Unsupervised Adaptation of Neural Networks for Chinese Handwriting Recognition
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Abstract—Writer adaptation is an important topic in hand-
writing recognition, which can further improve the perfor-
mance of writer-independent recognizer. In this paper, we
propose combining the neural network classifier with style
transfer mapping (STM) for unsupervised writer adaptation,
which only require writer-specific unlabeled data, and there-
fore is more common and efficient compared to supervised
adaptation. We use some techniques like dropout, ReLU,
momentum, and deeply supervised strategy to improve the
performance of the neural network classifier. For a specific
writer in the test data, an adaptation layer is added to the
pre-trained neural network classifier. In adaptation process,
only the parameters in adaptation layer are updated while
other parameters of the neural network are kept unchanged.
To train the adaptation layer, we use the same technology
as STM learning but redefine the source point set, target
point set and the corresponding confidence. Experiments on
the online Chinese handwriting database CASIA-OLHWDB1.1
demonstrate that our method is very efficient and effective
in improving classification accuracy. The experimental results
also show that our proposed method outperforms the previous
proposed learning vector quantization (LVQ) and modified
quadratic discriminant function (MQDF) with STM methods
for writer adaptation.

Keywords-neural network; style transfer mapping; writer
adaptation; handwriting recognition;

I. INTRODUCTION

The default assumption in many learning scenarios is
that training and test data are independently and identically
(iid) drawn from the same distribution. However, many
applications observe changing distribution. When the dis-
tributions on training and test set do not match, we are
facing sample selection bias or concept drift [1]. To improve
the generalization performance in such situations, we should
transfer the classifier learned on the training data to the new
distributions of the test data, which is known as transfer
learning [2].

The large variability of handwriting styles across individ-
uals makes handwriting recognition a challenging problem.
To deal with this variability, writer-independent classifiers

which were trained with large training datasets should be
adapted towards the new distribution of the particular writer.
This process is known as writer adaptation [3]. Writer
adaptation is a specific example of transfer learning.

A general framework called style transfer mapping (STM)
is proposed by [3] for writer adaptation. STM uses a
linear transformation to project writer-specific data onto a
style free space in order to improve the prediction of the
writer-independent classifier. The STM achieved significant
improvement in large category handwriting recognition. Li
et al. adopted the STM learning method in historical Chinese
character recognition research [4]. Feng et al. [5] proposed
using a nonlinear transformation to replace the linear trans-
formation in STM, and the nonlinear transformation is based
on Gaussian Process regression. This method is proved
to be useful for Dunhuang historical Chinese character
recognition.

However, these previous studies only used STM for tradi-
tional classifiers. In recent years, the deep neural network
classifier outperforms the traditional classifiers in many
fields, and some adaptation methods with neural network
classifier are proposed. For example, Tzeng et al. proposed
adding an adaptation layer and together with a dataset trans-
ferring loss in convolutional neural network (CNN) to learn
an invariant representation for different domains [6]. Du et
al. trained a CNN as feature extractor, and proposed a new
criterion to learn the transformation for supervised writer
adaptation based on the extracted features from CNN [7].

In this paper, we propose combining the neural network
classifier with STM [3] for writer adaptation. An adap-
tation layer is added to the pre-trained neural network,
and then updated according to the STM criterion in the
adaptation process. Experimental results show that STM
is efficient and effective in improving the performance of
neural networks for writer adaptation. Recently, Zhang et al.
combine the CNN with STM for writer adaptation, and get
a new benchmark for online and offline handwritten Chinese
character recognition [8]. The rest of this paper is organized



as following. Section II introduces the writer-independent
classifiers that are used in this paper. Section III gives a
brief introduction of the STM. Section IV then describes the
proposed method. Section V gives the experimental results
and the final section sets the conclusion.

II. NEURAL NETWORK CLASSIFIER

We use neural network classifier, i.e., multilayer per-
ceptron (MLP) [9] for large category Chinese handwritten
character recognition. The MLP has been proposed for a
long time, but for Chinese handwriting recognition, the
modified quadratic discriminant function (MQDF) classifier
is much more popular [10]. To improve the performance
of MLP, we use some technologies that are widely used
in the deep neural network in recent years, which can be
summarized as following.

