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ABSTRACT

How to learn view-invariant facial representations is an im-
portant task for view-invariant face recognition. The recent
work [1] discovered that the brain of the macaque monkey
has a face-processing network, where some neurons are view-
specific. Motivated by this discovery, this paper proposes
a deep convolutional learning model for face recognition,
which explicitly enforces this view-specific mechanism for
learning view-invariant facial representations. The proposed
model consists of two concatenated modules: the first one
is a convolutional neural network (CNN) for learning the
corresponding viewing pose to the input face image; the sec-
ond one consists of multiple CNNs, each of which learns
the corresponding frontal image of an image under a specific
viewing pose. This method is of low computational cost,
and it can be well trained with a relatively small number of
samples. The experimental results on the MultiPIE dataset
demonstrate the effectiveness of our proposed convolutional
model in contrast to three state-of-the-art works.

Index Terms— Face recognition, View-invariant repre-
sentations, Convolutional neural network

1. INTRODUCTION

Over the last twenty years, there has been huge progress in
face recognition. Deep learning has achieved great success
on face recognition [2, 3, 4, 5, 6] and significantly outper-
formed the existing systems using low-level features [7, 8,9,
10, 11, 12, 13, 14, 15]. The performances of face recogni-
tion systems depend heavily on face representation, which is
naturally coupled with many types of face variations, such as
viewing pose, illumination, expression, occlusion and so on.
Among them view variation is a particular challenge because
intra-person variance caused by view variation sometimes ex-
ceeds inter-person variance. Addressing this problem, a lot of
methods have been proposed, which can be roughly divided
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into two categories: 2D techniques [2, 16, 17, 18] and 3D
techniques [19, 20, 21].

The existing 3D methods usually estimate 3D models
from 2D input or capture 3D facial data, and then match them
to 2D probe face images. Asthana et al. [20] projected a
non-frontal face image onto an aligned 3D face model, and
then rotated it to render a frontal face image. Li et al. [21]
used a set of 3D displacement fields sampled from a 3D face
database to generate a virtual view for the probe image and
compared the synthesized faces with each of the gallery faces.

Different from these 3D methods, the existing 2D meth-
ods attempt to handle view variations by 2D image match-
ing or by encoding a test image with some exemplars. Li et
al. [16] proposed an elastic matching method based on Gaus-
sian Mixture Model (GMM) to align the patches and match
the face images at different poses. Zhu et al. [2] proposed a
deep neural network that can transform a face image with an
arbitrary view and illumination to a frontal face image with
neutral illumination. Yim et al. [17] presented a new deep
architecture which can rotate a face image with an arbitrary
view and illumination to a target-view face image.

The recent work [1] found that a macaque monkey has a
face-processing system consisting of six interconnected face-
selective regions, where neurons in some of these regions
were view-specific. Motivated by this intriguing function
of the macaque monkey’s brain, we propose a novel deep
convolutional learning model, called VS2VI, which learns
view-invariant facial representations by explicitly enforcing
this view-specific mechanism. There are two concatenated
modules in our proposed model. The first one is to learn
the viewing pose of each input image, while the second one
contains multiple CNNs, each of which learns the corre-
sponding frontal image of the input image according to the
learnt viewing pose.

Our contributions are as two-fold:1. We propose a
new deep model for face recognition, which learns view-
invariant representations by explicitly enforcing the view-
specific mechanism, inspired by the face-processing network
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Fig. 1. Architecture of the proposed VS2VI network.

of the macaque monkey’s brain.2. The proposed model can
be trained with a small number of samples since deconvo-
lutional layers instead of fully connected layers are used to
reconstruct the frontal face images.
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Fig. 2. (a) The architecture of the view learning module. (b)
The architecture of the frontal image learning module.

