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Recent deep learning based methods have achieved the state-of-the-art performance for handwritten
Chinese character recognition (HCCR) by learning discriminative representations directly from raw data.
Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still
help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direc-
tion-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we
are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 compe-
tition database. With this new framework, we can eliminate the needs for data augmentation and model
ensemble, which are widely used in other systems to achieve their best results. This makes our frame-
work to be efficient and effective for both training and testing. Furthermore, although directMapþ
convNet can achieve the best results and surpass human-level performance, we show that writer
adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch
between training and test data on a particular source layer. The adaptation process can be efficiently and
effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained
convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy
can be further improved consistently and significantly. This paper gives an overview and comparison of
recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and
offline HCCR.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Handwritten Chinese character recognition (HCCR) has been
studied for more than fifty years [1,2] to deal with the challenges
of large number of character classes, confusion between similar
characters, and distinct handwriting styles across individuals. Ac-
cording to the type of input data, handwriting recognition can be
divided into online and offline. In online HCCR, the trajectories of
pen tip movements are recorded and analyzed to identify the
linguistic information expressed [3], while in offline HCCR, char-
acter (gray-scaled or binary) images are analyzed and classified
into different classes. Offline HCCR finds many applications, such
as mail sorting [4], bank check reading, book and handwritten
notes transcription, while online HCCR has been widely used for
pen input devices, personal digital assistants, smart phones,
computer-aided education, and so on. Moreover, HCCR is also an
.ac.cn (C.-L. Liu).
important integral part for handwritten text recognition (both
online [5] and offline [6]) which considers segmentation and re-
cognition simultaneously. High character recognition accuracy is
essential for the success of handwritten text/string recognition [7].

To promote academic research and benchmark on HCCR, the
National Laboratory of Pattern Recognition (NLPR), Institute of
Automation of Chinese Academy of Science (CASIA), has organized
three competitions at CCPR-2010 [8], ICDAR-2011 [9], and ICDAR-
2013 [10]. The results of competition show improvements over
time and involve many different recognition methods. An over-
whelming trend is that deep learning based methods gradually
dominate the competition. From the very beginning, all submitted
systems at CCPR-2010 were traditional methods. In ICDAR-2011,
the team of IDSIA from Switzerland submitted their system [11]
based on convolutional neural network (convNet) and won the
first place on offline HCCR. This is the first work on using convNet
for HCCR. Later for ICDAR-2013, both the winners of online and
offline HCCR were using convNets. The team from Fujitsu R&D
Center used a 4-convNet voting method to win the competition of
offline recognition, while the team from University of Warwick
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used a sparse convNet [12] to win the competition of online
recognition.

Deep learning methods can directly learn discriminative re-
presentations [13] from raw data, and therefore can provide end-
to-end solutions for many pattern recognition problems. However,
the well-studied domain-specific knowledge is shown to be still
helpful for further improving the performance [14,15] of HCCR.
The most important domain knowledge of HCCR includes the
character shape normalization and direction-decomposed feature
maps. The character recognition community has proposed many
useful shape normalization methods such as nonlinear normal-
ization [16], bi-moment normalization [17], pseudo 2D normal-
ization and line density projection interpolation [18]. Shape nor-
malization can reduce the within-class variations and hence in-
crease the recognition accuracy [19]. Another important domain
knowledge is the direction-decomposed feature map. By decom-
posing the gradient (for offline image) or the local stroke (for
online stroke trajectory) into different directions (from 0° to 360°),
we can obtain multiple feature maps, each representing a direc-
tion of original gradient/stroke. This is a strong prior knowledge of
Chinese character which is produced by basic directional strokes
during writing process. Representing Chinese character as direc-
tional features had been the state-of-the-art method [19–21] for a
long time before the arrival of convNet.

To improve the accuracies of HCCR, instead of training convNet
from raw data, we represent both the online and offline hand-
written characters by the normalization-cooperated [22] direc-
tion-decomposed feature maps (directMap), which can be viewed
as a × ×d n n sparse tensor (d is the number of quantized direc-
tions and n is the size of the map). DirectMap contains the do-
main-specific knowledge of shape normalization and direction
decomposition, and hence is a powerful representation for HCCR.
Furthermore, inspired by the recent success of using very deep
convNet for image classification [23–25], we developed an 11-layer
convNet for HCCR. By combining directMap with convNet, we are
able to obtain new benchmarks for both online and offline HCCR
on the ICDAR-2013 competition database [10]. Previous works
usually adopt different methods to obtain best performance for
online and offline HCCR separately. However, with direct-
MapþconvNet, we are able to achieve state-of-the-art perfor-
mance for both online and offline HCCR under the same frame-
work. Due to the embedded domain-specific knowledge, we can
also eliminate the needs of data augmentation and model en-
semble, which are crucial for other systems to achieve their best
performance. This makes our model to be efficient and effective
for both the training and testing processes.

The large variability of handwriting styles across individuals is
another challenge for HCCR. Writer adaptation [26,27] is widely
used to handle this challenge by gradually reducing the mismatch
between writer-independent system and particular individuals.
Although deep learning based methods have set a high record for
HCCR which already surpass human-level performance, we show
that writer adaptation in this case is still effective. Inspired from
our early work on style transfer mapping [28], we add a special
adaptation layer in the convNet to match and eliminate the dis-
tribution shift between training and test data in an unsupervised
manner. The adaptation can guarantee performance improve-
ments even when only a small number of samples are available,
due to the regularization involved in the learning process. During
our experiments on 60 writers for both online and offline HCCR,
we observed consistent and significant increase of accuracies by
the adaptation of the convNet.

The handwriting recognition community has reported many
useful and important achievements (from the year of 1980 to
2008) by previous overview papers of [3,29–33]. Nowadays, the
deep learning based approaches become the new cutting-edge
technology for solving handwriting related problems. This paper
can be viewed as an overview of recent progresses (especially
through the three competitions [8–10]) in using deep learning
methods for the task of handwritten Chinese character recognition
(HCCR). The results and comparisons reported here can be used as
new benchmarks for future researches in the field of both online
and offline HCCR.

