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Abstract—The `1 norm regularization problem, the `1 norm
minimization problem and the `1 norm constraint problem
are known collectively as the `1 norm based Basic Sparse
Representation Problems (BSRPs), and have been popular basic
models in the field of signal processing and machine learning.
The equivalence of the above three problems is one of the crucial
bases for the corresponding algorithms design. However, to the
best our knowledge, this equivalence issue has not been addressed
appropriately in the existing literature. In this paper, we will give
a rigorous proof of the equivalence of the three `1 norm based
BSRPs in the case when the dictionary is an overcomplete and
row full rank matrix.

Index Terms—Equivalence, `1 norm regularization problem,
`1 norm minimization problem, `1 norm constraint problem.

I. INTRODUCTION

In the field of signal processing and analysis, sparsity
prior based models for signal source modeling and feature
learning have been successfully applied in various signal
restoration tasks and recognition tasks during the last decade
[1], [2]. Among these models, the `1 norm based Basic Sparse
Representation Problems (BSRPs) are most popular and play
as the basis of most generalized models. Specifically, we
denote a signal and a dictionary by y ∈ Rn and D ∈ Rn×K

respectively, where D ∈ Rn×K is an overcomplete and row
full rank matrix, i.e., n < K and rank(D) = n. x ∈ RK is
referred to as the sparse representation of the signal y over the
dictionary D. The `1 norm based BSRPs have the following
three mathematical formulations.

• `1 norm regularization problem

min
x

‖y −Dx‖22 + λ‖x‖1 , (1)

where λ ≥ 0 is a parameter.

• `1 norm minimization problem

min
x

‖x‖1 s.t. ‖y −Dx‖2 ≤ ε, (2)

where ε ≥ 0 is a parameter.

• `1 norm constraint problem

min
x

‖y −Dx‖22 s.t. ‖x‖1 ≤ σ, (3)

where σ ≥ 0 is a parameter.

Among these problems, problem (2) is referred to as the
Basis Pursuit DeNosing (BPDN) problem [3] in the field of

signal processing. And both problem (1) and problem (3) have
been referred to as the Least Absolute Shrinkage and Selection
Operator (LASSO) problem [4] in the statistics and machine
learning literature.

To put it simply, the notion of equivalence of `1 norm based
BSRPs is that, for every two of above-mentioned problems,
given certain ranges of parameters, if the solution set of
one problem with some parameter value in its given range
is known, then the solution set of another one with some
parameter value in its corresponding range is also ready to
found, and vice versa. More strictly speaking, taking the
equivalence of problem (1) and problem (2) for example, given
ranges of parameters, say, Λ and Υ, for every λ0 ∈ Λ, there
exists a unique ε0 ∈ Υ such that, when λ = λ0 and ε = ε0,
the two problems have the same solution set. Furthermore, in
the sense that the two problems have the same solution set,
there is one-to-one correspondence between λ0 and ε0.

This equivalence is one of the bases of algorithms design
for `1 norm based BSRPs. By applying cross validation to
choose corresponding parameters in certain ranges, solving
problem (2) or problem (3) equates to solving problem (1).
Moreover, problem (1) is an unconstrained convex optimiza-
tion problem, which can lead to more conveniences for al-
gorithms design. In the literature, many fast algorithms for
solving the three problems aim at solving problem (1). Typical
algorithms include Feature-sign Search (Feature-sign) algorith-
m [5], Coordinate Descent (CD) method [6], Iterative Soft
Thresholding Algorithm (ISTA) [7], Fast Iterative Shringakge-
Thresholding Algorithm (FISTA) [8], Iterative Reweighted
Least Square (IRLS) [9], Alternating Direction Method of
Multipliers (ADMM) [10], and some stochastic optimization
methods proposed in recent years, such as [11], [12].

In the literature relating to algorithms for `1 norm based
BSRPs, some papers plunged straight into the discussion
on the target optimization problem, such as [5], [7], [8],
[11], [12], while others, for example, [1], [2], [6], [9], [10],
first mentioned the equivalence of the above three problems
but have not got into the details. This results in a gap in
understanding to readers, especially those unfamiliar with the
sparsity topic. In [13], a blog post in Chinese, the author
has also noticed this issue. In this blog post, problem (2)
and problem (3) were reformulated as unconstrained convex
optimization problems by using the indicator function, then
the discussion on the equivalence of the three problems, more
precisely, the equivalence of problem (1) and problem (3),
was launched. However, in the discussion, the author has



not described the properties of the dictionary, which is key
conditions for the equivalence. And the uniqueness of solutions
to the three problem was used in proofs as a known conclusion,
but this is not always true. These issues led to a line of
reasoning that is not convincing enough.

