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Abstract— The fixed input allocation is an important topic
in the management science field. Previous data envelopment
analysis (DEA) studies consider the problem based on the
constant return to scale (CRS) framework (called CCR DEA
model). However, the return to scale relationship between inputs
and outputs includes three cases: CRS, increasing return to
scale (IRS) and decreasing return to scale (DRS). Therefore,
it is necessary to study the problem based on DEA under the
variable return to scale (VRS) assumption (called BCC DEA
model). This paper has two contributions: one is presenting an
approach to solve the infeasibility problem when a new variable
is added into the super-efficiency BCC DEA model, and the
other is investigating the basic relationship between the BCC
efficiency scores and the allocated fixed input. Both of them
are significant for allocating the fixed input under the VRS
DEA framework. Finally, the proposed approach is illustrated
by an example of allocating the subsidy among urban public
transport enterprises.

I. INTRODUCTION

An important problem in management science field is
how to allocate fixed inputs (including resources and costs),
and it has only been studied under the constant return to
scale (CRS) assumption (called CCR model) [1] in pre-
vious data envelopment analysis (DEA) studies (such as
[2]-[13], etc.). DEA is a well-established non-parametric
methodology to measure the performance of peer decision
making units (DMUs) with multiple inputs and outputs.
However, different return to scale (RTS) assumptions may
have different impacts on the allocation and besides, the
homogeneity among DMUs also needs to take into account
the RTS. Therefore, it is necessary to consider the problem
under the variable return to scale (VRS) assumption (called
BCC model) [14]. Nevertheless, the infeasibility problem
might exist if it is solved by the traditional super-efficiency
[15] BCC model. Besides, the relationship between the DEA
efficiency score and the allocated input is also an important
problem that is needed to be investigated before allocating
the fixed input. The two problems are directly related to
further studying the fixed input allocation problem under
the VRS DEA framework. Therefore, this study focuses
on solving the two problems and illustrates the proposed
approach by an example of allocating the subsidy among
urban public transport enterprises.
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This paper is organized as follows. The following sec-
tion proposes the approach for evaluating the super-BCC
efficiency in the presence of infeasibility in the fixed input
allocation problem, and investigates the relationship between
the super-BCC efficiency score and the allocated fixed input.
Section 3 allocates the transportation subsidy to illustrate the
proposed approach. Conclusions are given in Section 4.

II. THE METHOD

A. DEA model

Suppose there is a set of DMUs, and each DMUj (j =
1, 2, . . . , n) consumes m+1 inputs xij (i = 1, 2, . . . , m+
1) to yield s outputs yrj (r = 1, 2, . . . , s). Then the DEA
efficiency score of any given DMUk(k ∈ {1, 2, ···, n}) under
evaluation can be calculated by the following model:

max
s∑

r=1

uryrk + µ0 = Ek

s.t.
s∑

r=1

uryrj −
m+1∑
i=1

υixij + µ0 ≤ 0, ∀j (1)

m+1∑
i=1

υixik = 1

υi, ur ≥ 0, ∀i, r.

where Ek is the relative efficiency of DMUk, and ur, vi
are unknown weights attached to rth output and ith input
respectively. Model (1) is a CCR model when µ0 = 0 [1],
and it is a BCC model when µ0 is free [14]. They are the
two basic DEA models, which assume the efficient frontier
is CRS and VRS respectively. In BCC model, DMUk is
called IRS (DRS or CRS) if µ∗

0 < 0 (µ∗
0 > 0 or µ∗

0 = 0
) in any optimal solution. That is, CRS is a special case of
VRS. This study is based on the VRS assumption. Model
(1) illustrates that DEA calculates the efficiency score by
comparing DMUk to a virtual DMU on the efficient frontier
of the production possibility set (PPS). DMUk is called
efficient if the optimal DEA efficiency E∗

k = 1.
Suppose R is the total fixed input that should be allocated

to n DMUs, and Rj is the allocated input to DMUj such

that
n∑

j=1

Rj = R. Assume the allocated fixed input and the

input xm+1 have similar impacts on the outputs, then we
integrate them as a single input. Thus we can obtain model
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(2) as follows:

max
s∑

r=1

uryrk + µ0 = Ek

s.t.
m∑
r=1

υixij + υm+1(xm+1,j +Rj) (2)

