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 Abstract – Aiming at the problem of robot self-localization 

based on vision, this paper proposed a method for robot’s 

localization based on infrared landmark. First select the suitable 

infrared source. Second calculate the camera extrinsic 

parameters using the algorithm based on P3P. Third give the 

calculation method of robot’s pose to the landmark based on the 

camera extrinsic. Experiment results validate the feasibility and 

effectiveness of the proposed method. 
 

 Index Terms – P3P, Infrared landmark, Self-localization. 

 

I.  INTRODUCTION 

 Landmark is an identifiable feature that can be identified 

by the sensors installed on the robot. Using its own sensor to 

detect the fixed landmark in the environment, robot can 

calculate its pose to the landmark. Design, detection, location 

are the core of self-localization based on landmark for robot. 

Landmark can be divided into natural landmark and 

artificial landmark. Natural landmark is a class of objects that 

already exit in the natural world and can be used for robot’s 

localization. Artificial landmark is the special designed object 

placed in the environment for robot’s localization. Landmark 

can be detected by laser sensor, infrared sensor, sonar and 

camera. The visible artificial landmarks can be detected by 

camera and provide rich information for robot’s localization. 

But visible landmarks need a good lighting environment., 

can’t be used in the complex environment. So this paper 

proposed a new method for robot’s self-localization based on 

infrared landmark. Experiment results validate the feasibility 

and effectiveness of the proposed method. 

 

II.  INFRARED LANDMARK 

Infrared light emitting diode is a common infrared light 

source. It can transform electrical energy directly to near-

infrared light (not visible) and eradiate. The structure, 

principle of infrared light-emitting diode is similar to 

ordinary light emitting diode, just uses different 

semiconductor materials. Infrared light emitting diode 

typically used gallium arsenide (GaAs), aluminum gallium 

arsenic (GaAlAs) and other materials, used transparent or 

light blue, black resin encapsulation. Pipe pressure drop is 

about 1.4 V, working current is generally less than 20 mA. In 

order to adapt to different working voltage, limited flow 

resistance is often used[1]. 

Commonly used infrared light-emitting diode’s 

wavelength is 850 nm, 870 nm, 880 nm, 840 nm, 980 nm, 

etc. The lower the wavelength is, the more the power is. The 

emission intensity of infrared light-emitting diode owes to the 

different directions. The direction of maximum emission 

intensity is along to the optical axis and the emission 

intensity decreases with the increase of angle with the optical 

axis direction. The angle whose emission intensity is half of 

the maximum  is called half Angle of radiation intensity. The 

half angle of different models of infrared light-emitting 

diodes is different. 

For the same camera, the sensitivity of infrared diodes of 

850nm wavelength  is 10 times better than the diodes of 

950nm. So the 850nm wavelength is selected. The half angle 

of infrared diodes is usually from 8 degrees to 90 degrees. 

The visual range of the infrared diodes increases with the 

increase of half angle, and in the same process, the emission 

intensity decreases and the difficulty for the camera detection 

increases. So this paper choosed the eclectic, more commonly 

used infrared diodes whose half angle is 30 degrees. 

In order to avoid the effect of visible light, a filter whose 

wavelength is 850nm is set on the camera lens. So the image 

of camera has only the target and the black background. 

Using method of image segmentation and connected 

component analysis, the landmark can be easily identified[2]. 

Figure 1 shows the results of identify. 

 

  
Fig.1 Identify of the landmark 
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III.  METHOD OF SELF-LOCALIZATION 

This paper proposed a method of self-localization using 

infrared landmark  based on PnP problem. 

PnP problem is first proposed by Fischler in 1981[3]. It is 

defined as: The relative position of n  points and the angles 

from these points to the centre of camera are given. Based on 

these information, calculate the distance from these points to 

the centre of camera. PnP problem is also known as pose 

estimation problem of given points. Horaud[4] gives the 

definition of pose estimation problem in 1989:In the target 

coordinate system, given the coordinates and projection in the 

image plane of some points and assume that the camera 

intrinsic parameters are known, calculate the camera extrinsic 

matrix between the target coordinate system and the camera 

coordinate system, which contains three rotation parameters 

and three translation parameters[5]. 

PnP problem has an important application prospect in 

many fields, such as robotics and automation, computer 

vision, computer animation, automatic drawing, 

photogrammetry, and other fields[6]. In the field of computer 

vision, PnP problem draws the attention of researchers. When 

n>5, using Faugeras camera calibration method, we can 

calculate camera intrinsic and extrinsic parameters. When 

n<3, it’s impossible to calculate the camera parameters under 

the above definition. Therefore, PnP problem research is 

mainly for P3P, P4P and P5P. Because  the less the number of 

points are, the higher the application flexibility is, many 

researchers dedicated to the P3P and P4P problem. 

