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ABSTRACT into two categories: 2D techniques [2, 16, 17, 18] and 3D

How to learn view-invariant facial representations is an im technlques_ [1_9’ 20, 21]. ]

portant task for view-invariant face recognition. The mgce The existing 3D methods usually estimate 3D models
work [1] discovered that the brain of the macaque monke&rom 2D input or capture 3D facial data, and then matph them
has a face-processing network, where some neurons are viel- 2D probe face images. Asthana et al. [20] projected a
specific. Motivated by this discovery, this paper proposeé‘on‘frontal face image onto an aligned 3D face model, and

a deep convolutional learning model for face recognitionthen rotated it to render a frontal face image. Li et al. [21]
which explicitly enforces this view-specific mechanism for Uséd a set of 3D displacement fields sampled from a 3D face

learning view-invariant facial representations. The jusex database to generate a virtual vieyv for the probe image and
model consists of two concatenated modules: the first ongompared the synthesized faces with each of the gallergface
is a convolutional neural network (CNN) for learning the  Different from these 3D methods, the existing 2D meth-
corresponding viewing pose to the input face image; the se@®ds attempt to handle view variations by 2D image match-
ond one consists of multiple CNNs, each of which learndng or by encoding a test image with some exemplars. Li et
the corresponding frontal image of an image under a specifigl- [16] proposed an elastic matching method based on Gaus-
viewing pose. This method is of low computational cost,sian Mixture Model (GMM) to align the patches and match
and it can be well trained with a relatively small number ofthe face images at different poses. Zhu et al. [2] proposed a
samples. The experimental results on the MultiPIE dataséteep neural network that can transform a face image with an
demonstrate the effectiveness of our proposed convohitionarbitrary view and illumination to a frontal face image with

model in contrast to three state-of-the-art works. neutral illumination. Yim et al. [17] presented a new deep
architecture which can rotate a face image with an arbitrary

view and illumination to a target-view face image.

The recent work [1] found that a macaque monkey has a
face-processing system consisting of six interconnectegHf
1. INTRODUCTION selective regions, where neurons in some of these regions

were view-specific. Motivated by this intriguing function

Over the Ias.t.twenty years, there has begn huge progress iR o macaque monkey’s brain, we propose a novel deep
face recognition. Deep learning has achieved great succeggnyojutional learning model, called VS2VI, which learns
on face recognition [2, 3, 4, 5, 6] and significantly outper-;a\y invariant facial representations by explicitly erding
formed the existing systems using low-level features [B,8, s jiew-specific mechanism. There are two concatenated
1_0’ 11, 12, 13, 14, 15]. The performances of fa_ce reco9Nixodules in our proposed model. The first one is to learn
tion systems depen_d heavily on face representgtlon, which j o viewing pose of each input image, while the second one
naturally coupled with many types of face variations, SUh aqaing multiple CNNs, each of which learns the corre-

viewing pose, illumination, expression, occlusion and 80 0 g54ding frontal image of the input image according to the
Among them view variation is a particular challenge becausiee‘,:lmt viewing pose

intra-person variance caused by view variation sometirkes e .
P y Our contributions are as two-fold: 1. We propose a

ceeds inter-person variance. Addressing this problent,af lo o : .
i -~ new deep model for face recognition, which learns view-
methods have been proposed, which can be roughly divide : . o . .
invariant representations by explicitly enforcing thewie

*Corresponding author: gldong@nlpr.ia.ac.cn specific mechanism, inspired by the face-processing n&twor

Index Terms— Face recognition, View-invariant repre-
sentations, Convolutional neural network
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Fig. 1. Architecture of the proposed VS2VI network.

of the macaque monkey’s brai@. The proposed model can 2.1. View Learning Module

be trained with a small number of samples since deconvo- ] ) ) o
lutional layers instead of fully connected layers are uged t 1N€ View learning module learns the corresponding viewing
reconstruct the frontal face images. pose to the input face image and its architecture is shown in