The rest of this paper is organized as follows. Section 2 reviews
related works. Section 3 describes the procedures for generating
online and offline directMaps. Section 4 shows the evolution from
traditional methods to convNet. Section 5 introduces the details of
the convNet used in our system. Section 6 explains how to add an
adaptation layer in convNet for writer adaptation. Section 7 re-
ports the experimental results, and Section 8 draws concluding
remarks.
2. Related works

With the impact from the success of deep learning [34,35] in
different domains, the solution for HCCR has been changed from
traditional methods to convolutional neural networks (convNet)
[36]. The first reported successful use of convNet for HCCR (offline)
was the multi-column deep neural network (MCDNN) [37,38].
After that, the sparse convNet [39] was used to achieve the best
performance for online HCCR in ICDAR-2013 competition. Alter-
nately trained relaxation convolutional neural network was pro-
posed by [40] for offline HCCR. Recently, the highest accuracy for
offline HCCR was achieved by [41] through integrating multiple
strategies such as local and global distortions, multi-supervised
training, and multi-model voting. ConvNet has also been suc-
cessfully used for handwritten Hangul recognition [42] which is
similar to HCCR. Although these methods have outperformed
traditional methods by large margins, they are based on end-to-
end learning which ignores the long-and-well studied domain-
specific knowledge in HCCR.

Recently, [15] combined the traditional feature extraction
methods such as Gabor and gradient feature maps with the Goo-
gLeNet [24] to obtain very high accuracy for offline HCCR. More-
over, for online HCCR, [14] and [43] achieved the best performance
by using convNet with various domain knowledge including de-
formation, imaginary stroke map, path signature map, and direc-
tional map. These results clearly identify the advantages of using
domain knowledge for further improving performance. It should
be noted that in the application of deep learning to most image
classification tasks, the generation of distorted images for aug-
menting the training data is also a kind of utilization of domain
knowledge. However, in our mind, the most important domain-
specific knowledge should be shape normalization and direction
decomposition. With our proposed directMapþconvNet, we can
achieve new benchmarks for both online and offline HCCR, with-
out the help from data augmentation or model ensemble, which
are crucial for [15,43] to obtain their best results.

Deep learning based methods have also found applications in
other handwriting related problems, such as writer identification
[44], hybrid model [45], confidence analysis [46], handwritten
legal amounts recognition [47], and text spotting [48]. The con-
vNet can also be combined with the hidden Markov model (HMM)
for online handwriting recognition [49]. Recently, the recurrent
neural network (RNN) with long-short term memory (LSTM) [50]
has been successfully used for handwritten Chinese text recogni-
tion without explicit segmentation of characters [51]. The combi-
nation of RNN and convNet has also been used for scene text
reading by [52,53]. It is evident that more and more character
recognition related problems will turn their attention to deep
learning methods for high performance solutions.



Fig. 1. The directMaps for online and offline handwritten Chinese characters.
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Writer adaptation has been widely used in personalized
handwriting recognition systems [26,27]. Our previous work [28]
proposed a framework of style transfer mapping (STM) for the
adaptation of different classifiers, which has been further studied
by [54–56]. Previous writer adaptation is mainly focused on tra-
ditional classifiers such as the nearest prototype classifier [57] and
modified quadratic discriminant function [1]. However, it is still
unclear for the writer adaptation of the deep convNet. Traditional
approach for adaptation of deep network [58] is to retrain a clas-
sification layer that takes the activations of one of the existing
network as input features (such as DeCAF [59]). When labeled data
are unavailable for the target domain, subspace alignment (em-
bedding) [58] is widely used to minimize the domain shift. In this
work, by viewing STM as a new special layer, we can adapt con-
vNet to new styles of particular writers in an unsupervised man-
ner with only a small amount of writer-specific data. The proposed
adaptation layer is a simple and basic component for neural net-
works, and therefore can be easily integrated with different net-
work architectures.
3. Direction decomposed feature map

Shape normalization and direction decomposition are powerful
domain knowledge in HCCR. Shape normalization can be viewed
as a coordinate mapping in continuous 2D space between original
and normalized characters. Therefore, direction decomposition
can be implemented either on original (normalization-cooperated)
or normalized (normalization-based) characters [22]. The nor-
malization-cooperated method maps the direction elements of
original character to directional maps without generating nor-
malized character, and thus can alleviate the effect of stroke di-
rection distortion caused by shape normalization and provide
higher recognition accuracies [22]. We use normalization-coop-
erated method to generate directMaps for both online and offline
HCCR [19].

3.1. Offline directMap

The offline HCCR datasets provide gray-scaled images with
background pixels labeled as 255. For the purpose of fast com-
putation, we first reverse the gray levels: background as 0 and
foreground in [1,255]. After that, the foreground gray levels are
nonlinearly normalized to a specified range for overcoming the
gray scale variation among different images [19]. For shape nor-
malization of offline characters, we choose the line density pro-
jection interpolation (LDPI) method due to its superior perfor-
mance [18]. For direction decomposition, we first compute the
gradient by the Sobel operator from the original image, and then
decompose the direction of gradient into its two adjacent standard
chaincode directions by the parallelogram rule [60]. Note that in
this process, the normalized character image is not generated, but
instead, the gradient elements of original image are directly
mapped to directional maps of standard image size (say, 64�64 or
32�32) incorporating pixel coordinates transformation.

3.2. Online directMap

The online HCCR datasets provide the sequences of coordinates
of strokes. We also use the normalization-cooperated method for
online handwritten characters, i.e., the features are extracted from
the original pattern incorporating coordinate transformation
without generating the normalized pattern. The shape normal-
ization method used for online HCCR is the pseudo 2D bi-moment
normalization (P2DBMN) [61], since LDPI is not applicable for
online trajectory. For direction decomposition, the local stroke
direction (of the line segment formed by two adjacent points) is
decomposed into 8 directions and then generate the feature map
of each direction [61,21]. The imaginary strokes (pen lifts or called
off-strokes) [62] are also added with a weight of 0.5 to get en-
hanced representation.

3.3. Analysis

To build compact representations, we set the size of feature
map to be 32, and therefore, the generated directMap is an

× ×8 32 32 tensor. Fig. 1 shows the examples for online and offline
directMaps. The first column is the original character, while the
columns indexed by 0–7 are the eight directional maps. For better
illustration, we also show the average map of the eight directional
maps. It is shown that the shape in the average map is normalized
compared with original character. For offline character, the gra-
dient is decomposed, hence the average map gives the contour
information of original image. Contrarily, for online character, the
local stroke is decomposed, hence the input character can be well
reconstructed by the average map, from which we can also find
that the imaginary strokes are already taken into consideration.
Because gradient is perpendicular to local stroke, the online and
offline directMaps are different although they adopt the same di-
rection coding as shown in the right side of Fig. 1.

DirectMap is a powerful representation for HCCR which utilizes
strong prior knowledge that Chinese character is produced by
basic directional strokes during writing process. As shown in Fig. 1,
directMap is very sparse. Actually, in our experimental database,
92.41% (online) and 79.01% (offline) of the elements in directMap
are zeros. With this sparsity, we can store and reuse the extracted
directMaps efficiently. Owing to the sparsity, using maps with size
smaller than the original image (more than 64�64) does not lose
shape information.
4. From traditional HCCR to convNet

After obtaining directMaps, traditional HCCR methods [19]
adopt the sampling strategy on each map. As shown in Fig. 2, at
each sampling position, the Gaussian blurring [19] is used to



Fig. 2. The traditional framework of using directMap for HCCR.