2. MODEL DESCRIPTION

In this section, we propose the VS2VI model, consisting of
two concatenated modules (view learning module and frontal
image learning module). The architecture of the VS2VI
model is show in Fig. 1. As is seen, given a face image of an
arbitrary viewing pose, the view learning module classifiesit
into a specific viewing pose first. Then the face image is dealt
with by the sub-network of the corresponding viewing pose
in the frontal image learning module. Finally, a classification
method (here, we simply use LDA (linear discriminant anal-
ysis)) is used to classify the output image of the frontal image
learning module into a certain identity. LDA is not used in
the view learning module. In this paper, the used images are
grayscale with size60× 60. In the following subsections, the
designed two modules are described in details.

2.1. View Learning Module

The view learning module learns the corresponding viewing
pose to the input face image and its architecture is shown in
Fig. 2(a). This module is composed by three convolutional
layers, two max-pooling layers and a fully connected layer.
The input of the network are face images and the output of
the network is the probability of each possible viewing pose.

The whole set of parameters in the network is expressed
as Input(60 × 60)-C(32, 9)-P(2, 2)-C(32, 9)-P(2, 2)-C(32, 9)-
F(7). ‘C’, ‘P’, and ‘F’ respectively denote the convolutional
layer, pooling layer, and fully connected layer. For the con-
volutional layer, the first number in the bracket indicates the
number of the filters and the second indicates the filter size.
Convolutional layers use ReLU [22] as the activation func-
tion. For the pooling layer, the first number in the bracket in-
dicates the filter size and the second indicates the stride. The
fully connected layer uses the softmax loss as cost function.

2.2. Frontal Image Learning Module

The frontal image learning module consists of several sub-
networks determined by the view learning module, each of
which learns the corresponding frontal image of an image un-
der a specific viewing pose. The architecture of each single
sub-network is shown in Fig. 2(b). The sub-network for each
specific viewing pose is composed of two locally connected
layers, a max pooling layer and a deconvolutional layer. The
first three layers are proposed to extract features and the last
layer is proposed to recover the frontal face images. The input
and the output of the sub-network are both face images.

We design the frontal image learning module based on
the following observations: 1. Since the features of different
regions of face images are quite different, we use locally
connected layers without weight sharing rather than standard
convolutional layers which share weights, commonly used
by many previous works [23, 22]. 2. Considering that the
amount of samples in many real applications is not sufficient
enough to learn millions of parameters, we use a deconvo-
lutional layer instead of a fully connected layer as the last
layer of the proposed network since fewer parameters are



needed in a deconvolutional layer than in a fully connected
layer. Only0.46M parameters are needed for a deconvolu-
tional layer, while103M parameters are needed for a fully
connected layer.

The whole set of parameters in sub-networks is expressed
as Input(60×60)-L(4, 9)-P(3, 2)-L(32, 9)-D(1, 4). ‘L’, ‘P’ and
‘D’ respectively denote the locally connected layer, pooling
layer and deconvolutional layer. For the locally connected
layer, the first number in the bracket indicates the number of
the filters and the second indicates the filter size. The whole
locally connected layer has stride 1. A PReLU [24] is ap-
plied as activation function in the first locally connected layer,
where the slopes of negative parts are learned from data rather
than preset constants. D(1, 4) means that this layer applies 1
filter with weight sharing with size 4 and stride 2 to imple-
ment upsampling. Upsampling is implemented by bilinear in-
terpolation in the deconvolutional layer. The deconvolutional
layer usesℓ2-loss as cost function.

3. TRAINING

Our method is implemented with Caffe [25], which is one of
the most popular deep learning frameworks.

The basic backpropagation (BP) is used to train the view
learning module. To facilitate the optimization, a new layer-
wisely training strategy is used to initialize the weight param-
eters in the frontal image learning module in two steps. In
the first step, the first locally connected layer generates 4 fea-
ture maps from the input images. Then the average of feature
maps is used to compare with the target frontal face image,
and the simple network is trained with theℓ2-loss function.
In the second step, the second locally connected layer gener-
ates 32 feature maps from the previous layer. The succeeding
layer is pre-trained with the sample method while keeping the
weight parameters in the pre-layer fixed.

