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ABSTRACT

Background modeling is a fundamental problem in computer
vision and usually as the first step for high-level application-
s. Pixel based approaches usually ignore the spatial coher-
ence, while region based approaches are sensitive to region
size and scene complexity. In this paper, we propose a ro-
bust background subtraction approach via multiple features
based shared models. Each shared model is represented by a
sequence of samples based on sample consensus. Each pixel
dynamically searches a matched model around the neighbor-
hood. This shared mechanism not only enhances the robust-
ness for background noise and jitter but also significantly re-
duces the number of models and samples for each model. Be-
sides, we concatenate color and texture features as multiple
features according to the discriminability and complementar-
ity, so that each pixel can find a proper model more easily.
Finally, the shared models are updated by random selecting a
pixel matched the model with an adaptive update rate. Exper-
iments on ChangeDetection benchmark 2014 show that the
proposed approach outperforms the state-of-the-art methods.

Index Terms— Background modeling, shared model

1. INTRODUCTION

As the first step in many computer vision tasks such as object
tracking, classification, re-identification and retrieval, back-
ground subtraction has experienced a rapid development over
the past decades. Background subtraction has moved forward
from simply comparing a static background frame with cur-
rent frame to establishing a sophisticated background model
of the scene with periodic updates.

Toward a convenient and high-speed implementation,
most modern approaches of background subtraction are based
on pixel level modeling which assumes adjacent pixels are
independent and builds a separate model for each pixel, such
as Gaussian Mixture Model (GMM) [1, 2], Kernel Density
Estimation (KDE) [3], and non-parametric approaches based
on sample consensus (ViBe [4] and PBAS [5]). Color inten-
sities are the most common choice as feature representation
or distribution estimation. These pixel based approaches can

fully utilize temporal information, and meanwhile partly or
totally ignore spatial information between adjacent pixels.
Therefore, pixel based approaches are not robust enough to
background noise and camera jitter though they are effective
and easy to bootstrap. Since color intensities are sensitive
to the changes of background illumination, some approaches
introduced texture information to enhance the discriminabil-
ity like LBP [6], SILTP [7] and LBSP [8]. In addition, to
incorporate more information around, some region based ap-
proaches [9, 10] were proposed by combining a central pixel
with the adjacent pixels. This context information enhanced
the robustness for background noise, illumination and camera
jitter. Some other approaches [11, 12] established models
by clustering pixels into different clusters. However, they
often lead to performance degradation for foreground object
extraction since the region based approaches are sensitive to
region size and scene complexity.

Based on our widely observation, it is not necessary to
build a background model for all positions since a model can
be easily shared by the neighbor pixels with similar appear-
ance. Therefore, in this paper we present a robust background
subtraction approach via multiple features based shared mod-
els. A given observation is considered as foreground or back-
ground based on whether to dynamically find a matched mod-
el around the neighborhood. This kind of shared mechanis-
m allows different pixels to share the same model in current
frame and different models in next frame. In this way, the
shared models could fully exploit spatial-temporal consisten-
cy to enhance models robustness as well as reduce the number
of models. Each shared model is represented by a sequence
of samples based on sample consensus similar to ViBe [4].

In addition, how to select visual features to represent a
sample in shared models is critical for the accuracy and sta-
bility of foreground object extraction. Color features cannot
solve camouflage and illumination variation on the ground
that color intensity itself is sensitive to illumination changes
while texture features cannot separate smooth foregrounds
from smooth backgrounds in most cases [13], the integration
of color and texture features is an effective way to enhance the
robustness while capture the subtle local changes in complex
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Fig. 1. Overview of the proposed approach.

scenes. Hence, we concatenate color and LBSP features as
a rich descriptor to model each sample in the shared model-
s. With the discriminative and complementary descriptor, the
proposed shared model needs less samples than pixel-based
approaches. Furthermore, due to the dynamic change of the
correlation between pixels and models, we update our models
by a random sampling strategy. In consideration of the the ef-
fectiveness of feedback scheme in PBAS [5] and SuBSENSE
[14], we also add an adaptive control of the update rate and
segmentation threshold to keep sensitivity and generalization
ability for shared model learning.