Fig. 3. The convNet architecture used for both online and offline HCCR.
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reduce the influence of stroke position variation. Usually, 8�8
points are regularly sampled from each map, resulting in a feature
vector with dimensionality 512 (for eight directions), which is
widely known as the directional feature. After that, the Box-Cox
transformation [63] of =y x0.5 is applied to each feature dimen-
sion to increase the Gaussianity of data. Linear dimensionality
reduction methods such as principal component analysis (PCA),
Fisher discriminant analysis (FDA) [64], and discriminative feature
extraction (DFE) [65] are then used to reduce the features into a
low-dimensional subspace (e.g. 160). In this subspace, the nearest
prototype classifier (NPC) [57], modified quadratic discriminant
function (MQDF) [1], and discriminative learning quadratic dis-
criminant function (DLQDF) [66] are widely used as final classifiers
(see [67] for an overview of MQDF related methods). This kind of
framework has been the benchmark for HCCR during the past
decades [19,2,21].

Although not being clearly stated in the literature, as shown in
Fig. 2, the traditional HCCR architecture is closely related to a
simplified convNet. The Gaussian blurring can be viewed as a
convolution mask which is pre-defined here other than learned
from data. The Box-Cox transformation is a nonlinear activation
although being different from the widely used activations in
neural networks. After that, there is a fully-connected layer and a
classification layer. Therefore, we should say that traditional HCCR
methods are also following the design philosophy of deep neural
networks, although the structure in Fig. 2 is really shallow and not
in a standard end-to-end backpropagation training manner. In
light of this, it is straightforward and necessary to integrate di-
rectMap with deep convNet to look for a new benchmark.
5. Convolutional neural network

Recently, it is shown that the depth is crucial for the success of
convolutional neural networks (convNet) [24,25]. Considering the
size of our directMap ( × ×8 32 32), we build an 11-layer network
for HCCR.

5.1. Architecture

As shown in Fig. 3, the directMap (online or offline) is passed
through a stack of convolutional (conv) layers, where the filters are
with a small receptive field 3�3, which is the smallest size to
capture notion of left/right, up/down, and center [25]. All the
convolution stride is fixed to one. The number of feature maps is
increased from 50 (layer-1) to 400 (layer-8) gradually. Spatial
pooling is widely used to obtain translation invariance (robustness
to position). Traditionally, there is a pooling layer after each conv
layer. To increase the depth of network, the size of feature map
should be reduced slowly. Therefore, in our architecture, the spa-
tial pooling is implemented after every two conv layers (Fig. 3),
which is carried out by max-pooling (over a 2�2 window with
stride 2) to halve the size of feature map. After the stack of 8 conv
layers and 4 max-pool layers, the feature maps are flattened and
concatenated into a vector with dimensionality 1600. Two fully-
connected (FC) layers (with 900 and 200 hidden units respec-
tively) are then followed. At last, the softMax layer is used to
perform the 3755-way classification.

5.2. Regularization

Regularization is important for deep networks. Dropout [68] is
a widely used strategy (efficient infinite model averaging) to in-
crease generalization performance, which can be implemented by
randomly dropping units (along with their connections) for each
layer with a given probability. We use dropout for all the layers
except layer-1 and layer-10. As shown in Fig. 3, the dropout
probabilities are increased with respect to the depth. Layer-10 is
the last FC layer before softMax layer, and thus can be viewed as a
very high-level feature extractor. We set the dimensionality of
layer-10 to be as low as 200 to obtain a compact representation
(which already can be viewed as regularization), therefore, we
make the dropout probability on layer-10 to be zero. Another
regularization strategy we used is the weight decay with L2 pen-
alty. The multiplier for weight decay is 0.0005 during the training
process.

5.3. Activation

Activation function is crucial for adding non-linearity into the
network. Rectified linear unit (ReLU) is one of the keys to the
success of deep networks [23]. A more general form named leaky-
ReLU [69] is defined as λ( ) = ( ) + ( )f x x xmax , 0 min , 0 (standard
ReLU use λ = 0), which can expedite convergence and obtain
better performance than conventional activations (such as sigmoid
and tanh). Recently, the learnable activation functions have also
been used by different approaches [70–72]. By considering both
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the performance and efficiency, in our convNet (Fig. 3), all hidden
layers are equipped with the leaky-ReLU non-linearity with
λ = 1/3.

5.4. Initialization

The initialization of the deep network is important, because
bad initializations will hamper the learning of a highly non-linear
system [70]. Deep convNets are widely initialized by drawing
random weights from the zero-mean Gaussian distribution

δ( )0, 2 or the zero-mean uniform distribution δ δ−⎡⎣ ⎤⎦U 3 , 3 . For

example, [23] used δ( )0, 2 with δ = 0.01 to initialize the network.
However, by using this, very deep models have difficulties to
converge [25,70]. To handle this problem, [73,70] proposed using
different δ for different layers according to the number of input
neurons (or output neurons) for a particular layer. In our experi-
ments, we find that by using δ = 0.01 for all layers, the signal
shrinks as it passes through each layer and becomes too tiny when
it reaches softMax layer. To ensure signal safely reaching final
layer, we rescale the input data to amplify signal.

First, we initialize all the weights via δ( )0, 2 δ( = )0.01 and all
biases as zeros. Let ∈ s c (c is the number of classes) be the signal
in the last layer before softMax activation, and Δ = −s smax mean be
the gap between max and mean values of s. The softMax activation
is usually implemented as = ( − )p s sexpi i max and

( ) = ∑s p psoftMax /i i j j. Since Δ is very small, we will get =p 1max

and ≈ ≈p p 1mean min . Hence, ( )ssoftMax results in a vector very
close to [ … ]c c c1/ , 1/ , , 1/ . To handle this problem, we multiply the
input data by a constant = −v ln 0.8/Δ. The purpose is to make s
in a suitable scale and then softMax can be effectively calculated.

Both max-pooling and leaky-ReLU have the semi-linear prop-
erty of ( ) = ( )f vx vf x and the biases are initialized as zeros,
therefore, the input data rescaling constant v can be well pre-
served to the last layer. In this case, the signal in the last layer
becomes ×v s. When we compute ( × )v ssoftMax , we will get

=p 1max and =p 0.8mean , which will result in a meaningful softMax
calculation. In practice, the Δ is estimated as an averaged number
on the training data, and v (after estimation) is fixed in both
training and testing.