Fig. 2(a). This module is composed by three convolutional
Input a P2 e pa cs Fo layers, two max-pooling layers and a fully connected layer.
60%60 32@60%60 32@30x30 32@30x30 32@15%15 32@15x15 7 . .

s » s The input of the network are face images and the output of

= F = WZMWM——D the network is the probability of each possible viewing pose
= — \ The whole set of parameters in the network is expressed

‘ ‘ ‘ ‘ ‘ ‘ as Input0 x 60)-C(32,9)-P(2, 2)-C(32,9)-P(2, 2)-C(32, 9)-
Comoltion Maxpoolig  Comvolution  Maxpoolig  Comvolution _ Fully Connected F(7). ‘C’, 'P’, and ‘F’ respectively denote the convolutional

(@) layer, pooling layer, and fully connected layer. For the-con
. ) i . volutional layer, the first number in the bracket indicates t
w00 a06010 10300 20300 w00 number of the filters and the second indicates the filter size.

Convolutional layers use ReLU [22] as the activation func-
tion. For the pooling layer, the first number in the bracket in
dicates the filter size and the second indicates the stride. T
fully connected layer uses the softmax loss as cost function

Locally connec ted Max pooling Locally connected Deconvol lution

2.2. Frontal Image Learning Module

Fig. 2. (a) The architecture of the view learning module. (b)The frontal image learning module consists of several sub-
The architecture of the frontal image learning module. networks determined by the view learning module, each of
which learns the corresponding frontal image of an image un-
der a specific viewing pose. The architecture of each single
2. MODEL DESCRIPTION sub-network is shown in Fig. 2(b). The sub-network for each
specific viewing pose is composed of two locally connected
In this section, we propose the VS2VI model, consisting ofayers, a max pooling layer and a deconvolutional layer. The
two concatenated modules (view learning module and frontdlrst three layers are proposed to extract features and she la
image learning module). The architecture of the VS2Vllayer is proposed to recover the frontal face images. Thetinp
model is show in Fig. 1. As is seen, given a face image of aand the output of the sub-network are both face images.
arbitrary viewing pose, the view learning module classifies We design the frontal image learning module based on
into a specific viewing pose first. Then the face image is dealhe following observations: 1. Since the features of défdr
with by the sub-network of the corresponding viewing posaegions of face images are quite different, we use locally
in the frontal image learning module. Finally, a classifimat connected layers without weight sharing rather than stahda
method (here, we simply use LDA (linear discriminant anal-convolutional layers which share weights, commonly used
ysis)) is used to classify the output image of the frontalgma by many previous works [23, 22]. 2. Considering that the
learning module into a certain identity. LDA is not used in amount of samples in many real applications is not sufficient
the view learning module. In this paper, the used images arenough to learn millions of parameters, we use a deconvo-
grayscale with sizé0 x 60. In the following subsections, the lutional layer instead of a fully connected layer as the last
designed two modules are described in details. layer of the proposed network since fewer parameters are



needed in a deconvolutional layer than in a fully connected 457 -30° <157 4157 +30°  +45°  Avg

layer. Only0.46M parameters are needed for a deconvolu-  Li[27] 635 69.3 797 756 716 546 693
7 H Z.Zhu [2] 67.1 74.6 86.1 83.3 75.3 61.8 74.4
tional layer, while103M parameters are needed for a fully iy 623 843 923 911 8soc csa 781

connected layer.
The whole set of parameters in sub-networks is expressed gﬁ'F[%f;] gg'_% ij-_‘; %g_i 883'_55 ;%"i %% ;%.97

as Input60 x 60)-L(4, 9)-P(3, 2)-L(32,9)-D(1, 4). ‘'L’, ‘P’ and vsavit 956 948 978 961 940 923 951
‘D’ respectively denote the locally connected layer, pogli

layer and deconvolutional layer. For the locally connected Table 1. Recognition rates (%) on different poses.
layer, the first number in the bracket indicates the number of

