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Abstract. Multi-task learning (MTL) has drawn a lot of attentions in
machine learning. By training multiple tasks simultaneously, information
can be better shared across tasks. This leads to significant performance
improvement in many problems. However, most existing methods assume
that all tasks are related or their relationship follows a simple and spec-
ified structure. In this paper, we propose a novel manifold regularized
framework for multi-task learning. Instead of assuming simple relation-
ship among tasks, we propose to learn task decision functions as well
as a manifold structure from data simultaneously. As manifold could be
arbitrarily complex, we show that our proposed framework can contain
many recent MTL models, e.g. RegMTL and cCMTL, as special cases.
The framework can be solved by alternatively learning all tasks and the
manifold structure. In particular, learning all tasks with the manifold
regularization can be solved as a single-task learning problem, while the
manifold structure can be obtained by successive Bregman projection on
a convex feasible set. On both synthetic and real datasets, we show that
our method can outperform the other competitive methods.
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1 Introduction

In many machine learning problems, we usually have multiple corrected learning
problems or tasks. Traditionally we can train each task from its training samples
individually. However, if the number of training samples in each task is small,
they tend to be overfitting, meaning that the performance is very likely to be bad
for future samples. To handle this problem, multi-task learning (MTL) manages
to learn all tasks simultaneously. By sharing information across related tasks,
MTL can usually lead to better performance than the traditional single task
learning.

However, in order to share information appropriately, MTL often needs to
assume how the tasks are correlated. Given that a linear decision function is to
be learned for each task, the relationship among tasks can be specified directly
via the weight vectors associated with the decision function. For example, [7]
proposed the Regularized Multi-task Learning (RegMTL) which assumes that the
weight vector of each task is composed with a common part and an individual
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part. The common part contains the shared information of all the tasks and
the propagation of information is enforced by minimizing the individual part
for each task. It equivalently implies that the weight vectors of different tasks
belong to a ball of an unknown center determined by the common part.

Unfortunately, such an assumption may be too strict in practice, since it is
unnecessary for each task to be related with all other tasks. To solve this problem,
[9] generalized this assumption to the case that these tasks can gather into several
clusters and proposed the convex Clustered Multi-task Learning (cCMTL) [10]
method. Within each cluster, it is a traditional MTL problem, i.e., the weight
vectors of different tasks in a certain cluster are in a ball of an unknown center
determined by the common part. cCMTL can learn the weight vectors of all
tasks and the cluster structure simultaneously.

Although cCMTL provides a tool to capture the topological structure of the
relationship among tasks, its assumption is still too strong and may be too simple
to explore the actual task relationship. On one hand, tasks may be unable to be
partitioned into several groups. On the other hand, even if several tasks belongs
to a cluster, it never means each task within this cluster is correlated with each
other at the same level.

Hence, the structure of the relationship between tasks could be more complex,
and a general manifold structure should be considered. Take an example for illus-
tration. Consider the problem that there are 20 related regression tasks. To show
the relationship between tasks, we plot the weight vectors in Fig. 1 using hollow
points in a 3-dimensional space. From this figure, the weight vectors gather into
2 clusters and each of them forms a 1-dimensional manifold. To the extent of our
knowledge, there has not been a method designed to deal with this case.

Since manifold has the ability to describe not only the topological structure of
data, but also the local metric structure, we propose Manifold Regularized Multi-
task Learning (MRMTL) which engages manifold to capture the relationship
among the tasks. All tasks and the manifold structure of their relationship are
learned simultaneously, and both of them are improved with the help of each
other. As manifold could be arbitrarily complex, we show that our proposed
framework can contain many recent MTL models, e.g. RegMTL and cCMTL,
as special cases. Moreover, the proposed framework can be solved by learning
all tasks and the manifold structure alternatively. In particular, learning all
tasks with the manifold regularization can be solved as a single-task learning
problem, while the manifold structure can be obtained by successive Bregman
projection on a convex feasible set. It is noticeable that [8] has studied the multi-
task learning problem with manifold regularization. However, it supposed that
the manifold structure is given preliminarily. As a key difference, our proposed
approach can learn the manifold from the training samples automatically.