2. METHODOLOGY

The overview of the proposed approach is illustrated in Fig.1.
For a given pixel, we extract the color and texture features.
Then we dynamically search a matched model for each pixel
around the shared region. The shared mechanism makes dy-
namic many-to-one correspondence substitute for fixed one-
to-one correspondence between pixels and models. More-
over, we update the shared model by random selecting a pixel
that matches with the model. To enhance the sensitivity and
generalization, we adopt an adaptive threshold and feedback
strategy. Like SuBSENSE, we utilize two indicators: deci-
sion distance Dmin and blinking level S to monitor back-
ground dynamic and segmentation noise respectively. Then
we can realize the automatical control of update rate T for
shared models and distance threshold R for sample matching
according to these two indicators.

2.1. Multiple features based shared model

In our approach, not all positions need to build a background
model since a model can be shared by the neighbor pixels. We
establish models by utilizing a sample consensus approach
similar to ViBe [4]. Each model is represented by a sequence
of historical samples based on sample consensus. Each pixel

dynamically searches a matched model around the shared re-
gions. We denote a shared model located at x as B(x), which
contains a collection of K historical samples B(x) noted as:

B(x) = {B1(x), B2(x), ..., BK(x)} (1)

Each sample is represented by color values Fcolor(x) and LB-
SP descriptors FLBSP (x) of three color channels. We denote
the concatenated multiple features as F (x). Given a pixel xt

in time t, we dynamically search a matched model with the
feature F (xt) from background shared models in a N × N
region. L(xt) is defined as a binary label for a pixel xt. If xt

matches a shared model, L(xt) = 1, otherwise L(xt) = 0.
L(xt) is computed as,

L(xt) =

{
1, if ∃s, Ls(x

t) = 1, |s− x| ≤ N/2
0, otherwise

(2)

where s is the position of the shared models around pixel xt

in a N×N region. The similarity Ls(x
t) between a pixel and

a model is calculated as Eq. 3.

Ls(x
t) =

{
1, if #{dist(F (xt), Bn(s)) < R, ∀n} > #min

0, otherwise
(3)

where R is the maximum distance threshold. #min is the
minimum number of the matched samples between a mod-
el and a pixel. We fix #min = 2 in all the experiments.
dist(F (xt), Bn(s)) represents the distance between F (xt)
and a given background sample Bn(s) calculated as,

dist(F (xt), Bn(s)) = |Fcolor(x
t)− FBn

color(s)|+
Dh(FLBSP (x

t), FBn
LBSP (s))

(4)

where Dh(·, ·) is the hamming distance. With the shared
mechanism and search strategy, different pixels could share
the same model in current frame and different models in next
frame. In this way, we can exploit the spatial-temporal corre-
lation between pixels by searching the matched model around
a pixel, which can enhance the robustness while significantly
decrease the number of models.
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2.2. Shared model update

We divide the update into three parts: model update and
spread, model feedback of T (update rate for shared mod-
els) and R (distance threshold for sample matching), and
foreground spread.

Model update and spread: Since a background model is
shared by the neighbor pixels, we randomly choose a pixel
that matches with the model to update. That is, we randomly
select a pixel matched the model to update a random selected
sample of the model, then the multiple features of this pixel
has 1/T probability to replace that sample. Meanwhile, the
pixel also has 1/T probability to replace a sample of a neigh-
bor model in the search region.

Model feedback: The adaptive control of the update rate
T and distance threshold R is critical to affect model sensitiv-
ity and generalization ability for shared model updating. To
automatically adjust the update rate T and distance threshold
R, we add the decision distance Dmin and blinking level S
similar to SuBSENSE [14]. Decision distance Dmin is the
minimal distance between the pixel and samples of the model
that it matches, which reflects the degree of background dy-
namics. Blinking level S is an indicator changing with con-
sistency of consecutive segmentation masks, which reflect-
s segmentation noise. Based on these two indicator, we in-
crease update rate T and distance threshold R in the area that
changes dramatically and decrease them in the flat area. More
details can be found in [14].

