves at the right front hip joint in the swing phase, (a) The 
current curve under the inverse dynamics control, (b) The current curve under 
the high gain PD control  

Fig. 9 indicates the current at the right front hip joint when 
the joint is in the swing phase. Fig. 9(a) shows the RFhip joint’s 
current under the inverse dynamic control and the current curve 
in Fig. 9(b) is under the high gain PD control. The current in Fig. 
9(a) is smoother than the current in Fig. 9(b) which accelerates 
and decelerates the corresponding motor frequently. With the 
current in Fig. 9(a) the driver of the joint runs the motor so 
strongly that the quadruped robot can walk on the rubber mat 
and on asphalt. 
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V. CONCLUSION 
In this paper, we addressed the problem of how to reduce the 

computational load, proposed an approximated way of 
calculating inverse dynamics of a free floating base system 
without knowing the contact forces involved, and realized 
compliant control of the quadruped. 

Starting from the kinematics, the model assumes the 
quadruped robot as four independent serial robots and affixes 
their respective base frames to the hip joints. The inverse 
dynamics continues using the structure that divides the 
quadruped robot up into four serial robots, supposes different 
models in terms of different phases, and eliminates the virtual 
joint with 6 DOFs which are usual in the rigid body system with 
a floating base. Although the idea of regarding the quadruped as 
four serial robots increases the number of the robots, it reduces 
greatly the number of calculations that are needed to be made 
for the virtual joints. The path generator integrates all the serial 
robots into one and considers them from the view point of stable 
movement. Then, the quadruped can walk robustly with the 
control strategy.  

The experiments demonstrated that the idea of simplifying 
the quadruped robot into several serial robots was effective. The 
inverse kinematics was turned into an optimal problem to clear 
up the cases of no solution and multi-solution. In order to verify 
the correctness of this transformation, the joint angles were 
imported to the forward kinematics anew and the uninterrupted 
curves of the foot locations in Fig. 7 obviously certified that the 
idea, which transformed solving the equations into finding the 
local optimal solutions, was valid. The current comparison of 
the high gain PD control with the control in this paper showed 
that the inverse dynamics control strategy could run the motor 
more smoothly. The locations of the path generator exhibited 
the data array as a human-user interface in the task space. 
Through the interface, the quadruped robot can accomplish 
more advanced actions such as crossing over the obstacles and 
climbing the stairs. 
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