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ABSTRACT

Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to
the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers
has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this
study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma
(SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features)
to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs
patients with CT image scans. Classification of these features is performed with four different machine-learning
classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest
(RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers’ performance, optimal
feature subset is selected from the original feature set by using an iterative forward inclusion and backward
eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging
classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).
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tomography, Computed-aided diagnosis

1. INTRODUCTION

Non-small cell lung carcinoma (NSCLC) is a lethal disease accounting for about 85% of all lung cancers with a
dismal 5-year survival rate of 15.9% .1 NSCLC can be primarily sub-divided into adenocarcinoma (ADC) and
squamous cell carcinoma (SqCC) on the basis of where the lung cancer cell starts from. Overall, patients of ADC
and SqCC account for 65% to 70% of all the lung cancer population.

NSCLC patients’ treatment has been well documented over the past decade to indicate targeted therapy
according to the different histologic subtypes.2,3 The histologic subtypes are discerned by histopathological
examination which is a golden standard in the lung nodule classification. However, the histologic examination
can be inefficient if the availability tissue samples are inadequately provided. On the other hand, Computed
Tomography (CT) has been a major imaging modality for early cancer detection in NSCLC. The recent emergence
of Radiomics studies,4,5 focusing on extracting large amounts of computational image features, presents new
opportnutnities in cancer predictive analysis. A challenging yet important task is to infer the diagnostic value
from growing volumes of CT images, allowing identification of discriminative radiomics features that are able to
predict the histologic subtypes in NSCLC.

In this study, we focus on developing computational CT image features for predicting non-small cell lung
carcinoma subtypes of ADC and SqCC. In particular, we introduce a computational framework utilizing the
radiomics feature analysis for the histopathologic prediction. The presented method includes image feature
extraction, feature selection and histopathologic prediction. More specifically, 52-dimensional feature including



Table 1. CT-based Texture feature list. Full notations are: GLRLM features: Short Run Emphasis (SRE), Long
Run Emphasis (LRE), Gray-Level Nonuniformity (GLN), Run-Length Nonuniformity (RLN), Run Percentage (RP), Low
Gray-Level Run Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), Short Run Low Gray-Level Emphasis
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level Emphasis (LRLGE), Long Run
High Gray-Level Emphasis (LRHGE), Gray-Level Variance (GLV), Run-Length Variance (RLV). GLSZM features:
Small Zone Emphasis (SZE), Large Zone Emphasis (LZE), Gray-Level Nonuniformity (GLN), Zone-Size Nonuniformity
(ZSN), Zone Percentage (ZP), Gray-Level Variance (GLV), Zone-Size Variance (ZSV), Low Gray-Level Zone Emphasis
(LGZE), High Gray-Level Zone Emphasis (HGZE), Small Zone Low Gray-Level Emphasis (SZLGE), Small Zone High
Gray-Level Emphasis (SZHGE), Large Zone Low Gray-Level Emphasis (LZLGE), Large Zone High Gray-Level Emphasis
(LZHGE).

Texture Type Texture Subtype Feature Abbreviation
First Order Global feature (#5) Variance, Skewness, Kurtosis, Entropy, Uniformity

Second Order GLCM texture feature (#9)
Contrast, Energy, Variance, Average, Correlation,
Homogeneity, Entropy, Dissimilarity, IDM

High Order

GLRLM texture feature (#13)
SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE,
SRHGE, LRLGE, LRHGE, GLV,RLV

GLSZM texture feature (#13)
SZE, LZE, GLN, ZSN, ZP, GLV, SZV, LGZE, HGZE,
SZLGE, SZHGE, LZLGE, LZHGE

NGTDM texture feature (#5) Coarseness, Contrast, Busyness, Complexity, Strength

statistical features and texture features are extracted to characterize lung nodules in CT imaging. Next, we use
four different machine-learning classifiers, including Support Vector Machines with radial basis function kernel
(RBF-SVM), random forest (RF), K-nearest neighbor (KNN), RUSBoost classifier to build up the prediction
model. Finally, we use the iterative forward inclusion and backward eliminating algorithm to select the significant
features and improve the prediction model’s ability. The purpose of this study is to investigate the correlation
between radiomics CT imaging features and histologic subtypes of NSCLC.

2. MATERIALS AND METHODS

2.1 Dataset and Radiomics feature extraction

We collect a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. All the lung
nodules are segmented by using an automatic segmentation method.6 In order to character the lung nodules,
we extract 52 CT-based features. There are 7 statistical features: IntensityMax, IntensityMin, IntensityAve,
IntensityStd, Volume, Solidity, and Eccentricity. The first 4 features describe CT intensity variations. Volume
stands for the nodule size. Solidity indicates the ratio of the number of voxels in the nodule to the number of
voxels in the 3-D convex hull of the nodule. Eccentricity denotes the ellipsoid which best fit the nodule. We
additionally extract 45 texture features including the first order statistics, second order statistics and higher
order statistics. A full list of texture feature is shown in Table 1.