Foreground spread: If a background model is surround-
ed by foregrounds, i.e., if more than a half pixels closed to this
model are foregrounds, we offer a 1/T probability to replace
a sample by the feature of this foreground pixel.

3. EXPERIMENTS

To evaluate the performance of the proposed approach, we run
the experiments on the public ChangeDetection benchmark
2014 [15], which provides a realistic, camera-captured (no
CGI), diverse set of videos. A total of 53 video sequences
with human labeled ground truth are used for testing.

3.1. Experiments on different shared region size

In this section, we report the performance of the proposed ap-
proach with different size of shared regions. Generally, the
number of models is proportional to image size and inverse-
ly proportional to the size of shared regions. The models are
dynamically shared by the pixels so that complexity of im-
age sequences also has some effect on the number of models.
Take the sequence “port 0 17fps” as an example, we give the
model number of our approach with different size of shared
regions in Table 1. In addition, we compare with GMM [1],
adaptive GMM [2], RMoG [10] and SuBSENSE [14]. When
the size of shared region is 7×7, our approach achieves much

Table 1. Comparison results of different shared region size.
Recall Precision F-

Measure
Total ♯ of
Models

GMM1 [1] 0.4487 0.0121 0.0236 307200
GMM2 [2] 0.4971 0.0095 0.0187 307200
RMoG [10] 0.3558 0.0040 0.0080 34134

SuBSENSE [14] 0.7481 0.0827 0.1490 307200
Ours(5× 5) 0.7036 0.4110 0.5189 43815
Ours(7× 7) 0.6245 0.5502 0.5850 29174
Ours(9× 9) 0.5397 0.6362 0.5840 22901

better performance with about 10% models compared to orig-
inal GMM, adaptive GMM and SuBSENSE. Compared to the
region based approach, our approach achieves better result-
s with less models than RMoG With 7 × 7 and 9 × 9 shared
regions. As the increase of shared region size, the model num-
ber is reduced. But too large size of shared regions will lower
the speed of model matched and cause unnecessary sharing.

Fig. 2. Average F-Measure on ChangeDetection benchmark
2014 upon different numbers of background samples.

3.2. Experiments on different samples

We further analyze the effect of the sample number on the
performance. The comparison results with SuBSENSE on
ChangeDetection benchmark 2014 is shown in Fig. 2.

Generally, increasing samples increases precision but de-
creases recall. Therefore, effective control for the number of
samples is critical to balance the precision and recall. As il-
lustrated in Fig. 2, our approach obtains a comparable per-
formance to SuBSENSE when the number of samples is 5.
Moreover, the performance of our approach with 10 sam-
ples outperforms the best performance of SuBSENSE with
50 samples. Our approach achieves the optimal result with 20
samples, which has a 2% gain than SuBSENSE. Furtherly, we
fix the shared region size at 5 × 5, which means that we use
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Table 2. F-Measures for ChangeDetection benchmark [15]. Ba: Baseline; BW: Bad Weather; CJ: Camera Jitter; DB: Dy-
namic Background; IOM: Intermittent Object Motion; LF: Low Framerate; NV: Night Video; Sh: Shadow; Th: Thermal; Tu:
Turbulence; Overall is the average F-Measure of 11 categories.