The rest part of this paper is organized as follows. In Section 2, we first present
the problem definition and then introduce the basic framework of our method. In
Section 3, the optimization algorithm is given in detail. In Section 4, we evaluate
our method on a synthetic dataset and a real dataset, both of which show the
effectiveness of our method. At last, we set out the final remarks in Section 5.
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Fig. 1. Learned weight vectors W using different methods. The hollow points are
ground truth while the star points are learned results.

2 Problem Definition and Main Framework

In this section, we first present the notation and problem definition. We then
introduce the framework of Manifold Regularized Multi-task Learning in detail.

2.1 Notation and Problem Definition

In this paper, we consider the problem where a linear decision function is learned
and thus the aim of each task is to learn a weight vector. Suppose there are n
tasks. For the t-th task, we have a training data set Xt containing mt data points
xtk ∈ Rd whose dimension is d and a corresponding output set Yt containing
the target output ytk. For binary classification problem, Yt = {−1,+1}, while
for regression problem, Yt = R.

We use l (y, f(x)) to quantify the loss of predicting f(x) for the input x
when the expected output is y, which depends on the problem. For example,
in binary classification, the hinge loss l (y, f(x)) = max(0, 1 − y · f(x)) is often
used, while in regression, the squared error l (y, f(x)) = (y − f(x))2 is often
chosen. If the linear prediction function f(x) = w�

t x is used and we denote
W = [w1 w2 . . . wn], the empirical loss of all tasks can be then formulated as
�(W ) =

∑n
t=1

∑mt

j=1 l(ytj,w
�
t xtj).

2.2 Coupling Multiple Tasks with Regularization

In order to learn all the tasks simultaneously, we follow the well-established
method that embeds the relationship among tasks into a regularization item and
use a graph to describe the relationship among tasks. Specifically, each vertex
of the graph represents a task, and each edge linking two vertices indicates the
relationship between the two tasks. A greater weight of edge represents a closer
relationship. Define S as the weight matrix of this graph where Sij is the weight
of the edge connecting the i-th and j-th vertices and D is a diagonal weight
matrix whose entries are column sums of S, then L = D − S is the Laplacian
matrix [5] of this graph.

In Laplacian regularization [2], we have tr(WLW�) =
∑

i,j
1
2‖wi −wj‖2Sij ,

which can be then used as the regularization to enforce the linked pairs to be
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more similar. If the i-th and j-th tasks are closely correlated, the corresponding
edge weight Sij is large, which encourages ‖wi −wj‖2 to be less and thus the
learned weight vectors wi and wj are more liable to be similar.

However, in MTL, such task similarity Sij is unavailable beforehand and
should be learned from data. It is obvious that if we directly optimize on L
and W simultaneously, we will simply obtain the Laplacian matrix L with all
elements zero regardless of W . Therefore, in order to discover the relationship
among tasks, we should add some additional constraints on L. Without more
prior knowledge, a Laplacian matrix of a graph whose vertices are all connected
may be a reasonable prior of L. Therefore, we get the following optimization
formula of MRMTL

min
W,L

R(W,L) =

n∑

t=1

(
C

mt∑

j=1

l(ytj ,w
�
t xtj) +w�

t wt

)
+ γ

(
tr(WLW�) +

γ0
2
‖L− L0‖2F

)

s.t. L1n = 0; L = L�; Lij ≤ 0,∀i �= j

where L0 is the Laplacian matrix for a graph with all nodes connected (Sij =
1, ∀i, j), i.e., L0 = n(In − 1

n1n1
�
n ), where W = [w1 w2 . . . wn], and 1n is an

n-dimensional vector with all elements 1. In this formulation, l is the loss from
training samples and w�

t wt is the regularization. Both of them are determined by
the original learning problem. tr(WLW�) is the manifold regularization which
enforces the weight vectors of similar tasks to be similar. The last term provides a
prior for L and prevents the trivial solution for L. The constraints guarantee that
L is a Laplacian matrix, which is therefore also symmetric positive semi-definite.

2.3 Relationship with Other Methods

It is noticeable that our method includes RegMTL as a special case. Indeed, if
we choose γ0 to be large enough, we will get L = L0 and the regularization item
becomes tr(WL0W

�) = n · ∥∥W − w̄1�
n

∥
∥2
F
= n

∑n
t=1 ‖wt − w̄‖2.

By Lemma 2.2 of [7], this problem is an alternative formulation of RegMTL
and thus it is just a special case of MRMTL. We can also regard MRMTL as a
generalized of RegMTL in which the relationship among tasks is learned using
L0 as prior, rather than to use L0 directly.