−
s∑

r=1

uryrj − µ0 ≥ 0, ∀j

m∑
i=1

υixik + υm+1(xm+1,k +Rk) = 1

n∑
j=1

Rj = R

ur, υi, Rj ≥ 0, ∀r, i, j;µ0 free.

Model (2) is a nonlinear programming and it is hard to
calculate the optimal relative efficiency score for each DMU.
To solve the problem, let dj = vm+1 × Rj , ∀j, then model
(2) can be changed as follows

max
s∑

r=1

uryrk + µ0 = Ek

s.t.

m∑
r=1

υixij + υm+1xm+1,j + dj (3)

−
s∑

r=1

uryrj − µ0 ≥ 0, ∀j

m∑
i=1

υixik + υm+1xm+1,k + dk = 1

n∑
j=1

dj = vm+1 ×R

µr, υi, dj ≥ 0, ∀r, i, j;µ0 free.

To investigate the relationship between the BCC efficiency
score and the allocated input, the following model can be
obtained:

max
s∑

r=1

uryrk + µ0 = Ek(q)

s.t.
m∑
r=1

υixij + υm+1xm+1,j + dj (4)

−
s∑

r=1

uryrj − µ0 ≥ 0, ∀j

m∑
i=1

υixik + υm+1xm+1,k + dk = 1

n∑
j=1

dj = vm+1 ×R

dk = q × vm+1,∀q ∈ [0, R]

µr, υi, dj ≥ 0, ∀r, i, j;µ0 free.

In model (4), the fixed input allocated to DMUk and other
DMUs is q and R−q respectively. Model (4) is a traditional

BCC model, but it can not further investigate the relationship
between the BCC efficiency scores of efficient DMUs and
the allocated fixed input. To deal with it, the traditional super-
efficiency BCC DEA model can be used [15], in which
a DMU under evaluation is excluded from the PPS (i.e.,
adding ∀j ̸= k at the end of the first constraint of model (4)).
Therefore, the efficiency scores of efficient DMUs can be
larger than 1, and the efficiency scores of inefficient DMUs
will be the same as the results calculated by model (4).
However, the problem of infeasibility might exist in this case
([16]-[18], etc.).

B. Solve the Infeasibility with Considering the Fixed Input

To deal with the problem of infeasibility, many re-
searches have been done ([18]-[25], etc). In this study, we
employ the following model of Cook et al. [25] :

min τ +M × β

s.t.

m∑
j=1,j ̸=k

λjxij ≤ (1 + τ)xik,∀i (5)

m∑
j=1,j ̸=k

λjyij ≥ (1− β)yrk, ∀r

m∑
j=1,j ̸=k

λj = 1

λj ≥ 0, ∀j ̸= k, τ > −1;β ≥ 0.

It is an input-oriented super-efficiency BCC model, where M
is a relatively large number defined by users. We define M =
105 in this paper. τ , β and λ are unknown variables. The
optimal solution is denoted as (τ∗;β∗;λ∗,∀j). It deals with
the infeasibility problem by allowing a micro-adjustment in
outputs. That is, the infeasibility problem is occurred if and
only if β∗ > 0 in model (5).