To fill this gap in the literature, in this paper, we propose a
new proof for the equivalence of `1 norm based BSRPs, in the
usual case when the dictionary D ∈ Rn×K is an overcomplete
and row full rank matrix, i.e., n < K and rank(D) = n. We
first fully discuss properties of solutions of problem (1), (2)
and (3) respectively and provide three corresponding lemmas.
Based on these lemmas, we prove the equivalence of the three
problems in Theorem 3.1 and 3.2. And we conclude the whole
paper in the last section.

II. PROPERTIES OF SOLUTIONS OF `1 NORM BASED
BSRPS

In this section, we discuss properties of solutions of the
`1 norm regularization problem (1), the `1 norm minimization
problem (2) and the `1 norm constraint problem (3). We first
introduce some useful concepts and conclusions, then turn to
prove properties of solutions of the three problems in the next
subsection.

A. Preliminaries

In this part, we first introduce the definitions of subgradient
and subdifferential, and the optimality condition of uncon-
strained convex optimization problems, then we introduce a
theorem for subdifferential calculation. Based on these con-
cepts and conclusions, we give the optimality conditions of
the `1 norm regularization problem (1).

Definition 2.1 (Subgradient, Subdifferential [14]) g ∈ RK

is said to be a subgradient of a convex function f(x) at a point
x0 ∈ domf 1, if for every x ∈ domf the following condition

f(x)− f(x0) ≥ gT(x− x0)

is satisfied. The set of all subgradients at x0 is called the
subdifferential of f(x) at x0 and is denoted by ∂f(x0).

Using the concept of subgradient and subdifferential, we
can get the optimality condition of unconstrained convex
optimization problems.

Theorem 2.1 (Optimality condition of unconstrained con-
vex optimization problems [14]) x∗ is a global optimal point
of a convex function f(x), if and only if 0 ∈ ∂f(x∗).

Now, we introduce a rule for calculating the subdifferential
of a particular convex function at any point in its domain.

Theorem 2.2 (Moreau-Rockafellar [14]) Let f1, f2, · · · , fp :
RK → [−∞,+∞] be proper convex functions. Let

f = f1 + f2 + · · ·+ fp.

Then for every x ∈
p⋂

i=1

domfi, we have

∂f(x) ⊃ ∂f1(x) + ∂f2(x) + · · ·+ ∂fp(x).

1We use domf to denote the domain of f(x).

Furthermore, if convex sets relint(domfi)(i = 1, 2, · · · , p) 2

have nonempty intersection, then for every x ∈
p⋂

i=1

domfi we

have

∂f(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fp(x).

By Theorem 2.1 and 2.2, we can derive the optimality
conditions of problem (1).

Theorem 2.3 (Optimality condition of the `1 norm regu-
larization problem (1)) x∗ is a global optimal point of the
`1 norm regularization problem (1) if and only if x∗ satisfies
the following conditions −[2DT(Dx∗ − y)]i = λ, x∗i > 0;

− λ ≤ [2DT(Dx∗ − y)]i ≤ λ, x∗i = 0;
[2DT(Dx∗ − y)]i = λ, x∗i < 0.

(4)

We now briefly review the concept of the relative interior
of a set and the concept of the relative interior of a convex set.
Then we introduce the Slater’s condition and the Karush-Kuhn-
Tucker (KKT) conditions, and their relation. These concepts
and conclusions are useful in the proof of properties of solution
set of problem (2) and (3).

Definition 2.2 (Relative interior of a set [15]) The interior
of a set C within its affine hull is said to be the relative interior
of C and denoted by relint(C).

The definition of the relative interior of a general set is
very difficult to use in later proofs. Thus we further provide a
theorem [14] on the relative interior of a convex set. And we
will instead use this theorem in the following proofs.