1. We adopt rectified linear units (ReLU) [11] for the
hidden layers. These units use rectifier activation function:

s(z) = max(0,x) (1)

Rectifier network gives rise to real zeros of hidden activa-
tions and thus leads to truly sparse representations, this unit
can boost up the performance of the network. Furthermore,
from the perspective of the training, the rectifier activation
is more linear compared with the sigmoid or hyperbolic
tangent activation, thus it can decrease the complexity of
the network and make the network easier to train.

2. We add dropout after input layer and every hidden
layer. Dropout [12] provides a computationally inexpensive
but powerful method to regularize a broad family of models.
Specifically, for a specific layer L; of the network, its output
O; is a vector with dimension d;, d; is the number of nodes
of the layer. If we add dropout to the layer, then, for every
node j(1 < j < d;) of the layer, we will randomly set
its output O;; to 0 with the probability p, p is a hyper
parameter and can be adjusted during the training. Because
of the dropout, we actually train different sub-networks of
the underlying base network, thus, we train multiple models,
and evaluate multiple models on each test sample, which can
significantly improve the performance of the network.

3. We use the momentum method [13] during the training.
The method of momentum is designed to accelerate learning,
especially for high curvature, small but consistent gradients,
or gradients that vary greatly from one minibatch to the
next. Formally, we introduce variables v that represents
the velocity (or momentum) that accumulates gradient, n
represents the learning rate, 6 represents the parameters to
be learned, o represents the weight of the momentum. The
update rule is given by:

v = ove—1 — (1 — ae)ne(VoLy) ()
915 = gtfl + (o (3)

«a, n are hyper parameters and can be tuned during the
training. We fix a; = 0.9 in our experiment.
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Figure 1. The structure of the neural network classifier C; (dropout
probabilities are listed on the arrow)

We adopt the above three technologies in MLP, and
achieve better result than the MQDF classifier. The structure
of our network is shown in Fig. 1, which is denoted as C;.
The MLP is trained as the base classifier. During testing, we
adapt the pre-trained MLP towards the new handwriting style
of each specific writer. In order to achieve the adaptation,
We add an adaptation layer before the output layer (after
the third hidden layer). The outputs of the third hidden
layer will be the inputs of the adaptation layer. In C}, the
dimension of the inputs to the adaptation layer is 2000,
which is too high for the adaptation, because it will make
the adaptation to fit a large matrix(2000 x 2000) and a large
biased vector(2000 x 1).

For better adaptation, we propose a new structure of MLP,
which is shown in Fig. 2, and we use symbol C5 to denote
it. In Co, We add a linear layer after the third hidden layer.
The activation of the linear layer is just a linear function,
s(z) = z, which is used to achieve linear dimensionality
reduction. However, The reduction of the dimension will
hurt the performance of the MLP. In order to keep the
performance, we adopt a strategy called deeply-supervised
nets (DSN) [14]. The central idea of DSN is to provide
integrated direct supervision to the hidden layers, rather than
the standard approach of providing supervision only at the
output layer. Therefore, in C5, we add another output layer
after the third hidden layer, and calculate its loss called
loss2 together with the standard loss called lossl. During
the training, the objective function is

Loss = loss; + lossy (@)

By using the strategy of DSN, we can learn discriminative
and robust features in the early layers, meanwhile, the added
loss can help avoid the vanishing gradient problem during
the training, both advantages will be helpful to improve the
performance of the MLP.

For classifier C; and C5, we use the soft-max activation

for all the output layers, meanwhile, we use the negative
log-likelihood loss for both two classifiers.
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Figure 2.  The structure of the neural network classifier Cy (dropout
probabilities are listed on the arrow)

III. STYLE TRANSFER MAPPING

As shown in [3], the STM is a linear feature transfor-
mation which has a closed-form solution. STM projects the
data of different writers onto a style-free space, where the
writer-independent classifier needs no change to classify
the transformed data and can achieve significantly higher
accuracy.

