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 Abstract - Workpiece deformation must be controlled in the 
manufacturing process and other engineering application. Fixture 
configuration (position), clamping force and temperature are 
main aspects that influence the degree and distribution of 
Workpiece deformation. This paper takes large optical glass as an 
example, develop a new multiple kernel learning method to 
discuss the optimal fixture design. The proposed method uses two 
layers regressions to group and order the data sources by the 
weights of the kernels and the factors of the layers. Since that, the 
influences of the clamps and the temperature can be evaluated by 
grouping them into different layers. Then, based on the proposed 
model, the optimal magnitude and positions of clamping forces 
can be obtained. The experiments show is effective for the optical 
element clamping optimization analysis. 
 

 Index Terms - Optimal Fixture design, integrated fixturing 
model, multiple kernel regression 
 

I.  INTRODUCTION 

Fixture design is an important procedure in manufacturing 
engineering, especially in machining and assembling of 
Sophisticated Large-scale thin-walled workpiece. Minimizing 
the deformations of the workpiece is the critical principles of 
Fixture Layouts design and analysis. Therefor Fixture design 
aims to determine the appropriate the positions of locators, 
clamps and supports, applied clamping forces and some other 
environment parameters, e.g. temperature, which is the reasons 
cause workpiece deformations.  

Traditionally, machining fixtures are designed and 
manufactured through trial-and-error. It relies heavily on the 

elements and to determine the clamping forces, which prove to 
be both expensive and time-consuming to the manufacturing 
process. In this case, there were many high-efficiency and 
convenient methods based on finite-element (FE) modeling 
approach and rigid-body modeling approach ever taken to 
illustrate the relation of fixture-workpiece system deformation 
and fixture layout and clamping force and optimize the fixture 
layouts to obtain the positions and clamping force.  

Lee and Haynes [1] were amongst the first to use FEM for 
the fixture design and synthesis. Kashyap et al. [2] using the 
finite element modeling choose the appropriate position of 
clamping and supporting points, to ensure the workpiece has a 
minimum deformation in the normal direction of the main 
location surface. B. Denkena et al. [3] reported the extensive 

works based on the finite element approach. King and Hutter 
[4] presented a method for optimal fixture layout design using 
a rigid body model of the workpiece system. 

In order to optimize the fixture layout properly, there are 
many fixture layout optimization methods/algorithms have 
been carried out on fixture design. Menassa et al. [5] first 
applied optimization using nonlinear method to fixture design. 
Cho [6] conducted parametric modeling iterations to optimize 
the design of the elliptical tertiary mirror fixture system. There 
are some evolutionary methods/algorithms was a useful 
technique in solving the optimization problems. Li and Shiu 
[7] determined the optimal fixture configuration design for 
sheet metal assembly using GA. Chen et al. Prabhaharan et al. 
[8] used an ant colony system as an optimization tool for 
minimizing the critical dimension deviation and allocating the 
cost-based optimal tolerances. Dong and Su[9]proposed a self-
adaptive population dimension Differential Evolution (DE) 
method is proposed to optimize the fixture design for large 
optical glass assembly. 

In some situations, the environment parameters 
(temperature, Humidity, gravity, etc.) have to be considered in 
the Optimization of Fixture Layouts design, e.g. Large-scale 
glass laser system apply to the high power laser field. Yu et al. 
[10] analyzed the thermal behaviors of three different support 
systems, which they called by multi-pints support, four edge 
support and side face support, for fused silica optics with the 
finite element method, so that a suitable support schemes to 
reduce the residual stress was designed based on the analysis. 
Cho et al. [11] conducted the FEA and optical analyses for the 
support frame design. They analyzed the static deformation of 
gravity and thermal, and then established a fixturing matrix to 
compensate potential errors using an active optics system. 
However, in the previous integration model, the thermal and 
structural analyses are conducted independently. And, it is 
difficult to obtain a near global optimal set of clamps. 

In allusion to the problems mentioned above, this paper 
aims to construct approximations for an unknown integrated 
fixturing function, which is better to describe the relation of 
fixture-workpiece system deformation and the mechanism 
properties and the thermal properties of the fixture. Support 
vector machine (SVM) has been introduced as a powerful 
method for classification and regression problems (called 
Support Vector Regression (SVR) [12]). The approximation of 
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a function using SVM has some attractive properties [13]. For 
example, it does not suffer from the overfitting problem and it 
has good generalization ability. These features suggest that 
SVR may be a good candidate for constructing approximations 
for unknown nonlinear functions in the area of mechatronics, 
such as dynamics identification, friction modeling, and 
electromyography classification, e.g., references [14-15],. 

