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Abstract—How to implement an effective factorization for
nonrigid structure from motion(NRSFM) has attracted much
attention in recent years. Addressing this problem, we propose
a novel sequential factorization method without extra priors
other than the basis low-rank prior, consisting of a motion
estimation module and a 3D shape recovery module. In the
motion estimation module, for improving the estimation accuracy,
a novel objective function is designed for jointly pursuing the
Euclidean corrective matrix and the shape coefficient matrix.
And an iterative minimization algorithm is explored to solve
the designed objective function based on the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno approach(LBFGS), naturally
leading to the rotation matrix. In the 3D shape recovery module, a
simple iterative algorithm is introduced for effectively computing
the 3D deformable shapes with the estimated rotation matrix.
The proposed extra-prior-free method is easy to implement and
it can achieve an effective tradeoff between estimation accuracy
and computational speed, since only several classic techniques
are involved. Extensive experimental results demonstrate the
effectiveness of the proposed method in comparison to five state-
of-the-art methods.

I. INTRODUCTION

Nonrigid structure from motion(NRSFM) has attracted
much attention in recent years, which is to recover unknown
camera motion matrices and 3D deformable shapes of an
object from 2D point tracks. NRSFM is a typically under-
constrained problem, since the number of the observed el-
ements are far less than the number of unknown variables.
To overcome it, a lot of works with different assumptions on
3D deformable shapes have been explored to cast the original
problem to an over-constrained optimization problem[1], [2],
[3], [4], [5].

A widely-used assumption for handling the NRSFM prob-
lem is the low-rank prior, which assumes that 3D deformable
shapes of an object can be modelled in a low-rank subspace.
Let W ∈ R2f×p(W has been centralized) represent an
input matrix where p 2D point tracks from f frames are
stacked. Under the orthographic camera model, a general
NRSFM factorization method aims to factorize W into a
shape matrix S ∈ R3f×p and a block-diagonal camera
motion matrix R = diag(R1, ..., Ri, ..., Rf ) ∈ R2f×3f , where
Ri ∈ R2×3(i = 1, 2, ..., f) represents a 3D rotation followed
by an orthographic projection. Bregler et al.[1] firstly proposed
a factorization method with the low-rank prior under the
orthographic camera model, assuming that the shape matrix

S can be represented by a combination of k basis shapes in a
low-rank shape subspace. Let B ∈ R3k×p represent the shape
basis matrix consisting of k basis shapes, and C ∈ Rf×k the
coefficient matrix. Then, the method [1] factorizes W into a
factor matrix L and a shape basis matrix B as:

W = RS = R(C ⊗ I3)B = LB (1)

where ‘⊗’ indicates the Kronecker product, I3 is the 3 × 3
identity matrix, and L = R(C ⊗ I3) ∈ R2f×3k. Obviously, it
holds that rank(S) ≤ 3k. Then following this work[1], many
NRSFM methods have been derived from the formulation (1).

By utilizing the low-rank prior on the shape subspace
(i.e. the low-rank shape representation) in [1], many methods
have been proposed for improving the factorization accuracy
for NRSFM further. The alternating multi-linear optimization
framework[6], [7], [8], [9], [10] for NRSFM has been con-
tinually investigated, where each of these unknown variables
is estimated by fixing the others at each iterative step. Dai
et al.[11], [12] proposed an effective extra-prior-free NRSFM
method (called BMM), which achieved comparable perfor-
mances with some existing extra-prior-based methods. In ad-
dition, Akhter et al.[13] investigated the dual form of the low-
rank shape representation, and used a set of Discrete Cosine
Transform(DCT) bases to recover the nonrigid structure of
an object, which implicitly relied on the smoothness prior.
Gotardo and Martinez[14] proposed a 3D shape trajectory
method in the DCT domain, assuming the object structure
to smoothly deform over time. Hamsici et al.[15] presented a
kernel-based NRSFM method with a spatial-smoothness prior,
which can deal with frame-reshuffled data effectively.

Different from the existing methods derived from (1), Lee
et al. [16] proposed an EM-based NRSFM method under a
defined Procrustean normal distribution model. Cho et al. [17]
proposed a Procrustean normal distribution mixture model for
handling NRSFM problems.