Theorem 2.4 (Relative interior of a convex set [14]) Let
C ∈ RK be a nonempty convex set. The relative interior of C
can be mathematically expressed as

relint(C) = {x ∈ C|∀x′,∃ρ > 1 : ρx+ (1− ρ)x′ ∈ C}. (5)

Given a convex optimization problem

min
x

f0(x) s.t. fi(x) ≤ 0, (i = 1, 2, · · · , q). (6)

Based on the concept of the relative interior of a set, the
Slater’s condition of problem (6) can be defined as follows.

Definition 2.3 (Slater’s condition for problem (6) [16]) For
the convex optimization problem (6), if its primal optimal
value is equal to its dual optimal value, we say that the

strong duality holds. Let D =
q⋂

i=0

domfi. If the slater’s

condition holds, i.e., there exists a x ∈ relint(D) such that
fi(x) < 0(i = 1, 2, · · · , q) holds, we say that the strong
duality holds.

Now, we introduce the KKT conditions for problem (6),
and its relation to the Slate’s condition.

2The definition of the relative interior of a set will be given in Definition
2.2.



Definition 2.4 (KKT conditions for problem (6) [16]) Let
x̃ ∈ Rm and η̃ ∈ Rq . The conditions

fi(x̃) ≤ 0, (i = 1, 2, · · · , q),

η̃ � 0,

η̃ifi(x̃) = 0, (i = 1, 2, · · · , q),

0 ∈ ∂Lx(x̃, η̃) = ∂f0(x̃) +

q∑
i=1

η̃i∂fi(x̃),

where L(x,η) is the Lagrangian, are referred to as the KKT
conditions for problem (6).

Theorem 2.5 ( [16]) If the strong duality holds for problem
(6), then x∗ ∈ RK and η∗ ∈ Rq are respectively the primal
and dual optimal solutions of problem (6), if and only if x∗
and η∗ satisfy the KKT conditions for problem (6).

According to Theorem 2.5, if the Slate’s condition for problem
(6) holds, the KKT conditions are necessary and sufficient
conditions for the optimality of problem (6) and its dual.

B. Properties of Solutions of `1 Norm Based BSRPs

Based on the optimality condition of the `1 norm reg-
ularization problem (1), i.e., Theorem 2.3, we can analyze
properties of solutions of problem (1).

Lemma 2.1 (Properties of solutions of the `1 norm regu-
larization problem (1))

1) If λ = 0, the solution set of problem (1) is {x ∈
RK |Dx = y}; If λ ≥ ‖2DTy‖∞, the zero vector is
the only solution to problem (1).

2) Problem (1) has either one solution or infinitely many
solutions.

3) If 0 < λ < ‖2DTy‖∞ and problem (1) has
infinitely many solutions, then every two different
solutions, say, x∗1 and x∗2, satisfy Dx∗1 = Dx∗2 and
‖x∗1‖1 = ‖x∗2‖1.

Proof: First, we prove the first conclusion. If λ = 0,
problem (1) equates to the least squares problem. Since that
the dictionary D is an overcomplete and row full rank matrix,
there is necessarily a x ∈ RK such that Dx = y. Thus the
solution set of problem (1) in the case that λ = 0 is {x ∈
RK |Dx = y}. If λ ≥ ‖2DTy‖∞, then 0 ∈ RK satisfies the
optimality conditions (4) of problem (1), which means 0 ∈ RK

is the only solution of problem (1). As for the uniqueness of
the zero vector solution, we will prove it later.

The next thing to do is proving the second conclusion. Due
to the convexity of the objective of problem (1) and the fact
that its feasible region is RK , the solution set of problem (1)
is nonempty. If solutions of problem (1) are not unique and
we suppose that x∗1 and x∗2 are two different solutions, that is,

‖y −Dx∗1‖22 + λ‖x∗1‖1 = ‖y −Dx∗2‖22 + λ‖x∗2‖1.

We denote this value by ∆. Now, consider a point on the line
segment between x∗1 and x∗2, i.e., x3 = αx∗1 + (1 − α)x∗2,

where 0 < α < 1. It follows that

‖y −Dx3‖2 = ‖y −D[αx∗1 + (1− α)x∗2]‖22
≤ α‖y −Dx∗1‖2 + (1− α)‖y −Dx∗2‖2, (7)

and

‖x3‖1 = ‖αx∗1+(1−α)x∗2‖1 ≤ α‖x∗1‖1+(1−α)‖x∗2‖1. (8)

From (7) and (8), we can see that ‖y−Dx3‖22+λ‖x3‖1 ≤ ∆.
In fact, the equality holds. Otherwise, this would contradict the
assumption that x∗1 and x∗2 are two solution of problem (1),
which means that each point on the line segment between x∗1
and x∗2 is a solution to problem (1).

