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Abstract—In this paper, an adaptive type-2 fuzzy output 
feedback control scheme for the longitudinal dynamics of 
flexible air-breathing hypersonic vehicles is proposed. Firstly, 
considering possible uncertainties, an interval type-2 fuzzy logic 
system is employed to approximate the unknown dynamics 
during the flight. Then, based on the interval type-2 fuzzy logic 
system, a reduced-order fuzzy observer is designed to estimate 
the immeasurable states, namely the angle of attack and the 
flight path angle. Further, by the backstepping control 
approach, an adaptive type-2 fuzzy output feedback controller 
is constructed to deal with the tracking problem for commanded 
velocity and altitude. The stability of the closed-loop systems is 
explored. Simulation studies are carried out and the proposed 
controller is verified to be effective. 

I. INTRODUCTION 

 As a reliable and cost-efficient way for access to space, 
air-breathing hypersonic vehicles (AHVs) have been 
investigated by many researchers in recent decades [1]. 
However, the design of robust control systems for AHVs is 
still a challenging task due to complex coupling effects and 
significant uncertainties during hypersonic flight [2]. For 
example, strong coupling exists between propulsive and 
aerodynamic forces caused by the under-fuselage location of 
the scramjet engine.  

Due to the extreme complexity of vehicle dynamics, here 
only the longitudinal dynamic model of flexible AHVs 
(FAHVs) has been considered for control design. For better 
description of the dynamic characteristics, the model of 
FAHVs was introduced by Bolender and Doman [3]. On this 
basis, many control strategies have been proposed for control 
of FAHVs during the last few years (For more details, please 
refer to the survey paper [1] and the references therein). 
Among them, backstepping control method is a powerful tool 
for the control design because the altitude dynamics of 
FAHVs can be transformed to a strict-feedback form. To 
improve the robustness of back-stepping control, recently, 
fuzzy adaptive backstepping control scheme [4], in which the 
fuzzy logic systems (FLS) as universal approximators were 
used to approximate the unknown dynamics, has attracted 
more attention. However, the adaptive fuzzy control addressed 
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in current literatures is mainly based on the type-1 FLS 
(T1-FLS) and only few papers investigated the type-2 FLS 
(T2-FLS) based adaptive fuzzy control. T2-FLS, which is the 
extension of T1-FLS, has the potential to better deal with 
nonlinear systems with uncertainties because it is based on the 
type-2 fuzzy sets which have more design degrees of freedom 
than T1-FLS [5]. For reducing the computational cost, interval 
T2-FLS (IT2-FLS) are widely used into applications [6-7]. 
Hence, here, it is necessary to develop the IT2-FLS based 
adaptive control technique for the flight control of the FAHVs 
when considering the influence of uncertainties. 

In practical hypersonic flight, the angle of attack (AOA) 
and the flight path angle are quite small, which makes their 
accurate measurements become costly and difficult [8]. Thus, 
it is of interest to address the case in which only a part of the 
FAHVs states are measureable. For this problem, the 
observer-based output feedback control is a feasible method 
for the flight control of FAHVs with immeasurable states. 
Recently, various observer designing methods have been 
proposed to reconstruct the AOA and flight-path angle, such 
as sliding mode observer [9], high-order sliding mode 
observer [10], and tracking differentiator based observer [11]. 

Motivated by the above analysis, in this paper, we propose 
a novel adaptive fuzzy output feedback control scheme for 
velocity and altitude tracking of FAHVs. Specifically, by 
using IT2-FLS to approximate the unknown dynamics of 
FAHVs, a reduced-order fuzzy state observer is designed to 
estimate the AOA and flight-path angle during the flight. 
Based on the designed state observer and backstepping 
approach, a new adaptive type-2 fuzzy output feedback 
controller is developed for FAHVs.  