In this paper, the optimal fixture design for the large plates 
of optical glass is discussed. A new multiple kernels learning 
method is developed to build the nonlinear coupling between 
the clamping force, the thermal and the deformation of the 
optic. Then, based on the proposed model, the optimal 
magnitude and positions of clamping forces can be obtained. 

The rest of the paper is arranged as follows: Section II 
introduces some statements related to this work. Section  
describes the canonical SVM methods. Section  presents a 
multiple kernels regression method to construct the integrated 
fixturing model, which is able to describe the nonlinear 
coupling between the clamping force, temperature and the 
deformations of the optic. In Section V, experiments and 
simulation are given to illustrate the efficiency of proposed 
method. 

II. PROBLEM STATEMENT 

 A fixture (support structural) of the large scale optics in 
high power laser system is generally composed of two types of 
elements: a carriage, some clamps for firmly holding the optic 
during laser running. The design methodology of the support 
frame of the fixture in high power laser is similar to the design 
of the fixture in sheet metal manufacturing, where we all try to 
find a set of clamps, and select the suitable clamping forces to 
minimize the target deformation.  
 As we know, the optical properties are extremely sensitive 
to the thermal and residual stress, so, excellent exposure need 
to be applied to reduce the stress in the laser running. 
Comparison with the fixture design in traditionally 
manufacturing industry (the review of the research on optimal 
fixture design in manufacturing can be found in reference 
[16]), the major design constraints of the support structure in 
high power laser system is that the surface shape error induced 
by thermal residual stress in laser running is critical for the 
placements of the clamps. That is, the fixturing model needs to 
describe the relationship between the placements of the 
clamps, the clamping forces and the temperature.  
 In order to totally restrain the optic on the narrow side 
surface, and make the optical glass force uniformly with low 
stress clamping, plastic gel nails are usually used to attribute 
the interfacial friction between the support frame and optic. 
Figure 1 shows the mechanical structure of the support frame. 
As shown in Figure 1 (a), the support carriage is comprised of 
a precisely machined frame with threaded holes and a set of 
plastic gel nails. In Figure 1 (b), the clamps are at the carriage 
of the frame, which would apply clamping force to the optic. 

     
(a)                                                (b) 

Fig.1 Structure of support system 

 The design of support carriage is the layout of the clamps 
on the threaded holes and the actuating force of applied on the 
optic, which ensure the optic is firmly hold by the frame with 
minimal shape deformation under different working 
temperature. The nonlinear fixturing model is critical for the 
optimal design of the support frame. 

In this paper, we will present a novel support vector 
regression method for the construction of the nonlinear 
fixturing model. In the following, some concepts about support 
vector will be firstly presented. 

. SUPPORT VECTOR REGRESSION 

A. Standard Support Vector Regression  
Suppose there is a set of training data 1{( , )}n D

i i ix y , 

where D  denotes the space of the input patterns, each ix  
denotes the input space of the sample and has a corresponding 
target value iy  for i = 1, ,n. The kernel SVR  basic idea is 

to find a nonlinear regression function : Df of the 
kind[16] 

( ) , ( )f x x b                              (1) 

Where ( )x  maps a data point x into a higher dimensional 
feature space, is the weight coefficients, b is the threshold. 

The parameters can be trained by solving the following 
quadratic optimization problem [20]. 
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where is the vector of weight coefficients, C is a predefined 
positive trade-off parameter between model simplicity and 
classification error, is -tube of the epsilon insensitive Loss 
Function[SVR], , *  is the two vector of slack variables for 
each data point and b is the bias term. 
Solving the equation, the regression function (1) can be 
rewritten as 

Clamps  
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*

1
( ) ( ) ( , )

n

i i i
i

f x k bx x                        (2) 

Where ( , ) ( ), ( )i j i jk x x x x is the kernel function and 
*,i i  is the vector of dual variables corresponding to each 

separation constraint. 