Finally, we verify the third conclusion. Suppose that
Dx∗1 6= Dx∗2. Since the `2 ball is strictly convex, there is
necessarily a 0 < α′ < 1 making the inequality (7) strict.
However, this would contradict to the assumption that both
x∗1 and x∗2 are solutions of problem (1). Consequently, we
infer that Dx∗1 = Dx∗2. By the fact that λ > 0, we further
get ‖x∗1‖1 = ‖x∗2‖1. Hence, the third conclusion is proved.
Now, we turn to complete the proof of the first conclusion.
If there is a non-zero vector solution, say, x∗, to problem (1)
when λ ≥ ‖2DTy‖∞, this would lead to the contradiction
that ‖x∗‖1 = ‖0‖1 = 0. This completes the proof.

Next, we analyze the properties of solutions of the `1 norm
minimization problem (2).

Lemma 2.2 (Properties of solutions of the `1 norm mini-
mization problem (2))

1) If ε = 0, the solution set of problem (2) is {x ∈
RK |x = arg min

x
‖x‖1 s.t. Dx = y}; If ε ≥ ‖y‖2,

the zero vector is the only solution to problem (2).
2) Problem (2) has either one solution or infinitely many

solutions.
3) If 0 < ε < ‖y‖2, all solutions of problem (2) are

on the border of the feasible region. When problem
(2) has infinitely many solutions, every two different
solutions, say, x∗1 and x∗2, satisfy Dx∗1 = Dx∗2.

Proof: We first show that the first conclusion holds. When
ε = 0, problem (2) is reduced to the following problem

min
x

‖x‖1 s.t. Dx = y.

The proof is straightforward. If ε ≥ ‖y‖2, 0 ∈ RK is a feasible
point of problem (2), it is obvious that the zero vector solution
is unique.

Now, we prove the second conclusion. Since that the
dictionary D is overcomplete and row full rank, then the
feasible region of problem (2) is nonempty, that is, the solution
set of problem (2) is nonempty. When there is not only
one solution and we use x∗1 and x∗2 to denote two different
solutions, i.e., x∗1 6= x∗2 and ‖x∗1‖1 = ‖x∗2‖1. We denote this
value by σ∗. Consider a point, say, x3, on the line segment
between x∗1 and x∗2. We have x3 = αx∗1 + (1 − α)x∗2 and
0 < α < 1. It follows that

‖x3‖1 = ‖αx∗1 + (1− α)x∗2‖1
≤ α‖x∗1‖1 + (1− α)‖x∗2‖1 = σ∗, (9)



and

‖y −Dx3‖2
= ‖y −D[αx∗1 + (1− α)x∗2]‖2
= ‖α(y −Dx∗1) + (1− α)(y −Dx∗2)‖2 (10)
≤ α‖y −Dx∗1‖2 + (1− α)‖y −Dx∗2‖2 ≤ ε.

From the inequality (10), we can see that x3 is a feasible point
of problem (2). If the inequality (9) is strict, this would be
contrary to the assumption that x∗1 and x∗2 are two solution of
problem (2), which means ‖x3‖1 = σ∗, that is, each point on
the line segment between x∗1 and x∗2 is a solution of problem
(2).

Finally, we prove the third conclusion. Consider an equiv-
alent problem of problem (2)

min
x

‖x‖1 s.t. ‖y −Dx‖22 ≤ ε2. (11)

Before proceeding further, we first show that problem (11)
satisfies the Slater’s condition, that is, let D = {x ∈ RK |‖y−
Dx‖22 ≤ ε2}, then there exists a x ∈ relint(D) such that
‖y − Dx‖22 < ε2. Due to the convexity of the set D, we
can see from Theorem 2.4 that relint(D) := {x ∈ D|∀x′ ∈
D,∃ρ > 1 : ρx+(1−ρ)x′ ∈ D}. According to the fact that the
dictionary D is an overcomplete and row full rank matrix, the
linear equations system Dx = y has infinitely many solutions.
Denote one solution by x, it is easy to see that x ∈ D. For
every x′ ∈ D, we have

‖y −D[ρx+ (1− ρ)x′]‖22
= ‖ρ(y −Dx) + (1− ρ)(y −Dx′)‖22
= ‖(1− ρ)(y −Dx′)‖22
≤ (ρ− 1)2ε2.