We train our models using stochastic gradient descent
with batch size of 64 examples, momentum of 0.9, and weight
decay of 0.004. The weights of locally connected layer are
initialized from a zero-mean Gaussian distribution with stan-
dard deviation 0.05. The learning rate is initialized at 0.001
and we divide it by 10 when the test loss stops decreasing.

4. EXPERIMENTS

The proposed method VS2VI is evaluated on the popular
MultiPIE dataset [26], which contains images of 337 people
of various views, illuminations and expressions. In addition,
Zhu et al. [2] and Yim et al. [17] are tested on the same dataset
for comparison. Similar to [2, 17], a subset of MultiPIE is
used to evaluate all the referred method, which is same as
Setting 1 in [17]: only images in session one which contains
249 subjects with neutral expression under all the 7 poses
and 20 illuminations are adopted for training and test. The

-45◦ -30◦ -15◦ +15◦ +30◦ +45◦ Avg

Li [27] 63.5 69.3 79.7 75.6 71.6 54.6 69.3
Z.Zhu [2] 67.1 74.6 86.1 83.3 75.3 61.8 74.4
VS2VI 62.3 84.3 92.3 91.1 80.5 58.4 78.1

CPI [17] 66.6 78.0 87.3 85.5 75.8 62.3 75.9
CPF [17] 73.0 81.7 89.4 89.5 80.4 70.3 80.7
VS2VI† 95.6 94.8 97.8 96.1 94.0 92.3 95.1

Table 1. Recognition rates (%) on different poses.

00 01 02 03 04 05 06

Li [27] 51.5 49.2 55.7 62.7 79.5 88.3 97.5
Z.Zhu [2] 72.8 75.8 75.8 75.7 75.7 75.7 75.7
VS2VI 68.2 72.3 76.3 76.8 79.8 82.9 84.8

CPI [17] 66.0 62.6 69.6 73.0 79.1 84.5 86.6
CPF [17] 59.7 70.6 76.3 79.1 85.1 89.4 91.3
VS2VI† 87.5 90.8 95.1 95.6 97.8 98.0 98.0

08 09 10 11 12 13 14

Li [27] 97.7 91.0 79.0 64.8 54.3 47.7 67.3
Z.Zhu [2] 75.7 75.7 75.7 75.7 75.7 75.7 73.4
VS2VI 85.6 83.4 80.8 78.2 75.6 72.9 79.8

CPI [17] 86.5 84.2 80.2 76.0 70.8 65.7 76.1
CPF [17] 92.3 90.6 86.5 81.2 77.5 72.8 82.3
VS2VI† 98.1 98.0 97.1 95.2 92.3 89.9 97.1

15 16 17 18 19 Avg

Li [27] 67.7 75.5 69.5 67.3 50.8 69.3
Z.Zhu [2] 73.4 73.4 73.4 72.9 72.9 74.7
VS2VI 78.5 81.9 80.2 79.0 67.7 78.1

CPI [17] 78.2 80.7 79.4 77.3 65.4 75.9
CPF [17] 84.2 86.5 85.9 82.9 59.2 80.7
VS2VI† 97.8 97.7 97.2 97.0 87.0 95.1

Table 2. Recognition rates (%) on different illuminations.

images of the first 100 identities are for training (14000 im-
ages in total), and the images of the remaining 149 identities
for test. One frontal image of each identity in the test set is
selected to the gallery. Since 7 images are produced for all
the 7 poses for each gallery image in [17], to compare fairly,
we produce 7 groups of gallery images by the sub-network
of the corresponding viewing pose and select one group each
time according to the pose. We denote the above method as
VS2VI†. The used face images are aligned according to the
position of eyes and mouths, and then converted to grayscale
images. Each image is subtracted by the mean value over the
training set.

4.1. Face Recognition

In this subsection, we compare our recognition results and
the number of parameters with the state-of-the-art methods,
and show the features of the output layer in the frontal face
learning module.