In STM, a source point set is defined as S = {s; €
R? | i = 1,...,n} and a target point set is defined as
T = {t; € R4 | i =1,...,n}. The parameters of style
transfer mapping A € R?¢ and b € R? can be learned by
minimizing the objective function

ZleASme till3+BIlA=II[E+~1BlI3 (5)

AeRdxd beRd 4

where f; € [0,1] is the transformation confidence for pair
(si,t:); ||.]|F is the matrix Frobenius norm and ||.||2 is the
vector Lo norm. This optimization problem is convex, thus it
has a closed-form solution as shown by [3]. The £ and y are
hyper-parameters to control the tradeoff between style trans-
fer and non-transfer. In STM learning for a specific writer,
the source point set is defined as the writer-specific data and
the target point set is classifier dependent. Previously, STM
is combined with learning vector quantization (LVQ) [15]
and MQDF [16] classifier. The confidence f; setup method
is described in [3] which is classifier dependent.

STM can be used for supervised, unsupervised, and semi-
supervised adaptation. In this paper, we pay more attention
to the unsupervised adaptation. For unsupervised adaptation,
the self-training strategy can then be used to learn the labels
and the STM simultaneously from the unlabeled data. The
specific process can be found in [3].

IV. NEURAL NETWORK ADAPTATION WITH STM

In this paper, we combine MLP with STM for writer
adaptation. The neural network classifier is trained with large
training datasets from many writers. For adaptation, we add
an adaptation layer L, before the output layer Lo of the
trained MLP, as shown in Fig. 3. The activation of L, is
linear for linear transformation. For a specific writer in the
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Figure 3. The structure of the neural network for writer adaptation

test set, the parameters of L, are learned with writer-specific
unlabeled data for writer adaptation, while keeping the rest
parameters of the MLP fixed. The main problem is how to
learn the parameters of L,. In this paper, we use the same
technique as the STM learning by the redefining of source
point, target point, and corresponding confidence from the
perspective of neural network.

A. The Source Point Set

Let L; denotes the layer that stays before the adaptation
layer. As introduced in section III, the source point set
should be the writer-specific data or transformed writer-
specific data. After the feed forward process, the input data
get a new representation at the layer L; and then flow to the
adaptation layer. Thus, the source point set in our setting is
the new representation at L; of the writer-specific data. Let
¢ denotes the mapping from the input to the output of Ly,
then the source point set is S = {¢(s;) | i = 1,...,n}
where s; is writer specific data.

B. The Target Point Set

Both the LVQ and MQDF classifier have the concept of
“class center”. For LVQ classifier, given a specific class y, it
has one or several prototypes m,; of the class y, which can
be seen as the “center” of y. For MQDF classifier, given a
specific class y, it has the mean p, of the class, which can
also be seen as the “center” of y. From [3], it is obvious
that the definition of the target point set is closely related to
the “class center”. However, in MLP, there is no concept of
“class center” for every class. To define the target point set,
we should first adopt some method to calculate the “center”
for every class. Given a specific class y, we can find all
samples with label y in the training set, denoted by

Xy={zyili=1,...,ny} (6)

By passing X, to the MLP, we can get their new represen-
tation at layer Ly

Xy ={&yi=d(xy) [1=1,...,ny} (7
thus, the center of the given class y can be computed as
1 Ny
= — T 'L 8
Cy n Ty ®)



With the centers for all class, the target point set can be
defined directly. For example, let = be a writer-specific
sample with label y, the source point is then defined as ¢(x)
where the target point should be c,.

C. Confidence Setup

In MLP classifier, there exists a natural and direct way to
decide the confidence for a pair {z;, t;} where z; is the input
and ¢; is the corresponding target. At the output layer Lo,
the activation is soft-max, thus, it outputs the probability
vector P = {p;};¢; for a given input (n. is the number
of classes), p; is the confidence that the input belonging to
class i. Normally, the label given by the MLP classifier to the
input is § = arg rﬁi&ilx p; and the confidence is py. Therefore,
we can directly use this as the confidence representing the
transformation from source point to target point. Formally,
we set the confidence as f; = Iﬁlélx ;.