Based on the above analysis, it follows that, for every 1 <
ρ ≤ 2, we have ρx+ (1− ρ)x′ ∈ D, i.e., each solution of the
linear equations system Dx = y satisfies that x ∈ relint(D)
and ‖y−Dx‖22 < ε2. In conclusion, problem (11) satisfies the
Slater’s condition. Applying Theorem 2.5, we obtain that the
KKT conditions of problem (11) are necessary and sufficient
for its optimality.

Now we turn to prove the third conclusion. Let x∗ and
η∗ be the optimal points of the primal problem and the
dual problem, respectively. Then x∗ and η∗ satisfy the KKT
conditions of problem (11), that is, ‖y−Dx∗‖22 ≤ ε2, η∗ ≥ 0,
and

η∗(‖y −Dx∗‖22 − ε2) = 0, (12) −η∗[2DT(Dx∗ − y)]i = 1, x∗i > 0;
−1 ≤ η∗[2DT(Dx∗ − y)]i ≤ 1, x∗i = 0;

η∗[2DT(Dx∗ − y)]i = 1, x∗i < 0.
(13)

If ε < ‖y‖2, we have x∗ 6= 0, then ‖y − Dx∗‖22 = ε2.
Otherwise, by ‖y−Dx∗‖22 < ε2 and Eq. (12), we have η∗ = 0.
From (13), we can obtain x∗ = 0 in the case that η∗ = 0,
which would be a contradiction to x∗ 6= 0. When problem (2)
has more than one solution, we use x∗1 and x∗2 to denote two
different solutions of problem (2). Suppose that Dx∗1 6= Dx∗2.
By the strictly convexity of the `2 ball, there is a 0 < α′ < 1
such that ‖y −D[α′x∗1 + (1 − α′)x∗2]‖2 < ε. This would be
contrary to the proved second conclusion. Therefore, we have
Dx∗1 = Dx∗2.

Finally, the properties of solutions of the `1 norm constraint
problem (3) are given in the following Lemma 2.3.

Lemma 2.3 (Properties of solutions of the `1 norm con-
straint problem (3))

1) If σ = 0, the zero solution is the only solution to
problem (3); If σ ≥ min{‖x‖1|Dx = y}, the solu-
tion set of problem (3) is {x|Dx = y, ‖x‖1 ≤ σ}.

2) Problem (3) has either one solution or infinitely many
solutions.

3) If 0 < σ < min{‖x‖1|Dx = y}, the solutions of
problem (3) are on the border of the feasible region.
When problem (3) has infinitely many solutions, ev-
ery two different solutions, say, x∗1 and x∗2, satisfy
Dx∗1 = Dx∗2.

Proof: We first prove the first conclusion. If σ = 0, there
is only the zero vector in the feasible region and therefore it is
evident that the zero vector is the only solution to problem (3).
When σ ≥ min{‖x‖1|Dx = y}, it is also easy to show that
the solution set of problem (3) is {x|Dx = y, ‖x‖1 ≤ σ}.

Now our purpose is to prove the second conclusion. Obvi-
ously, the solution set of problem (3) is nonempty. When there
are more than one solutions, we denote two of the solutions
by x∗1 and x∗2. Then we have ‖x∗1‖1 ≤ σ, ‖x∗2‖1 ≤ σ, and
‖y −Dx∗1‖2 = ‖y −Dx∗2‖2, the value of which is denoted
by ε∗. Consider a point x3 on the line segment between x∗1
and x∗2, that is, x3 = αx∗1 + (1− α)x∗2 and 0 < α < 1. Then

‖y −Dx3‖2
= ‖y −D[αx∗1 + (1− α)x∗2]‖2
= ‖α(y −Dx∗1) + (1− α)(y −Dx∗2)‖2 (14)
≤ α‖y −Dx∗1‖2 + (1− α)‖y −Dx∗2‖2 = ε∗,

and

‖x3‖1 = ‖αx∗1 + (1− α)x∗2‖1
≤ α‖x∗1‖1 + (1− α)‖x∗2‖1 ≤ σ. (15)

From the inequality (15), we can obtain that x3 is a feasible
point of problem (3). If the inequality (14) is strict, then there
would be a contradiction to the assumption that x∗1 and x∗2
are two different solutions of problem (3). Therefore, ‖y −
Dx3‖2 = ε∗, that is, each point on the line segment between
x∗1 and x∗2 is a solution to problem (3).