the filters and the second indicates the filter size. The whole 00 0L 02 03 04 05 06
Io_caIIy connec?ed Iayer_ ha_s strid_e 1. A PReLU [24] is ap- L 27] 515 492 557 627 795 883 975
plied as activation function in the first locally connectagdr, \Zlgg\t;lm 25'3 ;gg ;g-g ;Z; ;g; 8359-7 8471567
where the slopes of negative parts are learned from datrrath : : : : : : :
than preset constants. D@) means that this layer applies 1 CPI[l7] ~ 66.0 626 €96 730 791 845 866

CPF[17] 59.7 706 763 79.1 851 894 913
vsavit 875 908 951 956 97.8 98.0 98.0

08 09 10 11 12 13 14

filter with weight sharing with size 4 and stride 2 to imple-
ment upsampling. Upsampling is implemented by bilinear in-
terpolation in the deconvolutional layer. The deconvolndil

B Li [27] 97.7 91.0 79.0 64.8 543 47.7 67.3
layer use¥,-loss as cost function. zzhu[2] 757 757 757 757 757 757 73.4
VS2vi 85.6 83.4 80.8 78.2 75.6 729 79.8
CPI[17] 86.5 84.2 80.2 76.0 70.8 65.7 76.1
3. TRAINING CPF[17] 923 90.6 865 812 775 728 823
vsavit 98.1 98.0 97.1 95.2 92.3 89.9 97.1
Our method is implemented with Caffe [25], which is one of 15 16 17 18 19 Avg
the most popular deep learning frameworks. Li[27] 67.7 755 695 67.3 50.8 69.3
. . . . : Z.Zhu [2] 73.4 73.4 73.4 729 729 74.7
The basic backpropa}gatlon (BP) is qsec_i to train the view {5y 785 819 802  79.0 677 781
learning module. To facilitate the optimization, a new laye
. . . T . CPI[17] 78.2 80.7 79.4 77.3 65.4 75.9
wisely training strategy is used to initialize the weightga- CPF[17] 842 865 859 829 592 80.7
eters in the frontal image learning module in two steps. In vsavit 978 977 972 970 87.0 95.1

the first step, the first locally connected layer generates4 f
ture maps from the inputimages. Then the average of featureTable 2. Recognition rates (%) on different illuminations.
maps is used to compare with the target frontal face image,
and the simple network is trained with tkig-loss function.
In the second step, the second locally connected layer genéiages of the first 100 identities are for training (14000 im-
ates 32 feature maps from the previous layer. The succeedifges in total), and the images of the remaining 149 idestitie
layer is pre-trained with the sample method while keepirg th for test. One frontal image of each identity in the test set is
weight parameters in the pre-layer fixed. selected to the gallery. Since 7 images are produced for all
We train our models using stochastic gradient descerif'® 7 poses for each gallery image in [17], to compare fairly,
with batch size of 64 examples, momentum of 0.9, and weigh#/® produce 7 groups of gallery images by the sub-network
decay of 0.004. The weights of locally connected layer ar®f the corresponding viewing pose and select one group each
initialized from a zero-mean Gaussian distribution witanst ~time according to the pose. We denote the above method as
dard deviation 0.05. The learning rate is initialized a0 VS2VI'. The used face images are aligned according to the
and we divide it by 10 when the test loss stops decreasing. POSition of eyes and mouths, and then converted to grayscale
images. Each image is subtracted by the mean value over the
training set.
4. EXPERIMENTS

The proposed method VS2VI is evaluated on the popuIaAr"l' Face Recognition

MultiPIE dataset [26], which contains images of 337 peopldn this subsection, we compare our recognition results and
of various views, illuminations and expressions. In addifi the number of parameters with the state-of-the-art methods
Zhu et al. [2] and Yim et al. [17] are tested on the same dataseind show the features of the output layer in the frontal face
for comparison. Similar to [2, 17], a subset of MultiPIE is learning module.

used to evaluate all the referred method, which is same as In the test stage, we extract features from the output layer.
Setting 1 in [17]: only images in session one which containd. DA is used to classify the output frontal images from all the
249 subjects with neutral expression under all the 7 posagferred methods. The recognition rates of those methads fo
and 20 illuminations are adopted for training and test. Thalifferent poses are listed in Table 1 and for different illum
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— Table 4. Classification rates (%) on viewing poses.