II. FAHV MODEL DESCRIPTION 

The longitudinal dynamics of the FAHVs model, derived 
from Lagrange’s equations, are given as below [3]: 

( cos ) / sinV T D m g                          (1) 

sinh V                                                      (2) 

( sin ) / ( ) cos /L T mV g V                  (3) 

q                                                           (4) 

/ yyq M I                                                     (5) 

2 , 1, 2,3.i i i i i i iN i                    (6) 

Five rigid-body states , , , ,V h q  , which represent the 
vehicle velocity, altitude, flight path angle, angle of attack 
(AOA) and pitch rate respectively, and six flexible states 

1 1 2 2 3 3[ , , , , , ]           for the flexible modes are contained 
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in this model. The control inputs are the fuel equivalence ratio 
 , canard deflection c , and elevator deflection e  , which 
do not appear in (1)-(6) directly. Instead, they enter the 
aerodynamic forces and moment through the thrust T , drag 
D , lift L , pitch moment M , and generalized forces iN . The 
approximation of the forces and moments employed in the 
FAHVs is given by [3], which are given as: 

,[ ( ) ( ) ]T T TT qS C C C
      

           
 (7) 

( , , , )D e cD qSC      
                           

(8) 

( , , , )L e cL qSC    
                            

 (9) 

( , , , )T M e cM z T qSC       
               

(10) 
2 2 0( ), 1,2,3e c

i i i i e i c i iN qS N N N N N N i                 
(11) 

where q , S , c  are the dynamic pressure, reference area, and 
mean aerodynamic chord, respectively. The corresponding 
coefficients in (7)-(11) are obtained using curve-fitted 
approximations, which can be expressed as 
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And the values of the above aerodynamic coefficients vary 
greatly with different flight conditions.  

The output to be controlled is selected as [ ]y V,h . 

III. CONTROL-ORIENTED UNCERTAINTY MODEL 

In this section, some simplifications of the FAHVs model 
are made for output feedback backstepping control. First, as 
considered in [9], the flexible dynamics are removed during 
the controller design process, but their effects are taken as 
perturbations and will be evaluated in simulation. Second, in 
order to eliminate the nonminimum phase behavior, the canard 
deflection and elevator deflection are ganged together and 
described as c ec ek  , where /e c

ec L Lk C C   [10]. Then 
there are only two control inputs left to be determined, namely 
the fuel equivalence ratio   and elevator deflection e .  

Assumption 1: The flight-path angle   and angle of attack 
  are quite small during the hypersonic flight, which gives 
the following approximations: 

sin   , cos 1  , sin  , cos 1   

Assumption 2:  The thrust term sinT   in (3) can be 
neglected because it is generally much smaller than L , i.e., 

sinT L  . 
After the above steps of simplifications and applying the 

Assumption 1 and 2, (1)-(5) can be rewritten as the following 
form: 

( )V VV F g                           (12) 

h V                                        (13) 

F g                                  (14) 

F g q                                 (15) 

q q eq F g                                (16) 

where 
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and , ( , , , )k k V q    denote the total perturbations caused 
by flexible dynamics, coefficient uncertainties, and 
control-oriented modeling errors. Thus, V qF F F F ， ， ，  are 

denoted as unknown dynamics because they include the total 
perturbations , ( , , , )k k V q   . 

The objective of this research is to design an adaptive 
type-2 fuzzy output feedback control scheme to achieve 
accurate tracking for the velocity and altitude commands with 
robust performance against the model uncertainties as well. 

IV. IT2-FLS 

A.  Brief Introduction of IT2-FLS 

A FLS using at least one interval type-2 fuzzy set (IT2-FS) 
is called IT2-FLS. IT2-FLS is similar to the type-1 FLS. 
However, due to using IT2-FSs, the output processing block 
consists of type-reducer and defuzzifier in IT2-FLS. 
Consequently, IT2-FLS contains five parts as we can see in 
Fig.1, namely fuzzifier, rule base, fuzzy inference engine, type 
reducer, and defuzzifier.  

 



  

Figure.1 The structure of IT2-FLS 

The rule base for IT2-FLS consists of a collection of 
IF-THEN rules. Consider a IT2-FLS having p  inputs 

1[ , , ]T
px x x   , one output y  with M  rules. Then the thi  

rule can be expressed as  

1 1: IF is and and is ,

THEN is 1, , .

i i i
p p

i

R x G x G

y H i M
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 
 

where , ( 1, , )i
jG j p   are antecedent IT2-FSs, iH are 

consequent IT2-FSs and they are associated with the fuzzy 
membership function ( )s

p
pG

x   and ( )sH
y  , respectively. 