Multiple Kernel Support Vector Regression (MKSVR) 
In recent years, MKSVR method has been proposed [17-

19], where we use multiple kernels instead of selecting one 
special kernel function and its corresponding parameters. The 
combination of basic kernels shows two benefits [17]: (a) 
Using a specific kernel may be a source of bias, and in 
allowing a learner to choose among a set of kernels, a better 
solution can be found. (b) Different kernels may be using 
inputs coming from different representations possibly from 
different sources or modalities. For detailed and 
comprehensive review works on MKSVR, see reference [18]; 
here, we simply review the fundamental ideas and define our 
notation. 

In canonical MKSVR, the functional forms are described 
by [19] 

*

1
( ) ( ) ( , )

n
m

i i M i
i

f x K x x b                       (3) 

 
And, MK is chosen to be a set of convex combination of M 

predefined base kernels  

                        
1

( , ) ( , )
M

m m
M i m m i

m
K x x k x x                         (4) 

where m  denotes the weight of the mth base kernel.  
Therefore, the functional form of the regression function (3) 

becomes 

1 1

( ) ( , )
N M

m m
i m m i

i m
f x k x x b                 (5) 

where ( )f x is expressed as a linear combination of the kernel 

function ( , )m m
m ik x x  relative to the data point m

ix  in the feature 

space mD , and the type and the number m of kernels 
( , )m m

m ik x x used in the linear combination have to be chosen a 
priori. 

As we know, in most mechanical applications, the role of 
difference sources can be known in previous. In such a case, 
the hierarchical method is a possible way to represent the 
relative importance of the information sources. The 
hierarchical method is that the importance of the sources are 
grouped and ordered in different layer depends on the role of 
the sources. In the practical, we know that the temperature play 
a more important role for the influence function than the set of 
the support layout and the set of the clamping forces.  

In the following, a hierarchical method, we called 
Multiple Kernel Support Vector Functional Regression 
(MKSVFR), is developed to construct the fixturing model. 

. MULTIPLE KERNEL SUPPORT VECTOR 
FUNCTIONAL REGRESSION 

In this section, we will present the new regression method 
for the construction of the integrated fixturing model for the 
design of the support frame. 

A. The structure of MKSVFR 
Without loss of generality, Suppose there is a set of training 
data 1{( , )}i i n D

ix y , where 1({( , )} , )i i i m i
k k kx S C T , 

1{( )}i i m
ky y . i

kS is the position of the clamps and i
kC defines 

the clamping forces under the temperature iT  . We define the 
MKSVFR model as follows, which is composed of two layers: 

(a) In the first layer, a sub regression functions if  , which 
represents the relationship between the output i

ky  with respect 
to the input vector ( ( , )i i

k kS C ); 
(b) In the second layer, a total regression function f 

describes the relationship between the sub functions if  with 
respect to the input it . It should be noted that in the higher 
layer, the regression represent the relationship of a function 
and a set of input data, i.e., the relationship of if  and the 
sample data iT  . 

The mapping from a function to the input data is different 
with the mapping of two vectors. Since that, we use a new 
notation, functional regression, to represent the model. 
The output of the MKSVFR model is obtained by the mapping 
as following 

1 1( ) ( ), , ( )n nf x F f x f xK                        (6) 

where ( )j jf x  is jth sub-regression function in the first layer, 

and 1({( , )} , )i i i m i
k k kx S C T denotes the input vector, F is 

usually a nonlinear mapping.  

B. The sub regression function in the first layer 
In this paper, we assume all the sub-regression functions 

have a same functional from, which based on the MKSVR. 
Thus, the ith sub-regression function is 

 
1

( ) , ( )
i

i i i
i

M
i i i i i i i

m m m
m

f x x b              (7) 

Similar to the parameter learning in localized multiple 
kernels learning [18], we adopt a two-stage alternant 
optimization approach to find the regression parameters. When 
we fix the weight j

j
m

, the problem becomes convex and we 

obtain the following dual problem 
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And, the weight function j
j

m
is defined as 

 
0

0
1

exp , ,

exp , ,
i i

i i i
m pi

m M
i i i
j j

j

x

x
                          (8) 

where i
m and 0

i
m are the parameters of the gating model 

function and the softmax guarantees nonnegativity.The gating 
model parameters are updated at each iteration by 
calculating 0( )i

i i
mm

J and ( )i
i i

mm
J , and then 

performing a gradient-descent step. 
After determining the finial i

i
m

 and SVM solution, we can 

obtain the resulting discriminant function ( )i if x in the lower 
layer. 