Finally, we prove the third conclusion. We first show that
problem (3) satisfies the Slater’s condition in the case σ > 0,
that is, letting D = {x|‖x‖1 ≤ σ}, there is a x such that
x ∈ relint(D) and ‖x‖1 < σ. Since the set D is convex, it
follows from Theorem 2.4 that relint(D) := {x ∈ D|∀x′ ∈
D,∃ρ > 1 : ρx + (1 − ρ)x′ ∈ D}. Obviously, 0 ∈ D. For
every x′ ∈ D, we have

‖ρ0 + (1− ρ)x′‖1 = ‖(1− ρ)x′‖1 ≤ (ρ− 1)σ.

The above reasoning reveals that, for all 1 < ρ ≤ 2, we
can obtain that ρ0 + (1 − ρ)x′ ∈ D, i.e., 0 ∈ relint(D)
and ‖0‖1 < σ. This means that problem (3) satisfies the
Slater’s condition. From Theorem 2.5, we have that the KKT
conditions of problem (3) are necessary and sufficient for its
optimality. Let x∗ and ξ∗ are respectively the optimal solutions



of the primal problem and the dual problem. Then x∗ and ξ∗
satisfy ‖x∗‖1 ≤ σ, ξ∗ ≥ 0, and

ξ∗(‖x∗‖1 − σ) = 0, (16) −[2DT(Dx∗ − y)]i = ξ∗, x∗i > 0;
− ξ∗ ≤ [2DT(Dx∗ − y)]i ≤ ξ∗, x∗i = 0;

[2DT(Dx∗ − y)]i = ξ∗, x∗i < 0.
(17)

When 0 < σ < min{‖x‖1|Dx = y}, we have ‖x∗‖1 = σ.
Otherwise, ξ∗ = 0 and DT(Dx∗ − y) = 0. Since that
the dictionary D is overcomplete and row full rank, then
Dx∗ = y, which would be contrary to the assumption that
0 < σ < min{‖x‖1|Dx = y}. When there are infinitely
many solutions of problem (3), we use x∗1 and x∗2 to denote
two different solutions. Suppose that Dx∗1 6= Dx∗2. Due to
the strictly convexity of the `2 ball, there exists a 0 < α′ < 1
such that ‖y −D[α′x∗1 + (1 − α′)x∗2]‖2 < ε∗, which would
be a contraction to the proved conclusion. Therefore, we get
Dx∗1 = Dx∗2.

III. EQUIVALENCE OF THE `1 NORM BASED BSRPS

We have established the properties of solution sets of the
three `1 norm based BSRPs. Based on the proved results, we
further prove the equivalence of the three problems. We first
discuss the equivalence of the `1 norm regularization problem
(1) and the `1 norm minimization problem (2).

Theorem 3.1 (Equivalence of the `1 norm regularization
problem (1) and the `1 norm minimization problem (2))
If λ > 0 and x∗ is a non-zero vector solution of problem
(1), then x∗ is also a solution of problem (2) in the case that
ε = ‖y−Dx∗‖2. Further, if there are infinitely many solutions
of problem (1), then they are also solutions of problem (2) in
the case that ε = ‖y −Dx∗‖2. Conversely, if ε > 0 and x∗
is a non-zero vector solution of problem (2), then x∗ is also
a solution of problem (1) in the case that λ = ‖2DT(Dx∗ −
y)‖∞. Further, if there are infinitely many solutions of problem
(2), then they are also solutions of problem (1) in the case that
λ = ‖2DT(Dx∗ − y)‖∞.