In Cook et al.[25], the super-efficiency score of DMUk

is defined as EC∗

k = 1+ τ∗ +1/(1−β∗), where 1+ τ∗ and
1/(1−β∗) are input and output super efficiency respectively.
If the infeasibility problem is not occurred (i.e. β∗ = 0),
model (5) could get an accurate super efficiency solution as
EC∗

k = 1 + τ∗ + 1 = θ∗ + 1, where θ∗ is the traditional
super BCC efficiency score. It means that the difference
between EC∗

k and θ∗ is 1 in this case. For the convenience
of comparison, we provide the following definition:
Definition 1. The super-efficiency score of DMUk calcu-
lated by model (5) is defined as E∗

k = τ∗ + 1/(1− β∗).
Suppose Rk = q, q ∈ [0, R] is the fixed input allocated to

DMUk, then we can change model (5) as follows:

min τ +M × β

s.t.
m∑

j=1,j ̸=k

λjxij ≤ (1 + τ)xik, ∀i (6)

m∑
j=1,j ̸=k

λj(xm+1,j +Rj) ≤ (1 + τ)(xm+1,k +Rk)

m∑
j=1,j ̸=k

λjyij ≥ (1− β)yrk, ∀r
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m∑
j=1,j ̸=k

λj = 1

Rk = q
n∑

j=1

Rj = R

λj ≥ 0,∀j ̸= k, β ≥ 0; τ > −1.

Model (6) is a nonlinear programming since the allocations
Rj are variable, and it can not be directly used to calculate
the super-efficiency score. If the input allocation is deter-
mined, model (6) can be treated as a linear programming, and
then the optimal super-efficiency of DMUk can be obtained
by Definition 1.

C. Investigate the Relationship Between the Efficiency Score
and the Allocated Input

To investigate the relationship between the DEA effi-
ciency score and the allocated input, we get the dual model
of model (5) as follows:

max

s∑
r=1

uryrk −
m+1∑
i=1

υixik + µ0

s.t.

m∑
r=1

υixij −
s∑

r=1

uryrj − µ0 ≥ 0, j ̸= k (7)

m+1∑
i=1

υixik = 1

s∑
r=1

uryrk ≤ M

ur, υi ≥ 0;µ0 free

Considering the allocated fixed input Rj , we can transform
model (7) into the following model:

max

s∑
r=1

uryrk −
m∑
i=1

υixik + υm+1(xm+1,k +Rk) + µ0

s.t.
m∑
r=1

υixij + υm+1(xm+1,j +Rj) (8)

−
s∑

r=1

uryrj − µ0 ≥ 0, j ̸= k

m∑
i=1

υixik + υm+1(xm+1,k +Rk) = 1

n∑
j=1

Rj = R

s∑
r=1

uryrk ≤ M

µr, υi, Rj ≥ 0;µ0 free

Apparently, model (8) is also a nonlinear programming. To
solve the problem, let dj = υm+1 × Rj , model (8) can be

changed as follows:

max
s∑

r=1

uryrk + µ0 −
m∑
i=1

υixik − υm+1xm+1,k − dk

s.t.
m∑
r=1

υixij + υm+1(xm+1,j + dj)−
s∑

r=1

uryrj

− µ0 ≥ 0, j ̸= k (9)
m∑
i=1

υixik + υm+1xm+1,k + dk = 1

n∑
j=1

dj = υm+1 ×R

s∑
r=1

µryrk ≤ M

µr, υi, dj ≥ 0;µ0 free.

Model (9) can obtain the optimal solution, but it should be
noteworthy that the optimal objective function value is not
the optimal super-efficiency of DMUk, which is defined by
the Definition 1. To investigate the relationship, we can use
the following model:

max
s∑

r=1

uryrk + µ0 −
m∑
i=1

υixik − υm+1xm+1,k − dk

s.t.
m∑
r=1

υixij + υm+1(xm+1,j + dj)−
s∑

r=1

uryrj

− µ0 ≥ 0, j ̸= k (10)
m∑
i=1

υixik + υm+1xm+1,k + dk = 1

n∑
j=1

dj = υm+1 ×R

dk = q × υm+1, q ∈ [0, R]
s∑

r=1

µryrk ≤ M

µr, υi, dj ≥ 0;µ0 free.