The image coordinates of infrared landmarks can be 

calculated by the landmark recognition algorithm[2]. 

Landmarks’ position in the environment is fixed., so their 

world coordinates can be measured. The intrinsic parameters 

of camera can be calibrated. Using generic PnP problem 

solutions, the extrinsic parameters can easily be calculated, 

then we can gain the world coordinates of robot. 

 

A. Solution of P3P problem 

 
Fig.2 Sketch map of P3P 

Establish the camera coordinate system on optical axis 

center, whose Z axis is parallel to the direction of camera 

optical axis and the positive direction is from the camera to 

the scene. The X axis of the camera coordinate system is 

along the horizontal direction. The camera intrinsic 

parameters have been calibrated using four parameters model. 

We can calculate the coordinates of the point 
1 icP  in the 

imaging focal length normalized image plane of the camera 

by the image coordinate  ,i iu v  of point 
iP , such as in (1): 

1
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                  (1) 

For the three known spatial points 
1P ,

2P and
3P , the three 

sides of triangle composed by these three points are recorded 

as a , b and c (Fig. 2[7]). a is the length from 
2P to 

3P , b is 

the length from 
1P to

3P , c is the length from
1P to 

2P . The 

unit vector from point 
iP to the centre point O of optical axis 

is denoted as 
ie . 1 1 1

i i

T

c cx y 
  in (1) represented the 

direction of 
ie . So 

ie can be calculated as in (2): 
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                           (2) 

 is the angle between 
2e and 

3e ,  is the angle between  

1e and 3e ,  is the angle between  1e and 2e . The cosine of 

angles between two vectors  ie and je can be calculated as 

shown in (3): 

2 3

1 3

1 2

cos

cos

cos

T

T

T

e e

e e

e e







 
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
 

                           (3) 

1d is the length from 1P to O, 2d is the length from 2P to 

O, 3d is the length from 3P to O. According to the geometry 

principle, the equations below can be gained: 
2 2 2

2 3 2 32 cosd d d d a                             (4) 

2 2 2

1 3 1 32 cosd d d d b                             (5) 

2 2 2

1 2 1 22 cosd d d d c                             (6) 

Let 2 1d xd , 3 1d yd  and we can gain the equations 

below: 
2

2

1 2 2 2 cos

a
d

x y xy 


 
                      (7) 

2
2

1 21 2 cos

b
d

y y 


 
                          (8) 

2
2

1 21 2 cos

c
d

x x 


 
                          (9) 

Based on (7) and (8), cancel 
2

1d : 
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2 2 2 2
2 2

2 2 2

2
2 cos cos

a a b a
x xy y y

b b b
 


          (10) 

Based on (8) and (9), cancel 2

1d : 

2 2 2 2
2 2

2 2 2

2
2 cos cos

c c c b
x x y y

b b b
 


             (11) 

Based on (10) and (11), cancel 2x : 
2 2 2 2 2 2 2 2

2

2 2 2
2cos

2(cos ycos )

a b c a c a b c
y y

b b bx



 

    
 




   (12) 

Based on (12) and (11), a quartic equation with one 

unknown can be gained as in (13)： 
4 3 2

4 3 2 1 0 0a y a y a y a y a                        (13) 

In (13),  
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Using (13), we calculated y and putting y into (12), 

x can be calculated. Then based on (7), (8), (9), 1d , 2d , 3d  are 

calculated. The coordinates of 1P , 2P and 3P  in the camera 

coordinate system can be calculated using (14)： 

, 1,2,3ci i iP d e i                                (14) 

 

B. Calculation algorithm of camera extrinsic parameters 

 The transformation of two different space coordinate 

systems usually includes rotation, translation and scaling, 

which can be abstracted into rotation matrix, transfer matrix 

and the scale factor. 

 

1 ) Three coordinate translation component X , Y and 

Z , which represent the coordinate difference between 

the origins of two coordinate systems. 

2) Three rotation angle  ,  ,   around axis of X, Y, 

Z. 

3) The scale factor k which is the ratio of the two lengths 

of a same line in two space coordinate systems. Usually k is 

equal to 1. 

 
T

wi wi wi wiP x y z is the coordinate in the world 

coordinate system of 
iP .  