C. Functional regression in the second layer 
In the lower layer, we build the relationship between the 

input vector ( , )i i
k kS C and the output i

ky to get the sub 

regression function ( )i if x . In the top layer, the input vectors 

become { ( ), }i i if x T , hence, we establish a new regression 

relates to the input data { ( ), }i i if x T  
Suppose that the total function is descried by  

( , ) ( ),j j
jF x t F f x t  

According to the kNN regression [20] simply assigns the 
weight for the regression function to be the average of the 
values of its k nearest neighbors, in which the nearer neighbors 
contribute more to the average than the more distant ones, We 
define the top regression functional form as 

        
1

( ) ( ) ( ) ( )
n

i i i i
i

i
F X T f x x                 (9) 

Where ( )i
i T indexes the weight of the ith sub-regression 

function, and ( )x is a bias term under the condition of x . In 

order to calculate the weight ( )i
i T , according the canonical 

K Nearest Neighbors  Regression, we introduce the Gaussian 
kernel to establish the relationship between the distance of 
Nearest Neighbors and the weight ( )i

i T of the ith sub-
regression function. 

                                   
2

( )i
i g T T                       (10) 

2

2*exp
iT T

g  

             
1

0
n

i
i

                  

In conclusion, the computation of the top-regression 
function is summarized in Algorithm 3. 

Algorithm 1: MKSVFR-top regression function 
Input: the temperature iT , he clamps and the clamping 
forces ( , )i iS C  and the sub-regression ( )i if x . 
Output: the top-regression. 
1. For each ( , )i iS C  learned before do 

2. Calculate the value of the sub-regression ( )i i
if x  with 

the clamps and the clamping forces ( , )i iS C  
3. Calculate the distance of Nearest Neighbors 
4. Calculate the weight ( )i X of the jth sub-regression 

function as Eqn.(10) 
5. Choose the best performing ( )ix  and ( )ix  by cross-

validation procedure. 
6. End for 
7. Solve canonical SVR and get the ( )X  and ( )X  
8. Get the the weight ( )i X of the jth sub-regression 

function as Eqn.(11) 
9. Obtain the top regression functional as Eqn.(9) 
 

.EXPERIMENTS AND DISCUSSION 

In this section, we perform several experiments to discuss 
the influence of the input data. We firstly describe the creation 
of the input datasets. And then, we compare the proposed 
method and the canonical MKSVR, SVR and MKSVFR 
method. Finally, obtain the optimal magnitude and positions of 
clamping forces based on the fixturing function.  

A. Datasets 
The optic used in the experiment is shown in Figure 2, of 

which size is 430mm×430mm×20mm. As the optic is 
vertically mounted on the support frame, its optical axis is 
perpendicular to the support plane.  

The basic data of the structural materials, i.e., the clamps 
and the frame, and the optic material are given as Table I. 

TABLE I 
 OPTIC AND SUPPORT ELEMENT PROPERTIES 

Variable optic plastic 
nails 

frame 

 7.92GPa 0.023GPa 206GPa 
 ratio 0.25 0.46 0.28 

Density 2530kg/m3 1100kg/m3 7850kg/m3 
 

The data sets created by the ANSYS software are 
explained as Fig.2. 
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Fig.2 ANSYS software environment to created datasets 

There are 4 clamps on each side of the support frame, and 
all the 16 clamps can apply the clamping force on the optic. 
Under different temperature, even the same clamping force 
will cause various shape deformation. According the practical 
and to specialize the data space promote the regression 
accuracy, there some constrains about the input the position of 
the clamps and the clamping forces when we created datasets. 
The constrains as follow 

Symmetry constrain: to reduce the shape deformation      
which is the caused by the asymmetry, we propose 
position of the clamps are the clamping forces applied on 
the left and right sides of the optic are symmetry. 

Force structures constrain: to reduce the shape distortion, 
we propose the difference between the clamping forces of 
two adjacent sides must not exceed 20N. 
Table II shows several groups of date sources (the total 

number of the training data is nearly 1800), in which T. 
denotes the temperature. Pos. denotes the position of the 
clamps. F. denotes the clamping force. Deform. represents the 
deform of the optics. 