Given the source point set,LIaIget point set, and con-
fidence, we can get the parameters of adaptation layer
L, by solving the equation (5). Particularly, We learn the
parameters of layer L, only with the unlabeled writer-
specific data, thus the writer adaptation is unsupervised.
For unsupervised adaptation, we still use the self-training
strategy that learns the labels and the parameters of L,
simultaneously. Our complete algorithm is summarized in
Algorithm 1.

Algorithm 1 Neural Network Classifier with STM for
Unsupervised Adaptation
Input:
writer-specific unlabeled data {x;}7 ,
the trained base Neural Network classifier Cpsrp
hyper-parameter (3, 7y, iterNum
1: insert a adaptation layer L, before the output layer of
Cuirp, the weight of L, is initialized by W = I, the
bias of L, is initialized by b = 0
for iter=1 to iterNum do
for i =1 ton do
feed forward xz; in the Cprp
calculate the source s; = ¢(z;)
prediction g; by Carp
target t; = cy,
get the confidence f; from soft-max
end for
0: learn {W,b} by E.q. (5) using {s;,t;, fi},
11: end for
Output: predicted labels {g;}7,
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V. EXPERIMENTS
A. Database

We evaluated the performance of MLP classifier and
MLP+STM for writer adaptation on a large scale un-

Table I
TEST ACCURACIES OF DIFFERENT CLASSIFIERS ON
OLHWDBI.1

Classifier Accuracy (%)
MQDF 93.22
Cy 93.29

Cs 93.31

Table II
SETTINGS OF HYPER-PARAMETERS FOR ADAPTATION

Classifier B v | iterNum
Cy 1000000 5
Cy 2100000 | 0 5

(=}

constrained Chinese online handwriting database CASIA-
OLHWDBI.1 [17], which consists handwritten character
data from 300 different writers (no. 1001-1300). For each
writer, there are around 3755 samples. The number of
character class is 3755. The training set contains 898,573
samples from writers no. 1001-1240, and the test set contains
224,559 samples from writers no. 1241-1300.

B. Neural Network Classifier

The neural network classifier plays as a base classifier
in this paper. As introduced in section II, we trained two
different neural network classifier C7 and C5. The structure
of them are shown in Fig. 1 and Fig.2. For classifier Cs,
during testing, we remove the output2 and loss2, and only
use the standard outputl for classification. The accuracies
on the OLHWDBI.1 are shown in Table I.

Both two neural network classifiers outperform the MQDF
classifier. Compared with classifier C;, although the di-
mension of the input to the output layer is decreased, the
classifier Cs still achieve better performance. This shows
that the strategy of DSN really works.

C. Overall Performance

We adapted the trained classifier C; and C5 to every writer
in the test set of OLHWDBI1.1 by Algorithm 1. To mea-
sure the performance of writer adaptation, the measurement
called error reduction rate [3] is used in our experiments.
The parameter settings of our experiments are shown in
Table II. For almost all the writers in the test data, the
adaptation is helpful, but the ranges of the boost are different
across the writers. Table III shows the error rate of 10
representative writers and the average error rates over 60
writers for C; and C. Table IV shows the comparison
of our proposed Neural Network + STM model with the
MQDF/LVQ + STM model.

Table III shows that our proposed model is efficient for
writer adaptation, the error rate after adaptation is signif-
icantly reduced. The adaptation handles 2000-dimension
inputs for C', whereas 200-dimension inputs for Cs. From



Table III

ERROR RATES (%) WITH AND WITHOUT ADAPTATION FOR C7 AND Cs.

Table III, the 200-dimension inputs are better, but the
distinction between them is small. Considering the cost
for computation, We still recommend to use inputs with
lower dimension for adaptation. Compared to MQDF/LVQ
classifier, our neural network classifier has a higher baseline,
and the result of writer adaptation is still better than the
MQDF/LVQ+STM.! This again demonstrates the efficiency
of our model.