When the tasks gather into several clusters, [9] uses the m×r binary matrix E
to denote the cluster assignment where Eij = 1 if task-i belongs to cluster-j and
Eij = 0 otherwise. Define M = E(E�E)−1E�, U = 1m1�

m/m, then M is the
edge weight matrix of the graph of tasks where Mij = 1/mc if task-i and task-j
belong to the same cluster-c and Mij = 0 otherwise, where mc is the number of
tasks in cluster-c. The regularization with respect to the task clustering is

tr(WKW�) = tr
(
W (εB(M − U) + εW (I−M))W�) .

It is easy to verify that K is a Laplacian matrix if εW ≥ εB, which is satisfied
in cCMTL [9]. Therefore, our method indeed also includes clustered multi-task
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learning as a special case in the sense that any cluster structure of the tasks can
be formulated using our model. However, the solution may be different since our
model is more flexible to fit the data.

3 Optimization

In this section, we first present how to solve the problem using alternative opti-
mization, and then show how each step of the optimization is solved.

3.1 Alternative Optimization

This problem can be solved by alternative optimization. Specifically, we solve for
an optimal W (1) with L = L(0) fixed as an initial value first, and then solve for
an optimal L(1) with W = W (1) fixed. Such procedure is then repeated so that
both L and W are optimized alternatively until convergence. Since l is usually
chosen to have a lower bound and L is constrained to be positive semi-definite,
there exists a lower bound for R(W,L). In another respect, the value of objective
function decreases in each iteration, and thus it is guaranteed to converge to a
local minimal value after certain iterations.

Note that the optimization is not convex and the global optimal solution
is not guaranteed. Nevertheless, we found that given a proper initial solution,
the local optimal solution is often good enough. Since W is solved firstly, we
should specify an initial point for L. An appropriate choice is L(0) = L0. With
this choice, W (1) is indeed the solution of RegMTL. After several iterations,
the incorrect connections in the graph are removed and the manifold can be
eventually learned.

In the following of this section, we will give the algorithm to solve W and L
respectively in detail.

3.2 Fix L and Optimize on W

The part of R with respect to W is

R(W ) =
∑

t,j

C · l(ytj,w�
t xtj)+J(W ), where J(W ) = tr

(
W (In + γL)W�) (1)

Denote w = vec(W ) =
[
w�

1 w�
2 . . . w�

n

]� as the vector concatenated by {wt},
then by Proposition 31 of [3], we have vec(Y )�(A⊗B)vec(X) = tr(A�Y �BX)
and thus

J(W ) = tr((In + γL)W�IdW ) = w�Ew = J(w), where E = (In + γL)� ⊗ Id.

Suppose B�B = E−1 = ((In + γL)� ⊗ Id)
−1 = (In + γL)−1 ⊗ Id and consider

the problem

min
u

S(u) =
∑

t

∑

j

C · l(ytj ,u�Btxtj) + u�u, where B = [B1 B2 . . . Bn] . (2)
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By Proposition 1 of [8], we have S(u) = R(B�u). Thus the optimal solution of
(1) can be obtained by solving the single-task problem (2) and wt = B�

t u.

3.3 Fix W and Optimize on L

When W is fixed, the optimization problem on L becomes

min
L

R(L) = γ
(γ0
2
‖L− L∗‖2F +Rconst

)

s.t. L1n = 0; L = L�; Lij ≤ 0, ∀i �= j
(3)

where L∗ = L0 − 1
γ0
W�W and Rconst is a constant independent of L. This is a

Bregman projection problem [6] whose optimal solution is the projection of L∗
on the convex set C1 ∩ C2 where C1 = {L ∈ Rn×n | L1n = 0;L = L�} and
C2 = {L ∈ Rn×n | Lij ≤ 0, ∀i �= j}. The optimal solution of L can be obtained
by Successive Projection-Correction Algorithm (Algorithm B of [6]) on these two
convex sets.