Fig. 3. Reconstructed examples: (top) Images of six poses @ —
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Table 3. Comparison of involved numbers of parameters in b
the referred methods. The least number of parameters is writ (@) (b)

ten in bold. The listed number of parameters for [17] onlygig. 4, Results of the visualization. (a) Reconstructed frontal

corresponds to the used number of parameters in the rotati%ages of 10 identities (ID 101 to 110). The dot of the same

task. color represents the same identity. (b) Distribution of the
learnt features from the last convolutional layer in thenfed
image learning module. The dot of the same color represents

hations are in Table 2. Best results are written in b(,)Id' EXthe feature of inputimages under the same viewing condition
perimental results are compared separately accordingeto th

number of gallery images.
As seen from Table 1, VS2VI outperforms the meth-4.2. View Classification

ods [27, 2] on fo_gr poses(15°, +30.0.’ —15"and—30°) and |, this subsection, we evaluate the VS2VI’s ability for lear
average recognition rate. In addition, VS2\utperforms ing the viewing poses of the input images. The classification
the state-of-the-art for all the poses. The reason why fecog;. viewing pose by VS2VI on each subset of images with
nition rates of+4fr)o., —45° are not good for VSZ\/I is that a specific viewing pose-(45°, —30°, —15°, 15°, 30°, 45°) is

the number of training e_xamples faed5® a_nd—450 1S zeally reported in Table 4. As is seen, the classification rates et mo
small._ Only at_)o_ut2000 Images are provided for-45° and viewing poses by the proposed VS2VI model are above 90%.
.*45 in the training stage resp_ectwe_ly. In. our .methods, face |, addition, the features from the last convolutional layer
'mages of each viewing pose |s.tra|ned lnd|V|dyaIIy. HOW'are visualized using the t-SNE [28] method to demonstrate th
ever, in the other works, all the images are trained togetheéﬁectiveness of the view learning module. Fig. 4(b) shows

through one network and the training dataset is reI""t'vehfhat the feature is discriminative among different viewing
large compared with our methods. If more data-fa5° and poses

—45° is provided, our method can also perform very well.

As seen from Table 2, VS2VI outperforms the meth-
ods [27, 2] for 10 out of 19 illuminations and VS2\Mbutper-

forms the state-of-the-artfor all the illuminations. Therftal Inspired by the face-processing network of the macaque mon-

illumination (1D 07) is not included in the test stage. key’s brain, we propose a deep model of two concatenated
Fig. 3 shows several reconstructed face images, verifyinghodules for face recognition. The first module learns the cor

that VS2VI can effectively remove the variation of viewing responding viewing pose to the input face image. The sec-

poses, meanwhile retain the intrinsic features of eacttilfen  ond module consists of several CNNs, each of which learns
The numbers of parameters of previous works [2, 17] andhe corresponding frontal image of an image under a specific

VS2VI are reported in Table 3. It shows that the number ofviewing pose. Extensive experimental results demonstrate

parameters in VS2VI is less than those in [2, 17]. Howeverthe effectiveness of the proposed model. In the future, we

VS2VI still achieves comparable results on MultiPIE datase will combine VS2VI with some classic face recognition ap-
Moreover, in order to verify the reconstructed frontal im- Proaches to further improve the performance.

ages by VS2VI are view-invariant, the t-SNE [28] method

is used to transform the reconstructed frontal images from 6. ACKNOWLEDGEMENT

high-dimensional space into two-dimensional space. Ka&). 4
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