It is noted that it is hard for many existing methods to
achieve an effective tradeoff between estimation accuracy and
computational speed when large-scale data is handled(e.g.
[16], [11], [12], [14], [15] as shown in Section III). Ad-
dressing this problem, under the orthographic camera model,
we propose a novel NRSFM method without extra priors,
which calculates the Euclidean corrective matrix(defined in
Section II), the camera motion matrix, and the shape matrix



sequentially. In this method, the Euclidean corrective matrix
in an explicit form is iteratively computed by an explored
minimization algorithm, and then the shape matrix is computed
by solving a rank-constraint-based optimization problem via
an explored modified version of the SVP(Singular Value
Projection)-Newton algorithm[18].

The main advantages of the proposed method are: (i) It is
quite easy to implement, since only several classic techniques
are involved. (ii) Compared with five state-of-the-art methods,
it performs better on both noise-free and noisy data in most
cases, and it can achieve an effective tradeoff between estima-
tion accuracy and computational speed, as demonstrated by
our experimental results in Section III.

II. SEQUENTIAL FACTORIZATION METHOD WITHOUT
EXTRA PRIORS

Let Si = [si,1, si,2, ..., si,p] ∈ R3×p (i = 1, 2, ..., f)
be the 3D points in the i-th frame, where si,j =
[xi,j , yi,j , zi,j ]

T (j = 1, 2, ..., p) is the j-th 3D point in the
i-th frame. Let Sb ∈ Rf×3p represent a rearrangement
of the shape matrix S, the i-th row of which has the
form [xi,1, xi,2, ..., xi,p, yi,1, yi,2, ..., yi,p, zi,1, zi,2, ..., zi,p], i.e.
Sb = [IX , IY , IZ ](I3 ⊗ S) where IX ,IY ,IZ respectively
represent the submatrices consisting of all the (3i−2)th,(3i−
1)th, (3i)th rows of the 3f -order identity matrix I3f . Since
S = (C ⊗ I3)B under the rank-k model (1), we have Sb =
C[Ix, Iy, Iz](I3⊗B) where Ix,Iy ,Iz respectively represent the
submatrices consisting of all the (3j−2)th, (3j−1)th, (3j)th
(j = 1, 2, ..., k) rows of the 3k-order identity matrix I3k.
Obviously, it holds that rank(Sb) ≤ rank(C) ≤ k [11], which
reflects the essence of the rank-k model compared with the
condition rank(S) ≤ 3k. Then, under the orthographic camera
model, the camera motion matrix R and the shape matrix S
can be estimated by solving the following unified low-rank
minimization problem(or its variants) with a specified rank k:

arg min
R,S
||W −RS||2F , s.t. S ∈ K = {S|rank(Sb) ≤ k} (2)

It is noted that (2) is non-convex, so it is hard to obtain a
global minimum solution to it. Here, aiming to pursue an ef-
fective local minimum solution, we propose a sequential extra-
prior-free factorization method under the basic low-rank shape
model (compatible with the dual trajectory model), where the
Limited-memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)
approach [19] is employed, named as SFLBFGS.

As seen from (1), the input matrix W can be approximately
factorized into the product of L̂ ∈ R2f×3k and B̂ ∈ R3k×p

via truncated SVD where the result of SVD on W is truncated
to the largest 3k singular values, i.e. W ≈ L̂B̂. Obviously,
this decomposition is determined up to a nonsingular 3k× 3k
matrix. Let G ∈ R3k×3k be a nonsingular matrix that upgrades
B̂ into a canonical Euclidean shape basis matrix B, called the
Euclidean corrective matrix, then according to (1), we have

R(C ⊗ I3) = L = L̂G, B = G−1B̂ (3)

The SFLBFGS method consists of two modules, the motion
estimation module and the 3D shape recovery module. Firstly,

the motion estimation module is implemented for jointly esti-
mating the Euclidean corrective matrix G and the coefficient
matrix C by solving a minimization problem derived from
(3) (In fact, we only calculate sub-blocks Gm, cm of G,C
as explained in Section II-A), then for computing the camera
motion matrix R. Secondly, the 3D shape recovery module is
implemented for computing the shape matrix S by an explored
modified version of the SVP-Newton algorithm [18].