Proof: By λ > 0 and x∗ is a solution of problem (1), we
can obtain ‖y−Dx∗‖2 > 0 from the optimality conditions (4)
of problem (1). Together with that x∗ is non-zero, we can also
have ‖y−Dx∗‖2 < ‖y‖2. Otherwise, ‖y−D0‖22 +λ‖0‖1 <
‖y −Dx∗‖22 + λ‖x∗‖1, this would lead to a contradiction to
the assertion that x∗ is a solution of problem (1). According
to Lemma 2.2, we can see that, when 0 < ε = ‖y−Dx∗‖2 <
‖y‖2, all the solutions are on the border of the feasible region.
Suppose that x∗ is not a solution of problem (2) in the case
that ε = ‖y −Dx∗‖2. Then there would be a x′ such that
‖x′‖1 < ‖x∗‖1 and ‖y −Dx′‖2 = ‖y −Dx∗‖2. Thus we
have ‖y−Dx′‖22 +λ‖x′‖1 < ‖y−Dx∗‖22 +λ‖x∗‖1, which
also would lead to a contradiction to the assertion that x∗
is a solution of problem (1). When there are infinitely many
solutions of problem (1), according to Lemma 2.1, it follows
that every two solutions x∗1 and x∗2 satisfy Dx∗1 = Dx∗2,
that is, they are both solutions of problem (2) in the case that
ε = ‖y−Dx∗‖2. This completes the proof of the first part of
the above theorem.

By ε > 0 and x∗ is a non-zero vector solution of problem
(2), we have 0 < ε < ‖y‖2. Let η∗ be the dual optimal solution

of problem (2). We can arrive at η∗ > 0 from (13). Thus we
have

λ = ‖2DT(Dx∗ − y)‖∞
= max{|[2DT(Dx∗ − y)]i||i = 1, 2, · · · ,K} = 1/η∗.

This means that (13) can be rewritten as −[2DT(Dx∗ − y)]i = λ, x∗i > 0;
− λ ≤ [2DT(Dx∗ − y)]i ≤ λ, x∗i = 0;

[2DT(Dx∗ − y)]i = λ, x∗i < 0.
(18)

Therefore, we can get that x∗ satisfies the optimality con-
ditions (4) of problem (1). x∗ is one solution of problem
(1). When 0 < ε < ‖y‖2 and problem (2) has infinitely
many solutions, we can obtain that each solution x′ satisfies
Dx′ = Dx∗ from the third conclusion of Lemma 2.2. Let
λ′ = ‖2DT(Dx′ − y)‖∞. We get λ′ = λ∗. The second part
of this theorem is thus proved.

Now, we discuss the equivalence of the `1 norm regular-
ization problem (1) and the `1 norm constraint problem (3).

Theorem 3.2 (Equivalence of the `1 norm regularization
problem (1) and the `1 norm constraint problem (3)) If
λ > 0 and x∗ is a non-zero vector solution of problem (1), then
x∗ is also a solution of problem (3) in the case that σ = ‖x∗‖1.
Further, if there are infinitely many solutions of problem (1),
then they are also solutions of problem (3) in the case that
σ = ‖x∗‖1. Conversely, if σ < min{‖x‖1|Dx = y} and x∗
is a non-zero vector solution of problem (3), then x∗ is also
a solution of problem (1) in the case that λ = ‖2DT(Dx∗ −
y)‖∞. Further, if there are infinitely many solutions of problem
(3), then they are also solutions of problem (1) in the case that
λ = ‖2DT(Dx∗ − y)‖∞.

Proof: By λ > 0 and x∗ is a solution of problem (1),
then we have ‖y − Dx∗‖2 > 0. Otherwise, according to
y = Dx∗ and the optimality conditions (4) of problem (1),
we can obtain λ = 0. Since that ‖y − Dx∗‖2 > 0 and
x∗ is non-zero, then 0 < ‖x∗‖1 < min{‖x‖1|Dx = y}.
Otherwise, let x′ = arg min

x
‖x‖1 s.t. Dx = y, we can

see that ‖y − Dx′‖22 + λ‖x′‖1 < ‖y − Dx∗‖22 + λ‖x∗‖1,
which would be contrary to the assertion that x∗ is a non-
zero solution of problem (1). Applying Lemma 2.3, it follows
that all the solutions of problem (3) are on the border of the
feasible region. Suppose that x∗ is not a solution of problem
(3) in the case that σ = ‖x∗‖1. There would be a x′ such that
‖y −Dx′‖2 < ‖y −Dx∗‖2 and ‖x′‖1 = ‖x∗‖1. Thus we
have ‖y−Dx′‖22 +λ‖x′‖1 < ‖y−Dx∗‖22 +λ‖x∗‖1, which
would be a contradiction to the assertion that x∗ is a solution of
problem (1). When problem (1) has infinitely many solutions,
we can derive from Lemma 2.1 that every two solutions x∗1
and x∗2 satisfy ‖x∗1‖1 = ‖x∗2‖1, which means that all these
solutions are also solutions of problem (3) in the case that
σ = ‖x∗‖1. The first part of the theorem is proved.