Projection onto C1. The Lagrangian formulation1 of the projection on C1 is

min
L,μ1,μ2

‖L− L∗‖2F − μ�
1 L1n − μ�

2 L
�1n

where from the condition L = L� we have μ1 = μ2 = μ. Setting the derivative
with respect to L to zero yields L = L∗+ 1

γ0
μ1�

n + 1
γ0
1nμ

�. Multiplying with 1n

on the right of both sides of the equation, then using Sherman-Morrison inverse
formula [1] and L∗ = L�

∗ , we have

μ = −γ0
(
nIn + 1n1

�
n

)−1
L∗1n =

γ0
n

(
1

2n
1n1

�
n − In

)

L∗1n

Then substituting it into the formula of L, we get

L = L∗ +
1

n2

(
1�
nL∗1n

)
1n1

�
n − 1

n

(
L∗1n1

�
n + 1n1

�
nL∗

)

Projection onto C2. The projection onto C2 can be obtained by simply setting
the positive non-diagonal elements to zero following a correction step [6].

4 Experiments

In this section, we empirically evaluate our method on both artificial data and
real data. We apply our method on regression problems, and the normalized
mean square error (nMSE) [4] is used as the performance measure. Specifically,
it is defined as the mean squared error (MSE) divided by the variance of the
target vector.
1 The coefficient γγ0

2
is simply omitted.
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We compare our method MRMTL with cCMTL [9], RegMTL [7], and single-
task (STL) method as baseline. For each method, we use 5-fold cross validation
to determine the regularization parameters.

4.1 Synthetic Data

We first evaluate on synthetic data set to give a visualized comparison of the re-
sults learned by these methods. We generate 20 related regression tasks using 20
weight vectors and then generate a certain number of training samples and 500
testing samples. The weight vectors are learned with the training samples using
different methods and tested with the testing samples. We show the learned task
relationship in Fig. 2 which is a 20 × 20 grid. The color of the grid on row-i and
column-j represents the squared Euclidean distance of wi and wj . From the re-
sults, we see that MRMTL can learn the task relationship surprisingly well, which
coincides with the ground truth perfectly when the training samples is equal to 30,
40, and 50. It always gives the best performance compared with the other methods.
Particularly, it demonstrates a significantly better performance than the other
methods when the training samples are fewer. For the case where the number of
training samples per task is 30, we also show the learned weight vectors in the 3-
dimensional principal component subspace in Fig. 1. The hollow points represents
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Fig. 2. Comparison of the weight vectors learned by different methods. The five
columns of this figure correspond to the (1)Ground Truth (GT); (2)Single-task Learn-
ing (STL); (3)Manifold Regularization Multi-task Learning (MRMTL); (4)convex Clus-
tered Multi-task Learning (cCMTL); (5)Regularized Multi-task Learning (RegMTL).
The number in the title indicates how many percent of training samples are used.



Manifold Regularized Multi-Task Learning 535

the ground truth while star points represent the learned results. We see again that
MRMTL gives the best result and the manifold is learned exactly.

4.2 Real Data

We also evaluate these methods on Sarcos data2 [10], which relates to an inverse
dynamics prediction problem for a seven degrees-of-freedom anthropomorphic
robot arm. It consists of 48933 observations corresponding to 7 joint torques;
each of the observations is described by 21 features including 7 joint positions,
7 joint velocities, and 7 joint accelerations. The prediction of each joint torque
corresponds to one task. We randomly select 10, 20, 50, 100 samples from each
task for training and the remaining for test. The experiment is repeated 5 times
and the averaged nMSE (the less the better) are shown in Table. 1. From the
results, we can observe that MRMTL performs the best, regardless of the number
of samples used for training.

Table 1. Performance comparison on Sarcos Dataset using nMSE

Sample STL MRMTL cMTL RegMTL
10 2.8788 1.7843 2.7532 2.8867
20 0.8383 0.5487 0.7953 0.5766
50 0.2615 0.1709 0.4377 0.2066
100 0.1664 0.1188 0.3378 0.1202

5 Conclusion

In this paper, we propose a novel manifold regularized framework for multi-task
learning. Different from recent work that usually assumes simple relationship
among tasks, we propose to learn task decision functions as well as a mani-
fold structure from data simultaneously. We show that our proposed framework
can subsume many recent MTL models, e.g. RegMTL and cCMTL, as special
cases. Moreover, the framework can be solved by alternatively learning all tasks
and the manifold structure. A series of experiments on both synthetic and real
data show that our method can significantly outperform the other competitive
methods.
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2 http://gaussianprocess.org/gpml/data/

http://gaussianprocess.org/gpml/data/
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