T

ci ci ci ciP x y z is the 

coordinate in the camera coordinate system. The 

transformation from world coordinate system to camera 

coordinate system is shown as in (15): 

     1 2 3

ci wi

ci wi

ci wi

x x X

y kR R R y Y

z z Z

  

     
     

       
          

           (15) 

In (15), 

 1

1 0 0

0 cos sin

0 sin cos

R   

 

 
 

  
  

                   (16) 

 2

cos 0 sin

0 1 0

sin 0 cos

R

 



 

 
 

  
 
 

                   (17) 

 3

cos sin 0

sin cos 0

0 0 1

R

 
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 
 

  
 
 

                   (18) 

Let      1 2 3R R R R   , R can be transformed as 

shown in (19)： 

1 0 0 cos 0 sin

0 cos sin 0 1 0

0 sin cos sin 0 cos

cos sin 0

sin cos 0

0 0 1

R

 

 

   

 

 

  
  

   
    

 
 
 
 
 

        (19) 

According to the principle of Rodrigo matrix, rotation 

orthogonal matrix R with 3 degrees of freedom can be 

transformed into the Rodrigo matrix composed by the 

antisymmetric matrix S [8]： 

  
1

R I S I S


                          (20) 

0

0

0

r q

S r p

q p

  
 

 
 
  

                          (21) 

p ， q ， r are three independent unknown parameters. 

So based on Rodrigo matrix, the transformation model of 

coordinate system has 7 unknown parameters, including 3 

parameters of transfer matrix, 3 parameters of antisymmetric 

matrix and scale factor. This idea established the 
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transformation model of space coordinate system by replacing 

 ，  ，  with p ， q ， r . Solutions for parameters need 

to step by step. First, calculate the scale factor. Second, 

calculate the rotate parameters and last the transfer 

parameters. 

 

1) Calculation of scale factor 

Using the coordinate inverse calculation, we calculate the 

corresponding distance and then gain the scale factor by the 

distance ratio. Set two common points 
iP , 

jP  and then 

calculate the ratio of the length according to their coordinates 

in two coordinate systems. 

     

     

2 2 2

2 2 2

ci cj ci cj ci cj

ij

wi wj wi wj wi wj

x x y y z z
k

x x y y z z

    


    

        (22) 

So the scale factor can be calculated as shown below: 

 

1

1 1

2

1

n n

ij

i j i

k k
n n



  



                       (23) 

In (23), n represents the number of common points. 

 

2) Calculation of rotate parameters 

Put the coordinates of 
iP , jP in the world coordinate 

system and camera coordinate system into (15),we can gain 

equation below: 

ci wi

ci wi

ci wi

x x X

y kR y Y

z z Z

     
     

       
          

                      (24) 

cj wj

cj wj

cj wj

x x X

y kR y Y

z z Z

     
     

       
         

                      (25) 

Equation (24) minus (25) and then put (20) into the result, 

we can get equation below: 

   
ci cj wi wj

ci cj wi wj

ci cj wi wj

x x x x

I S y y k I S y y

z z z z

    
   

       
       

             (26) 

Put S and I into (25): 

0

0

0

wij cij wij cij

wij cij wij cij

wij cij wij cij

cij wij

cij wij

cij wij

k z z k y y p

k z z k x x q

k y y k x x r

x k x

y k y

z k z

        
  
      

         

  
 

   
   

      (27) 

In (27), cij ci cjx x x  , cij ci cjy y y  , cij ci cjz z z  ; 

wij wi wjx x x  , wij wi wjy y y  , wij wi wjz z z  . 

Equation (27) has only two independent equation and 

calculation of 3 unknown parameters is impossible. So 

another common point 
kP is needed. In the same principle as 

in (27), we can gain equation set: 

0

0

0

0

0

0

wij cij wij cij

wij cij wij cij

wij cij wij cij

wik cik wik cik

wik cik wik cik

wik cik wik cik

cij wij

cij w

k z z k y y

k z z k x x
p

k y y k x x
q

k z z k y y
r

k z z k x x

k y y k x x

x k x

y k y

      
 
     

 
       

         
      

 
      

 

  ij

cij wij

cik wik

cik wik

cik wik

z k z

x k x

y k y

z k z

 
 
 
  
 

  
  
 
   

(28) 

Calculate the parameters p , q , r  of antisymmetric 

matrix S using adjustment of observation equations , and then 

based on (20) the rotation matrix R is gained. 