TABLE II  
THE INPUT VECTOR AND THE OUTPUT 

T. Pos. Force Deform. 

22  
(40,40,40.40; 40,0,0,40;  
40,0,0,40;40,40,40.40;)  (40,40,40,40) 1.2294 

22 
(40,40,40.40; 40,0,0,40;  
40,0,0,40;40,40,40.40;)  (20,30,30,40) 1.3402 

25 
 (40,40,40.40; 40,0,0,40;  
40,0,0,40;40,40,40.40;)  (20,30,30,40) 2.5915 

25 
(40,40,40.40; 40,0,0,40;  
40,0,0,40;40,40,40.40;) (20,30,30,40) 2.2915 

    

28  0,70,70.0; 0,70,70,0;  
0,70,70,0;0,70,70.0;)  (70,70,70,70)  1.6131  

B. Numerical Results 
We implement the algorithm in MATLAB. For SVR, 

MKSVR and MKSVFR, we take the tube width, , as 0.01 
and the regularization parameter, C, as 100000. We then 
choose the best performing by cross-validation procedure. 

 For all performed experiments; we quantified the 
prediction performance with mean absolute percentage error 
(MAPE). They can be defined as 

1

1 100
n

Ai Fi

i Ai

X X
MAPE

n X
 

The performance of the MKSVFR-FR and MKSVFR-PR 
are compared with SVR, MKSVR and L-MKSVR models 
based on the data sources given in Table II. This comparison is 
depicted in Figure 3 and shown in Table III. 

TABLE III  
COMPARISON OF THE MMKSVR AND OTHER 

MODEL MAPE(%) 
MKSVFR 5.80 
MKSVR 6.32 

SVR 9.46 
 
It can be seen from Figure 3, the root mean square errors 

and the mean absolute percentage error are reducing with the 
number of training data increasing.  And the MAPE(%) less 
than 10%, it can illustrate the MKSVFR model we proposed is 
effective and feasible. Meanwhile, we can also know that, the 
absolute percentage errors shown in Figure3 of the proposed 
MKSVFR method are much better than the results of MKSVR 
and SVR. 

 
Fig.3 The mean absolute percentage errors 

C. The optimal design of the support frame based on the 
integrated fixturing model 
 Once the fixturing model is constructed as described in 
Subsection-B, we are able to detect the optimal clamp 
placements and the clamping force under different 
temperature. The fixturing function based on MKSVFR 
method is given by Equation (9) 

1
( ) ( ) ( ) ( )

n
i i i i

i
i

F X T f x x  

In general, we can compute the optimal value of ( )F X  , 
and then can select an set of clamps related to the minimum 
value. That is, it is able to get the optimal design of the support 
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frame, which is possible to obtain the minimum shape 
deformation of the optic.  
 We perform several experiments to show the deformations 
of the optic related to the temperature, the clamp placements 
and the clamping forces. Denoted the minimal deformation of 
the optic by 

min min(max ( ))D F X  
Thus, we can compute the clamp placements, the clamping 

force and the temperature, which corresponds to the global 
minimal deformation of the optic. The minimal deformation of 
the optics can then be obtained via the fixturing model 
constructed r by MKSVFR method. The results are listed in 
Table IV  

TABLE IV 
THE MINIMAL DEFORMATION AND THE RELATED CLAMPING 

FORCES 

 T Pos. F.(N) Deform 

MKSVFR 21.73 ( 0,15,15.0 0,20,20,0;  
0,20,20,0; 30,30,30.30;)  

(15,20, 
62,60)  0.70756 

 
The simulation result of deformation of the optic in 

ANASYS is shown in Figure 4, in which the max deformation 
of the optic is 0.7251. That is, the error of the fixturing model 
is 2.4789% 

 
 Fig.4 The deformation of the optic 

 

VI. CONCLUSION 

In this paper, we have proposed a new approach that can 
be used to solve the optimal design of the support frame of the 
optical system. The approach uses two layers regression to 
construct the fixturing model of the frame, of which first layer 
is to obtain a set of sub-regression functions if . And then, the 
second layer establishes a top-regression function f , in which 
the set of sub function if  are taken as input data. We compute 
the top regression function by kNN method. 

Based on the fixturing model of the frame we can compute 
the minimal deformation of the optic and the related clamp 
placement and the environmental temperature. We then can get 
an optimal design of the support frame and adjust the 
environmental temperature by the temperature control system. 
Since that, thousands of large optics mounted on the support 
frame is able to produce the high energy. 
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