If σ < min{‖x‖1|Dx = y}, and x∗ is a non-zero vector
solution of problem (3), then 0 < σ < min{‖x‖1|Dx = y}.
Let ξ∗ is the dual optimal point of problem (3), it follows that
ξ∗ > 0 from (17). Thus we have

λ = ‖2DT(Dx∗ − y)‖∞
= max{|[2DT(Dx∗ − y)]i||i = 1, 2, · · · ,K} = ξ∗,



Therefore, (17) can be rewritten as −[2DT(Dx∗ − y)]i = λ, x∗i > 0;
− λ ≤ [2DT(Dx∗ − y)]i ≤ λ, x∗i = 0;

[2DT(Dx∗ − y)]i = λ, x∗i < 0.
(19)

This is to say that x∗ satisfies the optimality conditions (4) of
problem (1), which means that x∗ is a optimal point of problem
(1). When 0 < σ < min{‖x‖1|Dx = y}, and problem (3) has
infinitely many solutions, from the third conclusion of Lemma
2.3, we can get that every solution x′ can satisfies Dx′ =
Dx∗. Let λ′ = ‖2DT(Dx′ − y)‖∞. We have λ′ = λ∗. The
proof of the second part of the theorem is completed.

According to Theorem 3.1, we can see that, for every
λ ∈ {λ|0 < λ < ‖2DTx‖∞}, there is necessarily a unique
ε ∈ {ε|0 < ε < ‖y‖2} such that the corresponding problem
(1) and problem (2) have the same solution set, and vice
versa. This leads to the equivalence of the two problems.
We also can obtain similar conclusion on the equivalence of
problem (1) and problem (3) from Theorem 3.2. That is, for
every λ ∈ {λ|0 < λ < ‖2DTx‖∞}, there is necessarily
a unique σ ∈ {σ|0 < σ < min{‖x‖1|Dx = y}} such
that the corresponding problem (1) and problem (3) have the
same solution set, and vice versa. Theorems 3.1 and 3.2 imply
that, given certain parameter ranges, in the sense that the
corresponding problems have the same solution set, there is a
one-to-one correspondence between the two parameter values.
The equivalence of problems (2) and (3) follows immediately
from Theorems 3.1 and 3.2.

IV. CONCLUSION

In this paper, we have discussed the equivalence of the
three `1 norm based BSRPs, the `1 norm regularization prob-
lem (1), the `1 norm minimization problem (2) and the `1
norm constraint problem (3). In particular, we have given a
rigorous proof of the equivalence of the three problems in the
case when the dictionary is an overcomplete and row full rank
matrix. The results obtained in the paper are summarized as
follows.

• If 0 < λ < ‖2DTy‖∞, 0 < ε < ‖y‖2 and
0 < σ < min{‖x‖1|Dx = y}, then the three `1
based BSRPs are equivalent. Further, in the sense
of equivalence, there is one-to-one correspondence
between the parameters λ, ε and σ.

• If λ ≥ ‖2DTy‖∞, ε ≥ ‖y‖2 and σ = 0, all the three
problems have only the zero solution.

• If λ = 0 and σ ≥ max{‖x‖1|Dx = y}, both the
`1 norm regularization problem (1) and the `1 norm
constraint problem (3) are reduced to the least squares
problem.

• If ε = 0 and σ = min{‖x‖1|Dx = y}, both the
`1 norm minimization problem (2) and the `1 norm
constraint problem (3) are reduced to the following
problem

min
x

‖x‖1 s.t. Dx = y.

• If min{‖x‖1|Dx = y} < σ < max{‖x‖1|Dx = y},
then the solution set of the `1 norm constraint problem
(3) is a subset of {x ∈ RK |Dx = y}.
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