 

3) Calculation of transfer parameters 

Put the scale factor, rotation matrix R and common points 

into (15): 

1

ci win

ci wi

i

ci wi

x x

y kR y
X

z z
Y

n
Z



     
     

     
              
  

  



             (29) 

The key of the algorithm is to calculate the rotation 

matrix. The scale factor and transfer parameters are linear 

which is simple to calculate. The algorithm is feasible or not 

depends on (28) is solvable or not. As long as (28) has a 

solution, the rotation matrix R can be calculated using the 

Rodrigo matrix composed by antisymmetric matrix. When the 

three common points are on the same line, (28) is insoluble. 

When the three points are not on the same line, it’s feasible to 

calculate the rotation matrix based the model above. 

Using the algorithm for P3P problem in the last section, 

the coordinates of three points 1P , 2P and 3P can be calculated 

whose coordinates in the world coordinate system are known. 

The model of the camera extrinsic parameters is shown as in 

(30): 

0 1

1 1 1

c w w

c c
c w wcw w

w

c w w

x x x

y y yR T
M

z z z

     
     

              
     
     

           (30) 

Based on (15) and (30), the camera extrinsic parameters is 

shown as equation below： 

 ,
0 1

Tc

w

kR T
M T X Y Z

 
     
 

           (31) 
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C. Solution for robot pose 

Camera is set on the robot so the relative position between 

the camera and robot is constant. Establish the robot 

coordinate system
r rx y  on the robot. We can calibrate the 

homograph matrix c

rH between robot coordinate system and 

camera coordinate system: 

,
0 1

11

c r

c c
c rc c r r

r r

c r

x x

y y R T
H H

z z

   
   

            
   

  

            (32) 

Put it into (30): 

1

1 1

w r

w rc c

w r

w r

x x

y y
M H

z z



   
   
    
   
   
   

                   (33) 

Assumed that w

rR and w

rT are the rotation matrix and 

transfer matrix from robot coordinate system to world 

coordinate system,  ,  ,  are the rotate angle around axis 

X,Y,Z from robot coordinate system to world coordinate 

system, we can get the equation below according the (32): 
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w w
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                   (34) 
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    (35) 

According to (33) we can calculate the coordinate of robot 

in the world coordinate system. Based on the algorithm 

proposed in X, assumed that the rotate order of the 

transformation from robot system to world system is Z to Y to 

X, the rotate angle around every axis is shown as below: 
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                   (36) 

Based on the algorithm above, we can calculate the pose 

of robot  
T

R Rx y  in the world coordinate system. 

IV.  EXPERIMENTAL VERIFICATION 

 Set a landmark composed by three infrared diodes which 

are not on the same line in the environment and calculate 

robot’s pose to the landmark in different position. The real 

pose of robot can be measured, so compare the real pose and 

the calculated values we can gain the accuracy of the 

algorithm. The result is shown in the table 1 , table 2 and 

table 3. Table 1 and Table 2 shows the real coordinate and 

calculated coordinate of robot. Data of Group 1 are all on the 

axis Y of world coordinate system and data of Group 2 and 

Group 3 are on some different positions. As the data show, 

the errors are all in centimeters. Table 3 shows the real 

orientation and calculated orientation angle and errors are 

below 4 degrees. So the algorithm proposed in this paper 

meet the need of robot’s self-localization. 
TABLE I 

 RESULT OF EXPERIMENT 1  

Group 1 

Real value(cm) 
Calculate 

value(cm) 

(0,93) (-2,94.5) 

(0,100) (-3,101) 

(0,110) (1,111) 

(0,120) (0,122) 

(0,140) (0,141) 

(0,150) (-3,151) 

(0,170) (-2,172) 

(0,200) (-2,200) 

 
TABLE 2 

RESULT OF EXPERIMENT 2   

Group 2 Group 3 

Real 

value(cm) 

Calculate 

value(cm) 

Real 

value(cm) 

Calculate 

value(cm) 

(10,100) (9,101) (-10,100) (-9,102) 

(10,120) (7.5,120) (-10,120) (-8,122) 

(20,120) (17,120) (-20,120) (-20,125) 

(10,150) (8,150) (-10,150) (-7,151) 

(20,150) (17,153) (-20,150) (-18,153) 

(30,150) (28,155) (-30,150) (-26,156) 

(10,180) (9,181) (-10,180) (-10,182) 

(20,180) (16,183) (-20,180) (-17,184) 

(30,180) (27,189) (-30,180) (-29,185) 
 

TABLE 3 

 RESULT OF EXPERIMENT 3  

Real value(degree) 
Calculate 

value(degree) 

0 1.21 

10 10.32 

20 21.08 

30 32.23 

40 41.14 

50 53.25 

60 62.78 
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