5.5. Training

After proper initialization, we are able to train the network by
the back-propagation algorithm [74]. The training is carried out by
minimizing the multi-class negative log-likelihood loss using
mini-batch gradient descent with momentum. The mini-batch size
is set to be 1000, while the momentum is 0.9. The learning rate is
initially set to 0.005, and then decreased by ×0.3 when the cost or
accuracy on the training data stop improving. We do not use the
data augmentation strategy to generate distorted samples during
the training process, because we believe directMap is already a
powerful representation for HCCR, and we want to make the
training more efficient. The training is finished after about 70
epochs. After each epoch, we shuffle the training data to make
different mini-batches. In our experiments, both the online and
offline HCCR adopt the same convNet architecture (Fig. 3) and
share the same training strategies as described above.
6. Adaptation of convNet

It is shown that the features extracted from the activation of a
deep network trained with a large dataset can generalize to novel
generic tasks [59]. However, transfer of models directly to new
domains without adaptation will lead to poor performance [58]. A
widely used strategy is to train or fine-tune a state-of-the-art deep
model on a new domain, but this requires a significant amount of
labeled data. A better solution is the domain adaptation [58,75] of
the deep models.

To adapt the deep convNet to the new handwriting style of
particular writers, we propose a special adaptation layer based on
our previous work [28]. The adaptation layer can be placed after
any fully-connected layer in a network. Suppose ϕ ( ) ∈ x d is the
output (after activation) of a particular layer (let us call it source
layer), and we want to put the adaptation layer after this layer.
First, we estimate class-specific means on source layer from

training data { } =
x y,i i i

Ntrn trn
1
where ∈ { … }y c1, 2, ,i

trn and c is the

number of classes:

( ) ( ) ( )∑μ ϕ=
∑ =

=
( )= =


y k

x y k
1

,
1

k

i
N

i i

N

i i
1

trn
1

trn trn

where (·) = 1 when the condition is true and otherwise 0. The
μ μ{ … }, , c1 represent the class distribution on source layer and will
be used to learn parameters of adaptation layer.

The adaptation layer contains a weight matrix ∈ ×A d d and an
offset vector ∈ b d. There is no activation function on adaptation
layer. Suppose we have some unlabeled data { } =xi i

n
1 for adaptation.

By passing them through the pretrained convNet, we can obtain
the predictions for them = ( ) ∈ { … }y x cconvNet 1, ,i ipred . Since the
last layer of convNet is softMax, we can also get a confidence about
this prediction with = ( ) ∈ [ ]f xconvNet 0, 1i isoftMax . With all these
information, now the purpose of adaptation is to reduce the
mismatch between the training and test data. Note that we already
have the class-specific means μk on source layer, the adaptation
problem can be formulated as:

∑ ϕ μ β γ‖ ( ) + − ‖ + ‖ − ‖ + ‖ ‖
( )=

f A x b A I bmin ,
2A b

i

n

i i y F
,

1
2
2 2

2
2

i

where ∥·∥F is the matrix Frobenius norm, ∥·∥2 is the vector L2 norm,
and I is the identity matrix.

The objective of adaptation as shown in (2) is to transform each
point ϕ ( )xi towards the class-specific mean μyi

on the source layer.
Since the prediction yi may be not reliable, each transformation is
weighted by the confidence fi given by the softMax of the network.
In practice, to guarantee the adaptation performance with small n,
two regularization terms are adopted: the first is to constrain the
deviation of A from identity matrix, while the second is to con-
strain the deviation of b from zero vector. When β γ= =+∞, we
will get A¼ I and b¼0 which means no adaptation is happening.

Algorithm 1. Unsupervised adaptation of ConvNet.
ut: data { } =xi i
n

1, convNet, β, γ, iterNum
: estimate class-specific means on source layer
: add adaptation layer after source layer into convNet
: initial A¼ I and b¼0
: for =iter 1 to iterNum do
: = ( ) ∈ { … }y x cconvNet 1, ,i ipred

: = ( ) ∈ [ ]f xconvNet 0, 1i isoftMax

: update A and b by (2)
: end for
tput: prediction { } =yi i

n
1, adapted convNet
Ou

After obtaining A and b, the source layer and adaptation layer
are combined together to produce an output as:

ϕ( ) = ( ) + ∈ ( )x A x boutput , 3d

which is then fed into the next layer of the network. In practice, it



Table 1
The statistics for online and offline HCCR databases.

Offline: #Writers #Samples fall in 3755-class Ratio (%)

HWDB1.0 420 1,556,675 (train) 58.02
HWDB1.1 300 1,121,749 (train) 41.81
HWDB1.2 300 4463 (train) 00.17
Off-ICDAR2013 60 224,419 (test) –

Online: #Writers #Samples fall in 3755-class Ratio (%)

OLHWDB1.0 420 1,570,051 (train) 58.20
OLHWDB1.1 300 1,123,132 (train) 41.63
OLHWDB1.2 300 4490 (train) 00.17
On-ICDAR2013 60 224,590 (test) –
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is better to put the adaptation layer right after the bottleneck layer
in a network, i.e., the fully-connected layer which has the smallest
number of hidden units compared with other layers. In this way,
the size of A and b can be minimized, and thus the adaptation will
be more efficient and effective. From this consideration, we set the
dimensionality of layer-10 in our convNet (Fig. 3) to be as low as
200, and the adaptation layer is placed right after this layer.

The problem in (2) is a convex quadratic programming (QP)
problem which can be solved efficiently with a closed-form solu-
tion [28]. We use a self-training strategy for unsupervised adap-
tation of convNet. As shown in Algorithm 1, we first initialize the
adaptation as A¼ I and b¼0. After estimating yi and fi from con-
vNet, we update A and b according to (2). With new parameters of
A and b, the network prediction yi and softMax confidence fi will
be more accurate. Therefore, we repeat this process several times
to automatically boost the performance (see Algorithm 1). It is
straightforward to use our method for supervised adaptation by
discarding the self-training iteration and using the labels provided
by data. However, unsupervised adaptation is more common in
practice, since unlabeled data are much easier to obtain, and un-
supervised adaptation can apply to test data directly.

Adding an adaptation layer in convNet will not change the
structures and parameters of other layers. If we want to return to
an unadapted situation, we can simply set A¼ I and b¼0. The
adaptation process is an efficient QP which do not require so-
phisticated optimization tricks. With the involved regularization,
the adaptation performance is guaranteed, and the adaptation
data are not required to cover all the classes. Moreover, the
adaptation layer can be efficiently implemented in an un-
supervised manner. These are the advantages of our method
compared with the fine-tuning based strategies.
Fig. 4. The training process of the convNet for offline HCCR.
7. Experiments

We conduct experiments for both online and offline HCCR to
compare our methods with other previously reported state-of-the-
art approaches. After that, the effectiveness for the adaptation of
convNet is evaluated on 60 writers from the ICDAR-2013 compe-
tition database.