A. Motion Estimation Module

For a sequential method, it is important to calculate an
accurate Euclidean corrective matrix G since the rest variables
are all computed based on it. Let L̂2i−1:2i(i = 1, 2, ..., f )
denote the (2i − 1)-th and 2i-th rows of L̂. Let Gm and cm
denote the m-th column-triplet of G and the m-th column of
C respectively. Since RiRti = I2, the following constraint on
Gm is obtained from (3) as:

L̂2i−1:2iGmG
T
mL̂

T
2i−1:2i = cimRiR

T
i cim = c2imI2 (4)

where I2 is the 2 × 2 identity matrix, and cm =
[c1m, c2m, ..., cfm]T is a not-all-zero vector.

Many existing sequential methods constructed different ob-
jective functions for estimating Gm according to (4). In [13],
[14], [15], Gm was directly estimated according to (4) with
a set of preseted coefficients cm via nonlinear optimization.
However, it is hard to manually preset a set of appropriate
coefficients cm for estimating Gm. Dai et al. [11], [12] elimi-
nated cm from (4) and used the Gram matrix Qm = GmG

T
m as

a variable matrix replacing Gm. Accordingly, they constructed
a trace-minimization problem on Qm, and solved it via SDP
(Semi-Definite Programming). However, the obtained Qm by
SDP is usually not a rank-3 matrix so that Gm has to be
computed via truncated SVD, which means that the estimated
Gm is just an approximate and inaccurate solution to (4). Then,
a non-linear refinement on Gm was employed in [11], [12] to
improve the estimation accuracy on Gm. It has to be pointed
out that although the size of the involved SDP is not quite big,
the computational cost is still relatively high, especially when
the specified rank k is increased.

Addressing these above problems, we do not eliminate(or
preset) cm here, and we also do not replace GmG

T
m with

Qm, but construct the following minimization problem for
jointly estimating Gm and cm in explicit forms according
to (4). For computational convenience, an auxiliary vector
bm = [b1m, ..., bim, ..., bfm]T is introduced where bim =
c2im ≥ 0(i = 1, 2, ..., f):

min
Gm,bm

F =

f∑
i=1

||L̂2i−1:2iGmG
T
mL̂

T
2i−1:2i − bimI2||2F (5)

s.t. ||bm||2F = f, bm ≥ 0

where the constraint ||bm||2F = f is used to fix the scale
freedom and exclude the all-zero solution.

The objective function (5) has two important characteristics:
(i) Compared with the existing Gram-matrix-based methods, it
avoids the positive semidefinite constraint which is expensive



Algorithm 1: Algorithm for estimating Gm and bm
Input: bm(0) = 1(1 indicates an all-one vector), t = 0
Output: Gm, bm
while not converge do1

Fix bm(t) and update Gm(t+1) via LBFGS ;2
Fix Gm(t+1) and update bm(t+1) according to (9);3
t = t+ 1 ;4

end5

to handle, as well as the gap between the original rank-
k optimization problem and other relaxed variants (e.g. the
used nuclear-norm relaxation in [11]). (ii) Compared with the
existing methods (e.g. [13], [14], [15]) estimating Gm directly
via nonlinear optimization with a set of preseted coefficients
cm, it is able to adaptively determine these coefficients for
further improving shape recovery accuracy and robustness.

Here, an iterative algorithm is proposed for estimating Gm
and bm. At each iteration, each of the two variables is updated
by fixing the other one. The detailed performance of the
iterative procedure is described as follows, and the complete
algorithm is outlined in Algorithm 1.
Update Gm: Fixing bm(t)(the subscript ‘t’ indicates the time
index), we have the following problem from (5):

Gm(t+1) = arg min
Gm

F

= arg min
Gm

f∑
i=1

||L̂2i−1:2iGmG
T
mL̂

T
2i−1:2i − bim(t)I2||2F (6)

For solving (6), we employ the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno(LBFGS) approach [19] with a
strong Wolfe-Powell line search, which is quite effective for
optimizing such a type of objective function as demonstrated
in [20]. The LBFGS approach requires the gradient ∇GmF of
F with respect to Gm as

∇Gm
F = (7)

4

f∑
i=1

(L̂T2i−1:2iL̂2i−1:2iGmG
T
m − bim(t)I3k)L̂T2i−1:2iL̂2i−1:2iGm

Update bm: Fixing Gm(t+1), let Z1 be the column vec-
tor whose i-th element is L̂2i−1Gm(t+1)G

T
m(t+1)L̂

T
2i−1,

and let Z2 be the column vector whose i-th element is
L̂2iGm(t+1)G

T
m(t+1)L̂

T
2i. Obviously, Z1 and Z2 are non-

negative, and then we have the following problem from (5):

bm(t+1) = arg min
bm
F = arg min

bm
||Z1 − bm||2F + ||Z2 − bm||2F

s.t. ||bm||2F = f, bm ≥ 0 (8)

Since both Z1 and Z2 are non-negative, there exists the
following closed-form solution to (8):

bm(t+1) =
√
f(Z1 + Z2)/||Z1 + Z2||F (9)

Calculate R: Once Gm and bm are obtained, the motion
matrix R can be directly estimated according to L̂2i−1:2iGm =
cimRi and bim = c2im, and its sign ambiguity is handled as
done in [11], [21].