2.2 Feature selection

In this study, we use the iterative forward including and backward elimination to find the optimal feature set that
characterizes differences between ADC and SqCC. Starting from an empty feature set, iterative forward inclusion
and backward elimination 7 are employed to include and eliminate feature attribute in the current feature set to
increase the cost function. The cost function is defined as below: cost = 1

2 ∗ ( TP
TP+FN + TN

FP+TN ). True Positive
(TP) stands that ADC patients correctly identified as ADC, False Positive (FP) denotes that SqCC patients
incorrectly identified as ADC, True Negative (TN) refers that SqCC patients correctly identified as SqCC, and
False Negative (FN) indicates that ADC patients incorrectly identified as SqCC.

2.3 Histopathologic prediction

For the classification model development, we adopt four different algorithms: Support Vector Machines with
Radial Basis Function kernel (RBF-SVM), random forest (RF), K-nearest neighbor (KNN), and RUSBoost
algorithms. In addition, we also build up the classification model using the optimal feature set selected by the



iterative forward inclusion and backward elimination to improve the best classifier’s performance. The original
image feature set and the optimal feature set are both trained with the 10-fold cross validation. We report the
area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and geometric mean (GM) as metrics to assess the
average classification results from 10-fold cross validation. Following the definition of TP, TN, FP, and FN in
Sec. 2.2, evaluation metrics are given as Accuracy = TP+TN

TP+FN+FP+TN , Sensitivity = TP
TP+FN , Specificity =

TN
FP+TN , PPV = TP

TP+FP , NPV = TN
TN+FN , GM =

√
Sensitivity ∗ Specificity.

3. RESULTS AND DISCUSSION

To build up a robust histologic classification model, we report average results from 100 times 10-fold cross
validation on the patient cohort (324 ADCs and 110 SqCCs) with four different classifiers and two different
feature sets. We use the AUC and GM as the main rules to measure the performance of classification. AUC is a
generalized indicator of the classifier that is independent of the sample class distribution, and the GM maximizes
the accuracy on each of the two classes while keeping these accuracies balanced.8

Different Classifiers Performance Different Feature Sets Performance 

(a) (b) 

Figure 1. ROC curves of lung nodule histologic prediction using different types of classification algorithms based on
original feature set (a): the black line, blue line, green line, and red line respectively indicate the ROC prediction curve
by using RBF-SVM, RF, KNN, and RUSBoost. ROC curves of lung nodule histologic prediction using original feature
set and optimal feature set based on RUSBoost classifier (b): the red line and the yellow line indicate the ROC prediction
curves by using original feature set and the optimal feature set.

Table 2. Comparison of different classifiers for histologic prediction using different feature sets.

Classifiers Feature Set Accuracy Sensitivity Specificity PPV NPV GM AUC

RBF-SVM Original 79.8% 97.6% 27.6% 79.9% 79.5% 0.52 0.82

RF Original 81.0% 91.5% 50.1% 84.4% 66.7% 0.68 0.88

KNN Original 77.2% 86.1% 51.1% 83.8% 55.5% 0.66 0.78

RUSBoost Original 78.8% 80.2% 74.6% 90.3% 56.1% 0.77 0.89

RUSBoost Optimal 81.5% 82.6% 78.3% 91.8% 60.5% 0.80 0.91

Tab. 2 shows the classification results with different classifiers with regards to two feature sets. In this
study, we find that the classification model by using the RUSBoost classifier best predict the adenocarcinoma



(ADC) and squamous cell carcinoma (SqCC). RUSBoost is the best performing classifier which handles the
dataset best among all the four different classifiers. Also, Tab. 2 shows the classification with the original
feature set and the optimal feature set selected from the original feature set using iterative forward inclusion and
backward elimination by using RUSBoost classifier. By using the optimal feature set with selected 20 features,
the performance achieves an average accuracy of 81.5%, sensitivity of 82.6%, specificity of 78.3%, geometric
mean of 0.80, and AUC of 0.91. With the RUSboost classification model, the GM and AUC of the model using
optimal feature set outperform the original feature set by approximated 3.9% and 2.2%. We can see that the
classification model built up by the optimal feature set outperformed the original feature set. This indicates that
feature selection can be efficient to eliminate potential irrelevant features and improve prediction performance.
Feature selection leads to a selected optimal feature set with 20-dimensional features. More specifically, the
optimal feature set includes a statistical feature of IntensityMin and 19-dimensional texture features (3 first-
order texture features, 2 second-order texture features, and 14 high-order texture features). We also report ROC
curves in Fig. 1 to fully observe the classification outcomes.

4. CONCLUSION

In this paper, we investigate the association between CT imaging features and histologic subtypes for patients
suffering from NSCLC. The proposed radiomics analytic framework presents encouraging results in predicting the
adenocarcinoma and squamous cell carcinoma by extracting 52-dimensional radiomics feature. In particular, we
achieve the highest classification results with AUC of 0.91 by applying the RUSBoost classifier with 20 selected
radiomics features. This study based on radiomics analysis and histopathlogical characteristics supports the
potential of computational CT-based analysis as an non-invasive means to facilitate NSCLC diagnosis. The
proposed prediction model therefore holds promise to provide objective and reproducible diagnosis for non-small
cell lung carcinoma.
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