7.1. Database

For training the convNets, the databases collected by CASIA [76]
can be used as training sets, which contain the offline handwritten
character datasets HWDB1.0-1.2 and the online handwritten
character datasets OLHWDB1.0-1.2. In the following sections, we
denote these datasets (either offline or online) simply as DB1.0-1.2.
The test data are the ICDAR-2013 offline and online competition
datasets [10] respectively, which were produced by 60 writers
different from the training datasets. The number of character
classes is 3755 (level-1 set of GB2312-80). Table 1 shows the sta-
tistics of all the datasets. Note that the size of DB1.2 is negligible
compared with DB1.0 and DB1.1, this is because most of the
characters in DB1.2 are out of the vocabulary of the 3755-class
considered in the ICDAR-2013 competition.

7.2. Training of convNet

We train convNets on the directMaps for HCCR. The details on
the generating of directMaps are described in Section 3. Two
convNets (with the same architecture in Fig. 3) are trained for
online and offline HCCR separately, due to the difference in their
directMaps (Fig. 1). We use the method of SGD with momentum
for training other than the adaptive learning rate methods such as
RMSProp, AdaGrad, AdaDelta [77], and Adam [78]. The learning
rate is dropped by ×0.3 when the cost or accuracy on training data
is not improving. In practice, we find this learning rate decay
strategy (also used by [23,70,25]) is very effective. As shown in
Fig. 4, initially the training is getting improved smoothly and then
it sink into a plateaus, but after the first learning rate drop, there is
a significant accuracy improvement for both training and test data.
The learning rate is initialized as 0.005 and reduced three times
prior to termination. Other parameters involved in training the
convNet can be found in Section 5.5. Our convNet is trained with
the Theano [79,80] platform using a NVIDIA Titan-X 12G GPU.
Training one network takes about 80 hours to converge, and the
total number of epochs is about 70 for each model.

7.3. Offline HCCR results

Table 2 shows the results of different methods on ICDAR-2013
offline competition database. From Table 2, we can find that there
is a large gap between the traditional method (2nd row) and the
human-level performance (1st row). Through the three competi-
tions, the recognition accuracies are gradually increased, which
identify the effectiveness of holding competition for promoting
researches. In ICDAR-2011, the team from IDSIA of Switzerland
(4th row) won the first place [9], and in ICDAR-2013, the team
from Fujitsu (5th row) took the first place [10]. After correcting a
bug in their system [38], the team of IDSIA again achieved the best
performance (6th row). After that, by improving their method
[40], the team from Fujitsu boosted their performance as shown in
7th row. The human-level performance was firstly surpassed by
[15] (8th row) with their Gabor-GoogLeNet. By using the ensemble
of ten models, their accuracy was further improved to 96.74% (10th
row). Recently, the team from Fujitsu [41] further improved their
system by using proper sample generation (local and global dis-
tortion), multi-supervised training, and multi-model ensemble.



Table 2
Different methods for ICDAR-2013 offline HCCR competition.

No. Method Ref. Accuracy (%) Memory Training data Distortion Ensemble

Results on ICDAR-2013 offline HCCR competition database
1 Human Performance [10] 96.13 n/a n/a n/a n/a
2 Traditional Method: DFE þ DLQDF [19] 92.72 120.0 MB 1.0þ1.1 No No
3 CCPR-2010 Winner: HKU [8] 89.99 339.1 MB 1.0þ1.1 Yes No
4 ICDAR-2011 Winner: IDSIAnn-2 [9] 92.18 27.35 MB 1.1 Yes No
5 ICDAR-2013 Winner: Fujitsu [10] 94.77 2.402GB 1.1 Yes Yes (4)
6 Multi-Column DNN (MCDNN) [38] 95.79 349.0 MB 1.1 Yes Yes (8)
7 ATR-CNN Voting [40] 96.06 206.5 MB 1.1 Yes Yes (4)
8 HCCR-Gabor-GoogLeNet [15] 96.35 27.77 MB 1.0þ1.1 No No
9 HCCR-Ensemble-GoogLeNet-4 [15] 96.64 110.9 MB 1.0þ1.1 No Yes (4)
10 HCCR-Ensemble-GoogLeNet-10 [15] 96.74 270.0 MB 1.0þ1.1 No Yes (10)
11 CNN-Single [41] 96.58 190.0 MB 1.0þ1.1þ1.2 Yes No
12 CNN-Voting-5 [41] 96.79 950.0 MB 1.0þ1.1þ1.2 Yes Yes (5)

13 DirectMap þ ConvNet Ours 96.95 23.50 MB 1.0þ1.1 No No
14 DirectMap þ ConvNet þ Adaptation Ours 97.37 23.50 MB 1.0þ1.1 No No

15 DirectMap þ ConvNet þ Ensemble-2 Ours 97.07 47.00 MB 1.0þ1.1 No Yes (2)
16 DirectMap þ ConvNet þ Ensemble-3 Ours 97.12 70.50 MB 1.0þ1.1 No Yes (3)
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They achieved 96.58% by a single network (11th row), and with the
ensemble of 5 networks, their accuracy was improved to 96.79%
(12th row), which is the best reported result for offline HCCR so
far.

Our proposed method of directMapþconvNet can achieve a
new benchmark for offline HCCR as shown in the 13th row of
Table 2. Particularly, our result is based on a single network.
Compared with the best single models (8th and 11th rows in
Table 2), our model achieves significant accuracy improvement.
Moreover, our method also has the lowest memory usage com-
pared with all the other systems, due to the compact representa-
tion of directMap and our special convNet structure. For example,
the previous best performance achieved by [41] (12th row) is
based on the ensemble of 5 networks with memory consumption
950MB, while our model (13th row) is a single network of
23.5 MB. In Table 2, the methods from 4th to 16th are all based on
convNets, which implies that deep learning based methods are
becoming more and more popular for solving offline HCCR pro-
blem. However, the domain-specific knowledge is not used by 4th-
7th methods, and hence their accuracies are much lower than
ours. Although domain-specific knowledge is already used by 8th-
10th methods, our approach (with a single network) can still
outperforms them. The 11th and 12th methods used multiple
strategies to improve their performance such as very deep (15-
layer) network, proper designed distortion methods, and multi-
supervised training strategy [81]. However, our method still out-
performs them by using only a single objective function in the
training process and without data augmentation. These results
Table 3
Different methods for ICDAR-2013 online HCCR competition.