Algorithm 2: Modified version of SVP-Newton
Input: W , R, µ, S(0) = 0(0 indicates an all-zero matrix), t = 0
Output: S
while not converge do1

Y(t+1) = S(t) − µ∇Φ(S(t)) ;2
(U(t+1), V(t+1))← ΠK(Y(t+1)) via SVD on Y b

(t+1) ;3
Σ(t+1) by minimizing (13) ;4
S(t+1) ← Sb

(t+1) = U(t+1)Σ(t+1)V
T
(t+1) ;5

t = t+ 1 ;6
end7

Remarks: SFLBFGS does not compute Gm by solving (5)
with every m(m = 1, 2, ..., k), but only computes Gm with
a specified m(without loss of generality, denote it as G1). As
demonstrated in [11], [13], [14], [15], it is feasible to compute
the camera motion matrix only with the column-triplet G1

instead of the whole Euclidean corrective matrix G.

B. 3D Shape Recovery Module

With the obtained R above, SFLBFGS calculates S with
a specified rank k by solving the following rank-constraint-
based problem on S without additional regularizers according
to (2) as:

min
S

Φ = ||W −RS||2F (10)

s.t. S ∈ K = {S | rank(Sb) ≤ k}

We propose a modified version of the SVP-Newton al-
gorithm [18] for solving (10). At each iteration, a gradient
descent update is firstly implemented as:

Y(t+1) = S(t) − µ∇Φ(S(t)) (11)

where ∇Φ(S(t)) = 2RT (RS(t)−W ) is the gradient of Φ with
respect to S at time t, and µ is the step size. Then Y(t+1) is
projected to the constraint set K by the following projection
operator ΠK(·) as:

ΠK(Y(t+1)) = arg min
S
||S − Y(t+1)||2F (12)

s.t. S ∈ K = {S | rank(Sb) ≤ k}

By rearranging Y(t+1) into Y b(t+1) in (12) under the same
way as rearranging S(t) into Sb(t) and implementing SVD on
Y b(t+1), S

b
(t+1) can be calculated according to the top k singular

values Σ(t+1) and the corresponding vectors (U(t+1), V(t+1))
of Y b(t+1).

In order to further speed up this algorithm’s convergence, a
Newton-type step is introduced to update Σ according to the
obtained (U(t+1), V(t+1)) by solving the following minimiza-
tion problem:

min
Σ

Φ = ||W −RS(t)||2F , s.t. Sb(t) = U(t+1)ΣV
T
(t+1) (13)

Via a set of mathematical transformations, (13) can be trans-
formed into a standard least-squares problem, and a closed-
form solution can be obtained further. Due to limited space,
the details for updating Σ are provided in the supplementary
file, and the complete algorithm for calculating S is outlined
in Algorithm 2. In addition, similar to the SVP-NewtonD[18],



a natural constraint restricting Σ to be diagonal can also be
introduced to (13) for reducing computational costs further.

C. Algorithmic Analysis

Algorithm 1 is designed under a standard iterative optimiza-
tion framework involving a least-squares step and a limited
memory BFGS step, hence, its convergence is dependent on
the convergence of the limited memory BFGS algorithm for
solving (6) with respect to Gm. Nocedal and Wright [22]
have given a strict proof for the superlinear convergence of
BFGS when it applies to general nonlinear (not just convex)
objective functions. Moreover, it is noted from Algorithm
1, the main computational cost of Algorithm 1 is spent on
updating Gm via LBFGS that has a quasi-Newton update
speed and simultaneously requires only O(k2) memory [19].
Moreover, it is noted from (6) that the running time for
updating Gm is strongly related to both the selected rank k
and the frame number f . With the increase of k and f , the
running time of Algorithm 1 is increased accordingly.