If q is determinate, model (10) would be easily solved.
Denote the optimal input allocation matrix as (R∗

k =
q,R∗

j , ∀j ̸= k) corresponding to each k. Apparently, the
optimal fixed input allocation matrix here is not the final
optimal fixed input allocation since it is not determinate.
However, we can take it into model (6) to calculate the
corresponding optimal DEA super-efficiency and investigate
the relationship between them.
Algorithm 1: Calculating the super-BCC efficiency score of
DMUk based on Definition 1
Step 1. Solve model (10) corresponding to each k, and get
the optimal values υ∗

m+1 and d∗j , ∀j.
Step 2. Calculate the optimal solution by the equation R∗

j =
d∗j/υ

∗
m+1, ∀j.

Step 3. Substitute the optimal allocation matrix (R∗
k =

q, R∗
j , ∀j ̸= k) into model (6), and calculate the optimal

values of τ∗ and β∗ corresponding to each k.
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Step 4. Calculate the corresponding super-BCC efficiency
score E∗

k(q) of DMUk based on Definition 1.
Theorem 1. In our approach, E∗

k = E∗
k(q) obtained from

Algorithm 1 is a monotone non-increasing function of q,
q ∈ [0, R].
Proof: See the Appendix 1.

III. ALLOCATE THE TRANSPORTATION SUBSIDY

How to allocate the transportation subsidy is an important
problem in the public transportation industry. Governments
limit the ticket fares to satisfy the basic travel demands of
the citizens, which lead to losses in public transportation
industry. Therefore, governments should provide policies to
support them. One of the policies is the economic compen-
sation, namely subsidy. That is, the allocated subsidy can
be considered as a fixed allocated resource to compensate
losses from the common-weal. Since some losses of urban
public transport enterprises may be caused by other factors,
such as high energy waste, inefficient organization, poor
management ability and so on, governments should not pay
these bills. Because it is hard to obtain the real losses of
urban public transport enterprises, it is significant to allocate
the subsidy to urban public transport enterprises with a way
that can encourage them to improve the market performance
initiatively (such as decreasing operating losses, improving
quality services and satisfaction degrees of passengers, etc.).
To this end, we should first investigate the basic relationship
between the subsidy and the BCC efficiencies.

As given in Table I, there are seven DMUs with two inputs
and two outputs. They are the operation data of seven urban
public transport enterprises in 2009, which are collected
from Jiangsu Provincial Communications Department. X1
and X2 are the number of standardized operating buses
and the costs per 1000 kilometers respectively. Y 1 and Y 2
are the satisfaction degrees of passengers and the number
of the transporting passengers per kilometer respectively.
Considering the subsidy and X2 have similar impacts on
the outputs, we combine them as a single input measure.
Besides, suppose the total allocated subsidy is R = 10000.

Applying model (1) (BCC model) to the data set, we can
obtain results as shown in the sixth and seventh column of
Table I, which illustrate that only DMU D is IRS, others are
DRS and no DMU is CRS.

TABLE I
DATA SET AND RELEVENT RESULTS

DMU A B C D E F G
X1 3453 1355 572 945 346 289 261
X2 5642.28 5196.7 5137.98 4135.83 4171.54 3620.49 3534.53
Y1 60.87 63.77 55.56 50.48 56.68 61.83 61.93
Y2 2.86 2.92 2.80 2.12 2.47 1.73 1.00
µ∗
0 -0.26 -565.22 -26.52 0.56 -5.27 -67.93 -97.75

RTS DRS DRS DRS IRS DRS DRS DRS

Traditional Super-BCC E∗
j

2.04 Infeasible 2.25 1.50 2.02 2.43 2.65

E∗
j 0.33 Infeasible 1.90 0.34 1.40 2.03 1.32

Algorithm 1 E∗
j

2.04 2.91 2.25 1.50 2.02 2.43 2.65

E∗
j 0.33 2.54 1.90 0.34 1.40 2.03 1.32

To investigate the relationship between the subsidy and the
BCC efficiencies, we set the initial value q = 0, which is the

lower bound. Then we raise q by increasing t according to
q = ε×t until q = R, where ε is a small positive number, and
in this study we set ε = 0.05. The relevant results are shown
in the last two columns of Table I and Fig. 1. The smaller
the ε value we select, the smoother the efficiency curve will
be obtained, and the selected ε value has no impact on the
shape of the efficiency curve.