Approach Ba BW CJ DB IOM LF NV PTZ Sh Th Tu Overall

SuBSENSE[14] 0.9503 0.8619 0.8152 0.8177 0.6569 0.6445 0.5599 0.3476 0.8986 0.8171 0.7792 0.7408
FTSG[16] 0.9330 0.8228 0.7513 0.8792 0.7891 0.6259 0.5130 0.3241 0.8832 0.7768 0.7127 0.7283

CwisarDH[17] 0.9145 0.6837 0.7886 0.8274 0.5753 0.6406 0.3735 0.3218 0.8476 0.7866 0.7227 0.6812
RMoG[10] 0.7848 0.6826 0.7010 0.7352 0.5431 0.5312 0.4265 0.2470 0.7212 0.4788 0.4578 0.5736
GMM1[1] 0.8245 0.7380 0.5969 0.6330 0.5207 0.5373 0.4097 0.1522 0.7370 0.6621 0.4663 0.5707
GMM2[2] 0.8382 0.7406 0.5670 0.6328 0.5325 0.5065 0.3960 0.1046 0.7322 0.6548 0.4169 0.5566

Spec-360[18] 0.9330 0.7569 0.7142 0.7766 0.5609 0.6437 0.4832 0.3653 0.8187 0.7764 0.5429 0.6732
KDE[3] 0.9092 0.7571 0.5720 0.5961 0.4088 0.5478 0.4365 0.0365 0.7660 0.7423 0.4478 0.5688

Proposed 0.9474 0.8422 0.8159 0.8214 0.6733 0.7295 0.4551 0.4196 0.8885 0.8337 0.8445 0.7519

about one-tenth models of SuBSENSE.
We obtain better results with less samples, which benefits

from the shared mechanism. Since adjacent pixels can share
the same model, models can absorb the discrepancy of pixels
thus increasing the diversity of samples. Utilizing the same
number of samples, our model can accommodate more con-
text information and adapt more background changes. With
the spatial-temporal relationship embedded in the models, in-
coming pixels can find a matched model more easily than
those based on pixel level models. Our approach is more ro-
bust to background movements, noise and slight camera jitter
thereby improving precision without reducing recall.

3.3. Evaluation on ChangeDetection benchmark

We run the experiments on ChangeDeteciton benchmark 2014
[15] to compared with the state-of-the-art approaches. The
shared region is set to 5× 5 and the number of sample is 20.

Table 2 presents the quantitative comparison of the pro-
posed approach in terms of F-Measure to several state-of-
the-art approaches. Our approach achieves the best perfor-
mance in six of eleven categories. Note that the proposed
approach outperforms all the other approaches on the aver-
age F-measure of 11 categories. For PTZ, LowFramerate,
and Turbulence categories, our approach improves about 5%
than the second results. The reason is that shared model-
s effectively remove the background noise and camouflage.
Moreover, with the effective sharable mechanism, our ap-
proach reduces by about nine-tenths models than SuBSENSE
and achieves the best performance at the expense of accept-
able computational cost. The average processing time is 45ms
per frame with a 5× 5 shared region. All programs run on an
Intel i7 CPU at 3.4 GHz.

Fig.3 shows some visual comparisons of foreground de-
tection results. The detection results of GMM and SuB-
SENSE are obtained with BGSLibrary [19]. In Fig.3, the
sequences are “intermittentPan” from PTZ,“sofa” from
intermittentObjectMotion, “sidewalk” and “badminton”
from Camera Jitter. From the visual comparison on these

sequences, our approach presents effectiveness on removing
nonstatic background and acquiring complete foreground.

SuBSENSE[13] ProposedGT GMM[1]Input ViBe[4]

Fig. 3. Visual comparison of foreground detection results.

4. CONCLUSION

We propose to learn multiple features based shared model-
s for robust background subtraction. Each pixel dynamically
searches a matched model around the neighborhood. Multiple
features are fused for effective appearance modeling of each
sample in the shared models, which helps search for suitable
models. With the shared mechanism, we allow pixels having
similar feature to share the same model, which enhances accu-
racy and robustness as well as reduces the number of models
and samples for each model. A random update strategy and
an adaptive update are utilized to keep sensitivity and gener-
alization ability for shared model learning. Experimental re-
sults show that our approach outperforms the state-of-the-art
methods on ChangeDetection Benchmark 2014.
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