The difference between Algorithm 2 and the standard SVP-
Newton algorithm is that: the unknown variable of the ob-
jective function (10) is S and the unknown variable of the
corresponding rank constraint is Sb in Algorithm 2, while the
unknown variable of both the objective function and the cor-
responding rank constraint is the same S in the standard SVP-
Newton algorithm. Accordingly, since Sb has a different form
from S (up to a transformation, i.e. Sb = [IX , IY , IZ ](I3⊗S)),
an additional set of mathematical transformations has to be
implemented for updating the singular value matrix by
minimizing (13) in Algorithm 2 in contrast to the standard
SVP-Newton algorithm. However, Algorithm 2 is indeed a
straightforward variant of the SVP-Newton algorithm whose
convergence is proved in [18]. Similar convergent guarantee
still holds for Algorithm 2 via a straightforward modification
of the corresponding proof in [18].

III. EXPERIMENTAL RESULTS

We test the proposed SFLBFGS as well as five state-
of-the-arts: PTA[13], CSF[14], RIKA[15], BMM[12], EM-
PND[16], where PTA, CSF, and RIKA assume additional
smoothness priors besides the low-rank prior. Experimen-
tal results are evaluated by using the same error metrics
as reported in [11], [12], [14]: Rotation estimation error
eR = 1

f

∑f
i=1 ||Ri − R̂i||F is to measure the average errors

between the true rotations Ri and aligned estimated rotations
R̂i; 3D reconstruction error e3D = 1

σ3Dfp

∑f
i=1

∑p
j=1 eij

(σ3D = 1
3f

∑f
i=1(σix + σiy + σiz)) is to measure average

normalized 3D errors between the true 3D points and aligned
reconstructed 3D points, where eij indicates the Euclidean
reconstruction error for the j-th point at the i-th frame, σix,
σiy , σiz denote the standard deviations respectively of the X ,
Y , and Z coordinates of the true 3D shape at the i-th frame.

Initials for SFLBFGS are: Gk(0) = [1, 0, 0; · · · ; 0, 1, 0;
· · · ; 0, 0, 1], b(0) = 1, S(0) = 0. As done in [11], [12],
[13], [14], [15], we implement the referred methods with

different ranks (Except EM-PND[16] that is not dependent
on a manually specified rank) and report their best results.

A. Performances on Benchmark Data

This subsection evaluates the performances of the referred
methods on the following sequences that are extensively used
for evaluating NRSFM methods, where the true 3D shapes
(also the true rotation matrices in the first four sequences)
are given: Drink(1102/41), Pickup(357/41), Yoga(307/41),
Stretch(370/41), Dance(264/75)[13]; Face1(74/37)[23]; Face2
(316/40), Shark(240/91), Walking(260/55)[2], Capoeira (250/
41)[24], where (f /p) after the sequence name indicates the
number of frames and 3D points. Moreover, the Flag(60/4800)
sequence[25] and the UMPM(5168/15) sequence[26] are also
used to evaluate the performances of the referred methods on
more complex large-scale data.

Table I reports the results of the referred methods on these
sequences. Here, two points about EM-PND [16] need to be
explained: (i) Although EM-PND performs well on several
sequences, it cannot effectively handle 2D data corresponding
to a set of different 3D rotation matrices and deformable
shapes, such as Drink, Pickup, Yoga, Stretch. This is not
conflict with the experimental results in [16], since the used
ground truth shapes for these four sequences in the code
package from the authors [16] are obtained by rotating the
original ground truth shapes (from [13]) with the ground
truth rotation matrices in advance. That is to say, in the four
processed sequences by EM-PND, there exists no 3D rotation
but only an orthographic projection between the input 2D data
and the corresponding 3D shapes. To make available rotation
comparisons, the original forms of all the sequences are used
as done in [11], [12], [13], [14], [15]. The symbol ‘�’ in
Table I(also Table IV) indicates this case. (ii) Under the current
hardware configuration of the used PC, EM-PND cannot deal
with the Flag sequence that needs an oversize computational
memory for EM-PND, and the symbol ‘♦’ in Table I(also
Table IV) indicates this case.