As shown in the last two columns of Table I, we can find
that the infeasibility problem exists in the traditional super-
efficiency BCC model with considering the allocated fixed
subsidy, and the problem can been solved by the proposed
approach (Algorithm 1). For example, DMU B can not
obtain the optimal super-BCC efficiency by the traditional
super-efficiency BCC model, and the problem can be solved
by Algorithm 1. Furthermore, efficiencies of other DMUs
calculated by Algorithm 1 are the same as the results based
on the traditional super-efficiency BCC model.

As shown in Figure 1, we investigate the relationship
between the BCC efficiency and the allocated subsidy under
the traditional BCC model, the traditional super-efficiency
BCC model and Algorithm 1, respectively. Comparing the
three sub-figures, we can find that:

• If DMUk is an inefficient DMU, then its optimal
efficiencies obtained from the three approaches would
be identical, such as the inefficient part of DMU A and
D.

• To efficient DMUs, the traditional BCC model can not
further provide the relationship between the BCC effi-
ciencies and the allocated subsidy, such as DMU B, C,
E, F and G in the first sub-figure. The traditional super-
efficiency BCC model has the infeasibility problem,
such as DMU B in the middle sub-figure. Algorithm 1
can deal with the infeasibility problem and can provide
further relationship to efficient DMUs.

• As shown in the last sub-figure, we can find that the
super-BCC efficiency scores obtained from Algorithm 1
is a monotone non-increasing function of the allocated
fixed subsidy. It is not a special case as it is proved
by Theorem 1. The relationship shows that increasing
the allocated subsidy is disadvantageous to improve the
performance of the urban public transport enterprises.
Different subsidy allocation can be obtained based on
the relationship and the allocation target. It provides a
foundation to further extend the fixed input allocation
research from the CRS assumption to the VRS assump-
tion.

• Our proposed approach can overcome the infeasibility
problem and investigate the relationship between the
super-BCC efficiency score and the allocated fixed input
(subsidy) effectively. Based on the basic relationship,
we can further design an incentive mechanism to im-
prove the market performance of urban public transport
enterprises in future work.

IV. CONCLUSIONS

This study presents an approach to measure the DEA
super-efficiency with considering the allocated fixed input
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Fig. 1. The relationship between BCC efficiency values and the allocated
subsidy

in the presence of infeasibility, and then investigates the
relationship between the BCC DEA efficiency score and the
allocated input. The results show that the infeasibility prob-
lem with considering the allocated fixed input can be solved
by the proposed approach, and the super-BCC efficiency
score is a monotone non-increasing function of the allocated
fixed input. The relationship is significant to further extend
the fixed input allocation research from the CRS framework
to the VRS framework. In future research, the main work
is how to present a general allocation method to obtain a
unique and acceptable fixed input allocation plan.

APPENDIX

Theorem 1: In our approach, E∗
k = E∗

k(q) obtained from
Algorithm 1 is a monotone non-increasing function of q,

q ∈ [0, R].
Proof: For a given Rk = q, q ∈ [0, R], we can obtain an
optimal input allocation denoted as (Rk = q;R∗

j , ∀j ̸= k)
from the step 1 and step 2 of Algorithm 1. Therefore,∑n

j=1,j ̸=k R
∗
j = R−Rk = R−q. Based on the last two steps

of Algorithm 1, we can get the optimal solution of model
(6) denoted as (τ∗, β∗, λ∗

j ,∀j ̸= k) and the corresponding
optimal super efficiency score is E∗

k(q) = τ∗ + 1
1−β∗ .