D. Effects of Iteration Numbers

In this experiment, we evaluate the effects of iteration
numbers for writer adaptation. We changed the iteration
numbers on C and C5, and keep the other hyper-parameters
fixed. The results are shown in Fig. 4. From Fig. 4, we
can find that with the increase of the iteration number,
the error rate will decrease gradually. When the iteration
number is small, an addition for the iteration number will
significantly improve the performance. However, when the
iteration reaches a specific number, the increase is helpless.
More iteration will need more computation, considering this,
a proper iteration number should be selected in practical
application, which can simultaneously keep the performance
and decrease the cost of computation.

Note that the experimental setting in this paper is not exactly the same
as [3], and Table IV just gives an intuitive comparison.

01 02
Writer no. Before adaptation | After adaptation | Reduction (%) Before adaptation | After adaptation | Reduction (%)

1242 36.77 34.34 6.61 36.50 33.40 8.49

1255 3.25 2.34 28.00 3.01 2.37 21.26

1259 6.45 4.93 23.57 7.10 5.03 29.15

1261 14.33 8.96 37.47 14.81 9.07 38.76

1266 3.64 2.19 39.84 3.64 2.30 36.81

1273 5.32 4.81 9.59 4.84 4.25 12.19

1280 2.26 2.00 11.50 2.32 1.55 33.19

1285 6.50 4.53 30.31 6.53 4.35 33.38

1292 3.70 2.80 24.32 3.70 2.56 30.81

1299 3.94 3.00 23.86 3.69 2.84 23.04

average 6.71 5.55 17.29 6.69 5.41 19.13
Table IV 57
COMPARISON OF THE ADAPTATION PERFORMANCE FOR DIFFERENT 565

CLASSIFIERS. . \
Classifier Before adaptation | After adaptation | Reduction (%) %S:z
LVQ(1) [3] 10.36 9.05 12.64 [ = —#—classlfler C1
MQDE(10) [3] 833 711 14.65 5: classifier 2

C1 6.71 5.55 17.29 s
Ca 6.69 5.41 19.13 .s

Figure 4. The error rate of different iteration numbers in writer adaptation

E. Effects of 5

In Algorithm 1, 5 control the tradeoff between style
transfer and nontransfer. In this experiment, we evaluate the
effects of the 3 for writer adaptation. We adopt different g
in this experiment while keeping the other hyper-parameters
fixed. This experiment is conducted only on C5, which has
a lower computation cost contrast to C. The results of
this experiment is shown in Fig. 5. In Fig. 5, the error
rate first decreases with the increase of 3, then, when the
B reach a specific number, the error rate will increase.
This phenomenon is reasonable. When the 3 is small, the
constraint to the transformation is weak, which will result
over transformation and this is harmful to the adaptation.
When the (3 is too big, the constraint to the transformation
is strong, this will make the transformation approach a
identity transformation, thus, the adaptation is weak and
helpless. The 3 is important for the writer adaptation, it will
significantly effect the performance. In practical application,
the 3 should be carefully selected for better adaptation.

VI. CONCLUSION

This paper presents a new method that combines neural
network classifier with style transfer mapping technology
for unsupervised writer adaptation. For training the neural
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Figure 5. The error rate of different /3 for classier Co with writer adaptation

network classifier, some techniques like dropout, ReL.U,
momentum, and deeply supervised strategy are used to
improve the performance of the classifier. During testing,
an adaptation layer is added to the classifier and trained for
writer adaptation. The method to train the adaptation layer is
similar to the STM learning, but the source point set, target
point set and confidence setting method are redefined in our
model. The adaptation is unsupervised in our model, and we
use the self training strategy to handle this. Experiments on a
large scale online Chinese handwriting database demonstrate
that our model is efficient, which can significantly reduce the
error rate for handwriting recognition.

The linear activation of the adaptation layer leads to
linear transformation. In future research, we will explore
the new structure of the adaptation layer for nonlinear
transformation. We use the STM learning method to train
the adaptation layer, This is efficient but not a natural way
to train the neural network. In future, we will consider more
suitable training methods for the adaptation layer. Another
straight-forward extension is using STM for the adaptation
of deep convolutional neural networks.
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