In order to further analyze the effectiveness of the two
modules in SFLBFGS, we test these methods again on the
Drink, Pick-up, Yoga, Stretch sequences where the real rota-
tion matrices are known. The lowest rotation estimation errors
regardless of 3D shape recovery accuracy by these methods
are listed in Table II (their errors and best ranks may not be
equal to those corresponding to the best reconstruction errors
in Table I). Moreover, these methods are implemented for
estimating the 3D shapes with the real rotation matrices instead
of their estimated rotation matrices, and their corresponding
3D reconstruction errors are reported in Table III.

As seen from Tables I–III, the designed two modules and
the whole SFLBFGS method achieve better performances
than the rest methods in most cases, which demonstrates the
effectiveness of SFLBFGS for handling the benchmark data.

In addition, in order to investigate the relationship between
the data size and the computational cost of each method more
conveniently, the running times of the referred methods on the



TABLE I
COMPARISON ON BENCHMARK SEQUENCES (K INDICATES THE SELECTED BEST RANK).

Methods PTA CSF RIKA BMM EM-PND SFLBFGS
eR e3D eR e3D eR e3D(K) eR e3D(K) eR e3D eR e3D(K)

Drink 0.006 0.025(13) 0.006 0.022(6) 0.006 0.027(6) 0.007 0.027(12) � � 0.006 0.017(13)
Pick-up 0.155 0.237(12) 0.155 0.230(6) 0.155 0.231(3) 0.121 0.173(12) � � 0.105 0.168(13)

Yoga 0.106 0.162(11) 0.102 0.147(7) 0.102 0.152(7) 0.088 0.115(10) � � 0.085 0.111(13)
Stretch 0.055 0.109(12) 0.049 0.071(8) 0.049 0.086(8) 0.068 0.103(11) � � 0.049 0.068(13)
Dance – 0.296(5) – 0.271(2) – 0.173(7) – 0.186(10) – 0.241 – 0.156(25)
Face1 – 0.125(3) – 0.064(5) – 0.069(5) – 0.050(11) – 0.036 – 0.036(10)
Face2 – 0.044(5) – 0.036(3) – 0.032(4) – 0.030(7) – 0.023 – 0.026(13)

Walking – 0.395(2) – 0.186(2) – 0.104(5) – 0.130(8) – 0.069 – 0.095(12)
Shark – 0.180(9) – 0.008(3) – 0.101(3) – 0.231(4) – 0.024 – 0.176(2)

Capoeira – 0.507(6) – 0.341(4) – 0.439(4) – 0.393(5) – 0.514 – 0.245(13)
Flag – 0.396(7) – 0.391(6) – 0.393(6) – 0.422(4) – ♦ – 0.351(6)

UMPM – 0.438(5) – 0.644(5) – 0.368(5) – 0.403(4) – 0.817 – 0.346(5)

TABLE II
COMPARISON OF ROTATION ESTIMATION ON BENCHMARK SEQUENCES.

Methods PTA(K) CSF(K) RIKA(K) BMM(K) SFLBFGS(K)

Drink 0.005(11) 0.006(12) 0.006(12) 0.007(12) 0.005(12)
Pick-up 0.154(8) 0.155(13) 0.155(13) 0.114(13) 0.105(13)

Yoga 0.105(13) 0.102(13) 0.102(13) 0.088(10) 0.085(13)
Stretch 0.049(13) 0.049(13) 0.049(13) 0.068(11) 0.049(13)

TABLE III
COMPARISON OF 3D SHAPE RECOVERY ON BENCHMARK SEQUENCES.

Methods PTA(K) CSF(K) RIKA(K) BMM(K) SFLBFGS(K)

Drink 0.023(13) 0.013(12) 0.021(12) 0.023(13) 0.013(13)
Pick-up 0.077(10) 0.038(10) 0.053(11) 0.049(13) 0.032(13)

Yoga 0.038(9) 0.035(7) 0.037(11) 0.033(12) 0.029(13)
Stretch 0.042(11) 0.045(8) 0.043(9) 0.044(13) 0.037(13)

mid-scale Drink sequence, the large-scale Flag and UMPM
sequences, are listed in Table IV.