No. Method Ref. Accuracy (%)

Results on ICDAR-2013 online HCCR competition database
1 Human Performance [10] 95.19
2 Traditional Method: DFE þ DLQDF [19] 95.31
3 CCPR-2010 Winner: SCUT-HCII-2 [8] 92.39
4 ICDAR-2011 Winner: VO-3 [9] 95.77
5 ICDAR-2013 Winner: UWarwick [10] 97.39
6 DropSample-DCNN [43] 97.23
7 DropSample-DCNN-Ensemble [43] 97.51

8 DirectMap þ ConvNet Ours 97.55
9 DirectMap þ ConvNet þ Adaptation Ours 97.91

10 DirectMap þ ConvNet þ Ensemble-2 Ours 97.60
11 DirectMap þ ConvNet þ Ensemble-3 Ours 97.64
clearly identify the advantages of integrating directMap with
convNet used in our approach for HCCR.

7.4. Online HCCR results

The comparison of different methods on ICDAR-2013 online
competition database is shown in Table 3. For online HCCR, the
traditional method (2nd row) is already better than human per-
formance (1st row), and the human performance for online HCCR
is much lower than offline HCCR. This is because the display of
online characters (stroke coordinates) as still images is not as
pleasing as that of offline samples. The three competitions also
exhibit evident progresses for online HCCR. The best single net-
work (5th row) is the ICDAR-2013 winner from University of
Warwick, which represents the characteristics of stroke trajectory
with a “signature” from the theory of differential equations [12]
and adopts a sparse structure of convolutional neural network
[39]. Recently, by combining multiple domain knowledge and
using a “dropSample” training strategy, [43] can achieve compar-
able performance by using a single network (6th row). With the
ensemble of nine networks, they further improve the performance
to 97.51% (7th row), which is the best reported result for online
HCCR so far.

With our directMapþconvNet, we can set a new benchmark for
online HCCR as shown in the 8th row of Table 3. Our result is based
on a single network. Compared with the best single network
method from the 5th row, our accuracy and memory usage are
both better. Although the ensemble model (7th row) has a
Memory (MB) Training data Distortion Ensemble

n/a n/a n/a n/a
120.0 1.0þ1.1 No No
30.06 1.0þ1.1 No Yes (2)
41.62 1.0þ1.1þOthers Yes No
37.80 1.0þ1.1þ1.2 Yes No
15.00 1.0þ1.1 Yes No
135.0 1.0þ1.1 Yes Yes (9)

23.50 1.0þ1.1 No No
23.50 1.0þ1.1 No No

47.00 1.0þ1.1 No Yes (2)
70.50 1.0þ1.1 No Yes (3)



Table 4
Processing time for one character (in millisecond).

Offline HCCR (ms) Online HCCR (ms)

directMap (CPU) 1.9970 0.4654
convNet (CPU) 296.8941 294.5713
convNet (GPU) 0.4641 0.4556

ICDAR-2013 Winners GPU: 55 CPU: 355
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comparable accuracy with us, our memory usage is much more
efficient, because they use the ensemble of 9 models to reach the
performance. Furthermore, in order to achieve their best results,
all the 4th–7th methods adopt the data augmentation strategy
with distorted samples to enlarge their training set. Contrarily, our
result is achieved without data augmentation, which makes the
training process to be more efficient. These comparisons again
verify the effectiveness of directMapþconvNet for HCCR.

7.5. Discussion

With directMapþconvNet, we can achieve new benchmarks
for both online and offline HCCR without data augmentation and
model ensemble. From Tables 2 and 3, we can find that previous
best results on online and offline HCCR are achieved by different
methods which have different network architectures. However,
with our method, we can obtain best results for both online and
offline HCCR under the same framework. We also show the top-N
accuracies of our methods in Fig. 5. It is shown that the top-2
accuracies for offline and online HCCR are both higher than 99%.
This will significantly benefits the handwritten Chinese text re-
cognition [5,6] for which the language model can be used to fur-
ther improve the initial prediction, and hence, high top-N accuracy
is crucial.

In practice, another important issue is the prediction speed of
the system. It is impossible to compare different methods under
the same software and hardware configuration, because this needs
to re-implement so many models. We report the prediction speed
in Table 4 to ease the future comparison with our system. Our
system is a combination of directMap and convNet. It is shown
that the extraction of directMap is very efficient although being
implemented on CPU. Moreover, GPU is very important for the
speedup of convNet. Compared with the ICDAR-2013 winners, our
methods are faster for both online and offline HCCR. The memory
usage of our system is very efficient (see Tables 2 and 3) which
allow it to be used in different environments such as handheld
mobile devices. However, the running time of convNet without
GPU is still a shortcoming which prevents convNet from wide
applications. Therefore, speedup of convNet (in non-GPU situa-
tion) is an important future direction.

7.6. Varying the number of training data

HCCR is a large category problem (tens of thousands of differ-
ent classes), and in the competition of ICDAR-2013, a standard set
of 3755-class is considered. All participants were suggested to use
the datasets of DB1.0-1.2 as shown in Table 1 for training their
system. The test data were kept confidential until the end of
competition. The participants were allowed to use external data to
enlarge their training set. Nevertheless, as shown in Tables 2 and
3, all the methods were using the recommended training sets,
except the 4th method in Table 3 which was submitted by a
company and some private data were used by them. Moreover, as
Fig. 5. The top-N accuracies (%) for online and offline HCCR.
shown in Table 1, the size of DB1.2 is negligible, and therefore, the
system trained with DB1.0þ1.1 can be fairly compared with the
system trained with DB1.0þ1.1þ1.2.

Although most methods can be compared fairly, we found that
there are some methods (i.e., 4th–7th in Table 2) using significant
less training data compared with other approaches. To make a fair
comparison with these methods, we re-trained our convNet with
only HWDB1.1, and the test accuracy became 96.55%. Note that this
is achieved with a single network without data augmentation. The
best performance (trained with only HWDB1.1) is from the 7th
method in Table 2, which was produced by the ensemble of
4 networks to give the accuracy of 96.06%. Note that our perfor-
mance is even better than the 8th method in Table 2 although they
used HWDB1.0þ1.1 (twice more) as training data. Moreover, our
performance is comparable with the 11th method in Table 2 which
used all the DB1.0þ1.1þ1.2 (with distortion) as training set. These
results again verify the effectiveness of our approach in case of
smaller number of training data.