Let R′
k = q′ = q + ∆q,∆q ≥ 0 and q′ ∈ [0, R], we

can obtain an optimal input allocation denoted as (R′
k =

q′;R′
j , ∀j ̸= k) from the step 1 and step 2 of Algorithm

1. Then it would be
∑n

j=1,j ̸=k R
′
j = R − R′

k = R − q′ ≤∑n
j=1,j ̸=k R

∗
j . In this case, (τ∗, β∗, λ∗

j , ∀j ̸= k) must be a
feasible solution of model (6) as it satisfies all constraints,
such as:

n∑
j=1
j ̸=k

λ∗
j (xm+1,j +R′

j) ≤
n∑

j=1
j ̸=k

λ∗
j (xm+1,j +R∗

j )

≤ (1 + τ∗)(xm+1,k +Rk) ≤ (1 + τ∗)(xm+1,k +R′
k) ,

i.e., it satisfies the constraint
n∑

j=1
j ̸=k

λ∗
j (xm+1,j +R′

j) ≤ (1 + τ∗)(xm+1,k +R′
k)

And the corresponding feasible efficiency is Ek(q
′) =

τ∗ + 1
1−β∗ . Therefore,

Ek(q
′) = E∗

k(q). (A1)

Based on the last two steps of Algorithm 1, we can get the
optimal solution of model (6) denoted as (τ ′∗, β′∗, λ′∗

j , ∀j ̸=
k) in this case and the corresponding optimal super efficiency
score is E∗

k(q
′) = τ ′∗ + 1

1−β∗ .
To observe the relationship between E∗

k(q
′) and E∗

k(q),
we take into consideration β′∗ and β∗:
1) β′∗ ≤ β∗

i) τ ′∗ ≤ τ∗

E∗
k(q

′)− Ek(q
′) = (τ ′∗ − τ∗) +

(β′∗ − β∗)

[(1− β′∗)(1− β∗)]
(A2)

Because of τ ′∗ ≤ τ∗ and β′∗ ≤ β∗, thus,

E∗
k(q

′) ≤ Ek(q
′). (A3)

From (A1) and (A3), we can get E∗
k(q

′) ≤ E∗
k(q).

ii) τ ′∗ > τ∗

As mentioned above, (τ∗, β∗, λ∗
j , ∀j ̸= k) and

(τ ′∗, β′∗, λ′∗
j ,∀j ̸= k) are the feasible and optimal solution of

model (6) respectively when R′
k = q′ = q +∆q, ∆q ≥ 0.

Therefore, the difference of the objective function value
between them is (τ ′∗ − τ∗) + M · (β′∗ − β∗) ≤ 0, i.e.,
M · (β∗−β′∗)

(τ ′∗−τ∗) ≥ 1. Based on the definition, M is a relative
large number defined by users. Let M ≥ 1

(1−β′∗)(1−β∗) , then

we can obtain M · (β∗−β′∗)
(τ ′∗−τ∗) ≥ (β∗−β′∗)

(1−β′∗)(1−β∗)(τ ′∗−τ∗) ≥ 1.
That is, (A2)≤ 0 . Hence, we can know from (A2) that
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E∗
k(q

′) ≤ Ek(q
′). Based on (A1), we can get E∗

k(q
′) ≤

E∗
k(q).

2) β′∗ > β∗

From the above, we know that (τ ′∗ − τ∗) + M ·
(β′∗ − β∗) ≤ 0. Because of M > 0 and β′∗ > β∗,
we can obtain τ ′∗ ≤ τ∗. Let M ≥ 1

(1−β′∗)(1−β∗) ,
we can obtain (A2)≤ (τ ′∗ − τ∗) + M · (β′∗ − β∗) ≤
0. Hence, we can know from (A2) that E∗

k(q
′) ≤

Ek(q
′). Based on (A1), we can obtain E∗

k(q
′) ≤ E∗

k(q).
Q.E.D.
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