As seen from Table I and Table IV, three points are revealed:
(i) When handling the mid-scale Drink sequence, SFLBFGS
runs faster than RIKA and BMM, but more slowly than
PTA and CSF. However, when handling the large-scale Flag
sequence with a large number of point tracks, SFLBFGS runs
faster than CSF, RIKA, BMM(also EM-PND), and just more
slowly than PTA. Moreover, although the total number of
the matrix entries for the Flag sequence is much larger than
the one for the Drink sequence, SFLBFGS runs faster on
the Flag sequence than on the Drink sequence, because the
computational complexity of Algorithm 1 is strongly related
to the frame number and the selected rank rather than the
point track number as indicated in Section II-C. In fact,
compared with the Drink sequence, both the frame number
of the Flag sequence and the used rank for handling the Flag
sequence are lower, hence, SFLBFGS runs faster on the Flag
sequence than on the Drink sequence. (ii) SFLBFGS runs
more slowly than PTA and EM-PND on the UMPM sequence
with a large number of frames, but faster than CSF, RIKA,
and BMM. Moreover, comparing with the running times of
the referred methods on the Drink sequence, those on the
UMPM sequence increase at different levels. However, the
increasing ranges of SFLBFGS are lower than those of the rest
methods. (iii) SFLBFGS obtains better reconstructed shapes
than the rest methods on the two large-scale sequences, and
achieves an effective tradeoff between shape recovery accuracy

TABLE IV
RUNNING TIMES(SECONDS) ON THE MID-SCALE AND LARGE-SCALE DATA.

Methods PTA CSF RIKA BMM EM-PND SFLBFGS
Drink 18 17 2123 719 � 390
Flag 8 331 1436 1525 ♦ 82

UMPM 1228 21656 1164857 33564 781 13171

Fig. 1. Performance comparison on noisy Face1 dataset.

and computational speed. This demonstrates that SFLBFGS is
capable to handle large-scale data effectively.

B. Performances on Noisy Data

This subsection evaluates the performances of all the re-
ferred methods on noisy data. Zero mean Gaussian random
noise with standard deviations σn = r ∗ max(std(Wx),
std(Wy)) (r ∈ {5%, 10%, 15%, 20%, 25%, 30%} is the noise
ratio, Wx/Wy represent all the x/y-coordinates in W ) is
added into each point of the used standard sequences in
Section III-A, and each method is implemented 10 times
independently on each sequence with noise.

Fig. 1 shows the performance comparison on the Face1
sequence with different noise ratios. As is seen, the extra-
prior-free SFLBFGS performs better than RIKA, BMM, and
EM-PND in most cases, and achieves close performances to
both PTA and CSF which require extra smoothness priors. This
demonstrates that SFLBFGS can effectively handle noisy data.

C. Performances on Frame-Reshuffled Data

In some special cases, the temporal relations among the
input 2D points may be unknown and the temporal-smoothness
prior does not hold, such as the case where the input 2D points
are obtained from a collection of images without temporal rela-
tions. Here, the performances of the referred methods on data
without temporal relations are evaluated. Such kind of data



(a) Walking (b) Face1

Fig. 2. Performance comparison on frame-reshuffled data.

Fig. 3. Performance on real video Data. First row: sample frames and 2D
tracking points; Second row: approximately front views of the reconstructed
3D shapes by the proposed method.

is synthesized by randomly reshuffling the frames of the used
standard sequences in Section III-A as done in [11], [12], [15],
and the smoothness assumption across frames does not hold
any more in these frame-reshuffled sequences. These methods
are implemented on ten sets of frame-reshuffled data from
each standard sequence, and Fig. 2 shows their performances
on Walking and Face1. As is seen, EM-PND, RIKA, BMM,
SFLBFGS are immune to the random permutation, while PTA,
CSF are sensitive to the random permutation.

D. Performances on Real Video Data

In this section, the Franck sequence1, which is taken from a
video of a person engaged in conversation, is used to evaluate
the performance of the proposed SFLBFGS method on real
video data as done in [8], [11]. We select the first 1500
frames from the 5000-frame video sequence for testing. An
AAM(Active Appearance Model) has been employed to track
68 features in this sequence. Fig. 3 shows four reconstruction
samples by SFLBFGS. As is seen, SFLBFGS can effectively
recover the 3D shapes from the input real video data.

IV. CONCLUSION

In this paper, we propose an extra-prior-free factorization
method SFLBFGS for NRSFM, which computes the rotation
matrix and the 3D deformable shapes in a sequential manner.
SFLBFGS is easy to implement, where only several simple
techniques are employed. Moreover, it is able to handle large-
scale data and achieve an effective tradeoff between compu-
tational speed and shape recovery accuracy as demonstrated
in our experiments. In the future, we will investigate how to
extend it to handle missing-data cases effectively.

1http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/talking face
.html
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