7.7. Comparison of different representations

The representation of handwritten characters is an important
issue. Since offline characters are naturally stored as scanned
images, many approaches directly train their convNet on the raw
data such as the 4th–7th methods in Table 2. Recently, it is shown
by [41] that very high performance can be obtained by directly
training on raw data. However, deeper network, proper sample
distortion, and multi-supervised training [81] are required to
guarantee the performance. It is shown in [41] that: without the
multi-supervised training, the network is not able to converge
during the training. Moreover, to eliminate the influence from
different handwriting styles, convNet trained on raw data is
usually designed to be very large (e.g. 190 MB for the 11th method
in Table 2) and distortion is usually required to enlarge the
training set. Contrarily, by integrating domain-specific knowledge
into the representation, the within-class variation can be reduced,
then the convNet can be much smaller and data distortion is no
longer needed (see 8th and 13th methods in Table 2). For online
handwritten characters, to make full use of the temporal and
spatial information, the path signature feature map was used by
[12] to win the ICDAR-2013 online competition. Recently, [43]
further combined path signature feature with other domain-spe-
cific knowledge (resulting in 6 different domain knowledge layers)
to enhance the representation for online HCCR.

We compare the size of different representations in Table 5. It is
shown that our directMap is a compact representation compared
with other approaches. For example, in offline HCCR, the method
of [15] used 17 feature maps (120�120) including eight Gabor
maps, eight gradient maps, and one HoG map. Furthermore, in
online HCCR, as many as 30 feature maps (96�96) were used by
[43] to achieve high performance. Compared with these ap-
proaches, our method adopt the × ×8 32 32 directMap as input to
convNet, therefore, both the training and testing are much more
efficient. Larger map size can also be used for our directMap,
however, this requires much more computational resource.
Moreover, as shown in Section 3.3, the directMap is already very



Table 5
Size of different representations.

Ref. Representation size Type

MCDNN [38] × ×1 48 48 Offline
ATR-CNN [40] × ×1 48 48 Offline
GoogLeNet [15] × ×17 120 120 Offline
SparseConvNet [12] × ×7 96 96 Online
DropSample [43] × ×30 96 96 Online
DirectMap Ours × ×8 32 32 Both

Fig. 6. Comparison of two networks trained with and without dropout.
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sparse, therefore, enlarging the map size will not bring much in-
formation for distinguishing different classes. The highest ac-
curacies and compact representations of our approach verify the
advantages of using directMap for representing handwritten
characters.

7.8. Effectiveness of gray-level normalization

The preprocessing step is important for the success of a pattern
recognition system. For example, in [38] the preprocessing in-
cludes: rescaling the images to a fixed size and contrast max-
imization. However, due to a glitch in their system, i.e., in training
process Matlab was used while in testing process OpenCV was
used, they lost the first place in ICDAR-2013 offline competition
[10]. By correcting this bug, their performance can be significantly
improved [38], which can outperform the ICDAR-2013 winner.

In our system, as described in Section 3.1, there also exists a
preprocessing step of gray-level normalization. To check the in-
fluence of this step for the whole system, we conducted three
experiments: no gray-level normalization, linear gray-level nor-
malization, and nonlinear gray-level normalization [19]. The
comparison is shown in Table 6. It is shown that the nonlinear
normalization is slightly better than other methods, but the ad-
vantage is not significant. In traditional approach, each category
(class) is assumed to be a Gaussian distribution [1], and therefore,
nonlinear gray-level normalization is important for satisfying this
assumption and then improving the final classification accuracy
[19]. However, for deep learning based system, there is no sig-
nificant difference between different methods as shown in Table 6.
Therefore, we can conclude that this preprocessing step is not
crucial for our deep learning based system. However, to avoid the
mistake reported in [38], we should keep in mind that identical
preprocessing should be applied for both training and testing.

7.9. Effectiveness of dropout

Dropout [68] is a widely used strategy to avoid overfitting and
improve the generalization performance. Previous best approaches
on either offline [41] or online [12,43] HCCR have adopted dropout
to improve the performance of their deep system. In our network
architecture as shown in Fig. 3, the dropout probability is in-
creased with respect to the depth of the network. The purpose of
doing so is that the bottom layers of a deep network are usually
harder to train compared with the top layers, and therefore, we set
smaller dropout probabilities for the bottom layers. We conduct
Table 6
Comparison of different preprocessing methods.

Test Accuracy

No gray-level normalization 96.93%
Linear gray-level normalization 96.90%
Nonlinear gray-level normalization 96.95%
experiments on the offline HCCR to show the effectiveness of
dropout. As shown in Fig. 6, without dropout (net1), the training
accuracy is increased very fast, and after 30 epochs, it reaches
100%. However, the test accuracy of net1 is not promising due to
the overfitting on training data. This indicates that without drop-
out, in order to avoid overfitting, smaller network size should be
used to reduce the capacity of the network. However, the perfor-
mance of a small network (without dropout) is not as good as a big
network (with dropout), because the latter can be viewed as the
ensemble of many sub-networks [68] (although only one network
is trained). As shown in Fig. 6, with the help of dropout (net2), the
network can be effectively trained during many epochs and the
training accuracy is still controlled (not growing too fast) to avoid
overfitting. Note that in testing process, dropout is no longer used
for both net1 and net2, and the test accuracy of net2 is sig-
nificantly better than net1. This proves the effectiveness of dropout
in improving the generalization performance of deep neural
network.

7.10. Adaptation results

As shown in Fig. 7, the same character can be written in dif-
ferent handwriting styles by different individuals. This is another
major challenge for HCCR. Compared with traditional methods and
human-level performance, deep learning based methods can
achieve much higher accuracies. Nevertheless, in this section, we
will show that writer adaptation of deep convNet is still effective
in further improving the performance. The ICDAR-2013 competi-
tion database [10] contains 60 writers. Each writer was supposed
to produce 3755 characters (one for each class), but some of the
characters were eliminated due to miss-labeling or low-quality. To
make a fair comparison with other methods, the labels provided
by the competition database should only be used for accuracy
evaluation. Therefore, we consider the unsupervised adaptation of
convNet as described in Section 6. In other words, the only addi-
tional information we used is the writer index in the database.
Traditional evaluation treats the test data to be independent, but
here, the data are partitioned into 60 groups according to the
writer index. Each group of data is produced by one writer and
assumed to be consistent in writing style. The data of one writer
are then fed into Algorithm 1 to obtain the final prediction.

The hyper-parameters of Algorithm 1 include the trade-off
parameter β γ, and the number of iterations for self-training. To
achieve better performance, β is set to be β∼ multiplied by a con-
stant which is estimated from data (see Eq. (10) in [28] for more
detail). After that, for all the 60 writers, we set β =∼ 0.2 and γ = 0 as



Fig. 7. Different handwriting styles: each row represents the same character
written by different people.