In the test stage, we extract features from the output layer.
LDA is used to classify the output frontal images from all the
referred methods. The recognition rates of those methods for
different poses are listed in Table 1 and for different illumi-
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Fig. 3. Reconstructed examples: (top) Images of six poses
and arbitrary illuminations for each identity. (bottom) Recon-
structed frontal face images under neutral illumination.

Network Z.Zhu [2] Yim [17] VS2VI

Number of Parameters 250.97 153.33 65.81

Table 3. Comparison of involved numbers of parameters in
the referred methods. The least number of parameters is writ-
ten in bold. The listed number of parameters for [17] only
corresponds to the used number of parameters in the rotation
task.

nations are in Table 2. Best results are written in bold. Ex-
perimental results are compared separately according to the
number of gallery images.

As seen from Table 1, VS2VI outperforms the meth-
ods [27, 2] on four poses(+15◦,+30◦,−15◦ and−30◦) and
average recognition rate. In addition, VS2VI† outperforms
the state-of-the-art for all the poses. The reason why recog-
nition rates of+45◦,−45◦ are not good for VS2VI is that
the number of training examples for+45◦ and−45◦ is really
small. Only about2000 images are provided for+45◦ and
−45◦ in the training stage respectively. In our methods, face
images of each viewing pose is trained individually. How-
ever, in the other works, all the images are trained together
through one network and the training dataset is relatively
large compared with our methods. If more data for+45◦ and
−45◦ is provided, our method can also perform very well.

As seen from Table 2, VS2VI outperforms the meth-
ods [27, 2] for 10 out of 19 illuminations and VS2VI† outper-
forms the state-of-the-art for all the illuminations. The frontal
illumination (ID 07) is not included in the test stage.

Fig. 3 shows several reconstructed face images, verifying
that VS2VI can effectively remove the variation of viewing
poses, meanwhile retain the intrinsic features of each identity.

The numbers of parameters of previous works [2, 17] and
VS2VI are reported in Table 3. It shows that the number of
parameters in VS2VI is less than those in [2, 17]. However,
VS2VI still achieves comparable results on MultiPIE dataset.

Moreover, in order to verify the reconstructed frontal im-
ages by VS2VI are view-invariant, the t-SNE [28] method
is used to transform the reconstructed frontal images from
high-dimensional space into two-dimensional space. Fig. 4(a)
shows the reconstructed frontal images of same identity are
spatially close, while the reconstructed images corresponding
to different identities are spatially discriminative.

view -45◦ -30◦ -15◦ +15◦ +30◦ +45◦ Avg

accuracy 96.1 95.2 95.3 96.7 89.4 93.2 94.3

Table 4. Classification rates (%) on viewing poses.
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Fig. 4. Results of the visualization. (a) Reconstructed frontal
images of 10 identities (ID 101 to 110). The dot of the same
color represents the same identity. (b) Distribution of the
learnt features from the last convolutional layer in the frontal
image learning module. The dot of the same color represents
the feature of input images under the same viewing condition.

4.2. View Classification

In this subsection, we evaluate the VS2VI’s ability for learn-
ing the viewing poses of the input images. The classification
rate of viewing pose by VS2VI on each subset of images with
a specific viewing pose (−45◦,−30◦,−15◦, 15◦, 30◦, 45◦) is
reported in Table 4. As is seen, the classification rates of most
viewing poses by the proposed VS2VI model are above 90%.

In addition, the features from the last convolutional layer
are visualized using the t-SNE [28] method to demonstrate the
effectiveness of the view learning module. Fig. 4(b) shows
that the feature is discriminative among different viewing
poses.

5. CONCLUSION

Inspired by the face-processing network of the macaque mon-
key’s brain, we propose a deep model of two concatenated
modules for face recognition. The first module learns the cor-
responding viewing pose to the input face image. The sec-
ond module consists of several CNNs, each of which learns
the corresponding frontal image of an image under a specific
viewing pose. Extensive experimental results demonstrate
the effectiveness of the proposed model. In the future, we
will combine VS2VI with some classic face recognition ap-
proaches to further improve the performance.
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