Fig. 9. The error reduction rates of 60 writers for online HCCR.
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suggested by [28]. The iterNum in Algorithm 1 is set to be 3, be-
cause in practice only a small number of self-training is good en-
ough to obtain stable results.

To analyze the behavior of adaptation on individuals, we con-
sider the error reduction rate which is defined as:

=
−

( )
Error reduction rate

Error Error
Error

.
4

initial adapted

initial

The plots of 60 writers by their error reduction rate and initial
accuracy are shown in Fig. 8 (offline) and Fig. 9 (online). We can
find that: all the error reduction rates are larger than zero (except
one writer), which means after adaptation the accuracies are
consistently improved for both online and offline HCCR. It is also
revealed that: for the writers with high initial accuracy, more
improvements can be obtained with adaptation. This is because
the success of self-training relies on the initial prediction. For ex-
ample, in the top-right corner of Fig. 8, there is a writer whose
initial accuracy is already as high as 99.33%, but after adaptation it
is improved to 99.63%, given an error reduction rate of more than
44%.

The average accuracies of the 60 writers after adaptation are
shown in the 14th row of Table 2 and 9th row of Table 3 respec-
tively. For offline HCCR, the accuracy is improved from 96.95% to
97.37%, while for online HCCR, the accuracy is improved from
97.55% to 97.91%. Note that in the adaptation process, we only add
an adaptation layer into the network with parameters ∈ ×A 200 200

and ∈ b 200, which are negligible compared with the full size of
convNet. The number of writer-specific data used for adaptation is
equal to (or less than) the number of classes. Moreover, the whole
process is happened in an unsupervised manner. Consider all these
Fig. 8. The error reduction rates of 60 writers for offline HCCR.
together, we can conclude that the proposed adaptation layer is
effective in improving the accuracy of convNet. Furthermore, the
adaptation is also very efficient, because only a QP problem with
closed-form solution is involved for each iteration and three
iterations are used for each adaptation (each writer).

7.11. Model ensemble results

The ensemble of multiple models is widely used to achieve the
highest accuracies on different databases [37,15,43,41]. Model
ensemble can be achieved by training the same convNet multiple
times with different random initializations and different mini-
batches (due to random data shuffling). We train our convNet
(Fig. 3) three times for both online and offline HCCR. To make the
final prediction, the softMax probabilities of different models are
averaged for classification. The results of model ensemble are
shown in the 15th–16th rows of Table 2 and 10th–11th rows of
Table 3 respectively. It is shown that model ensemble can indeed
improve the classification accuracies. We did not consider the
ensemble of more than three models, because the performance
gain from two models to three models is already vanishing, and
the usefulness of model ensemble is limited in real applications.
The ensemble of two models already double the processing time
and memory usage. With more models involved, more time and
space resources will be consumed. By comparing the improve-
ments caused by model ensemble and adaptation, we can con-
clude that the adaptation of convNet is much more efficient and
effective. Therefore, in practice, it is much better to use a single
network with adaptation for high accuracy personalized hand-
writing recognition, other than the ensemble of many networks.

7.12. Shape normalization and direction decomposition

The proposed directMap utilizes strong prior knowledge of
shape normalization and direction decomposition. As discussed in
Section 3, the relationship between shape normalization and di-
rection decomposition can be interpreted in two different ways:
normalization-based and normalization-cooperated [22]. For nor-
malization-based method, direction decomposition is performed
on the normalized character. Contrarily, for normalization-coop-
erated method, direction decomposition is implemented on ori-
ginal character, and shape normalization only serves as a co-
ordinate mapping for generating the directional maps [22].

We compare the normalization-based and normalization-co-
operated directMaps in training the convNet for offline HCCR. As
shown in Fig. 10, the normalization-cooperated directMap sig-
nificantly outperform the normalization-based one. This is



Fig. 10. The comparison of normalization-cooperated and normalization-based
directMaps on training the convNet for offline HCCR.
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because: although shape normalization can reduce the within-
class variance, it also causes stroke shape distortion. Normal-
ization-cooperated method can well preserve the original stroke
direction and also benefit from shape normalization, therefore it is
much more discriminative than normalization-based method.
Using state-of-the-art shape normalization methods (i.e., LDPI for
offline and P2DBMN for online HCCR) and normalization-coop-
erated direction decomposition is the key for the success of our
directMaps, which can give the highest recognition accuracies
when combined with deep convNets as shown in the previous
sections.
8. Conclusion

By integrating the deep convolutional neural network (con-
vNet) with the domain-specific knowledge of shape normalization
and direction decomposition (directMap), this paper sets new
benchmarks for both online and offline HCCR on the ICDAR-2013
competition database. The directMap is shown to be a compact
and powerful representation for handwritten characters. Com-
bining directMap with an 11-layer convNet can achieve highest
accuracies without the help from data augmentation and model
ensemble. Compared with previous state-of-the-art methods, our
approach is much better from the aspects of both recognition ac-
curacy and memory usage. Since high character recognition ac-
curacy is essential for the success of handwritten text recognition
[5,6], our future work is to extend the proposed methods and set
new benchmarks for handwritten Chinese text recognition.

Although deep learning based methods can outperform the
traditional approaches with large margins, this paper shows that
writer adaptation of deep networks can still improve the perfor-
mance consistently and significantly. The adaptation is achieved by
adding an efficient and effective adaptation layer into the network.
The objective of the adaptation is to reduce the mismatch between
training and test data on the source layer, which is formulated into
an efficient QP problem and can be solved with closed-form so-
lution. The adaptation performance is guaranteed even with a
small amount of adaptation data. Moreover, the whole adaptation
process can be effectively implemented in an unsupervised man-
ner. Since convNet has been successfully used for many other
problems, it is straightforward and interesting to evaluate the
adaptation layer on other visual recognition tasks such as image
classification, object detection, face recognition and so on. Besides
convNet, our future work will also consider using or extending the
adaptation layer for other models such as the recurrent neural
network [82].

Recent works of HCCR using deep learning methods have sur-
passed the human performance. However, this is not the end of
research. Further improvement and speedup of convNet can be
achieved with better network architecture (such as the super deep
network [83]) or training algorithm. Moreover, the high accuracy
of a handwritten character recognition system will enable and
inspire many other related tasks. In future, the three basic com-
ponents (directMap, convNet, and adaptation) can be hopefully
combined with other models (such as recurrent neural network)
to solve other challenging problems such as handwritten Chinese
text recognition, handwritten document analysis and retrieval,
natural scene (video) text detection and recognition, historical
document analysis, and so on.
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