Based on the fuzzy rules, the fuzzy inference engine gives 
a mapping from input IT2-FSs to output IT2-FSs. Each rule is 
interpreted as a fuzzy implication. Assuming that Mamdani 
implication is used, the output consequent set of the thi  rule 
in a singleton IT2-FLS is 

1
[ ( )],( ) ( )i i i

j

p

jB H Gj
y y x  


      

where symbol  denotes the meet operation, the firing set 

1
( ) [ ( ), ( )]i

j

p
i i

jGj
x f x f x


 is an interval type-1 fuzzy set with 
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where   stands for the product operation, ( )i
j

jG
x  and 

( )i
j

jG
x   are the upper and lower membership grades of 

( )i
j

jG
x  , respectively.  

The type-reduction acts on the output IT2-FSs of the 
inference engine to generate type-1 fuzzy sets which are then 
defuzzified to get the crisp outputs. There are many kinds of 
type reduction approaches. In this paper, we will use the 
center-of-sets type-reduction which is given by 
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where iy  is the centroid of the consequent set iH . The points 

ly  and ry  can be computed by applying the KM algorithm 
and written as the following form [7] 
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where i
lf  is determined by the values of ( )if x  and ( )if x . 

Then, by denoting 1 2[ , , , ]M Ty y y   , 
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B.  IT2-FLS Approximation 

By [12], T2-FLS is a universal approximator, which means 
that it can approximate any real continuous function on a 
compact set. Based on the analysis of IT2-FLS and its 
approximation capability, we can assume that the unknown 
dynamics in (12)-(16) can be approximated as 

ˆ ( | ) ( ), ( , , , ),T
k k k k k kF x x k V q              (18)  

where , ( , , , )kx k V q   are the input vector of IT2-FLS and 

composed of the measurement outputs , ,V h q  and ˆ ˆ,  , 

where ˆ ˆ,   are the estimates of ,   respectively and 
defined in the next section. 

Define the optimal parameter vectors * ( , , , )k k V q   as  

* ˆarg min sup ( | ) , , , , ,
k k k k

k k k k k
x U

F F x k V q


   
 

     
 (19) 

where k  and k  are compact regions for k  and kx , 

respectively. Hence, the approximation errors k  and fuzzy 

minimum approximation errors k  can be defined as 

ˆ ( | ), , , , ,k k k k kF F x k V q                    (20) 

*ˆ ( | ) , , , , ,k k k k kF F x k V q                    (21) 

Assumption 3. There exist known upper bounds 

k , k ,, , , ,k V q   , satisfying that k k  , k k  .  

By the definition of  k  in (20), the system (12)-(16) can 
be rewritten as 

      ˆ ( | ) ,V V V V VV F x g                           (22) 

,h V                                                     (23) 

ˆ ( | ) ,F x g                                  (24) 

ˆ ( | ) ,F x g g q                         (25) 

ˆ ( | ) ,q q q q e qq F x g                            (26) 

V. CONTROL SCHEME DESIGN 

In this section, the adaptive type-2 fuzzy output feedback 
control scheme for FAHVs is proposed. First, a state observer 
is designed to estimate the immeasurable states ˆ ˆ,  . Then, as 
it can be seen from (12)-(16), the model of FAHVs can be 
divided into two functional subsystems, namely the altitude 
subsystem including (13)-(16) and the velocity subsystem (12). 
By using the system outputs , ,V h q  and the observed states 
ˆ ˆ,  , the altitude controller and velocity controller are 

designed separately for the corresponding altitude and 
velocity subsystems. Fig.2 illustrates the structure of the 
proposed control scheme. 
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Figure2. Structure of the proposed control scheme 

A.  State Observer Design 

Note that the states   and   in the FHAVs are not 
available during the flight; therefore, a state observer should 
be designed to estimate the immeasurable states. By only 
using the information of outputs, IT2-FLS based 
reduced-order fuzzy state observer is designed as follow: 

ˆˆ ˆ ˆ( | ) ( ),oF X g k h V                        (27) 

ˆˆ ˆ( | ) ,F X g g q                                 (28) 

where ˆ ˆ,   are the estimates of ,   respectively and ok  is 
the design parameter. Note that in contrast with the full-order 
observer designed in [8-9], the proposed reduced order 
observer offers the advantage of reducing the order of the 
closed-loop system and the burden of computation.  

Let the observer error be described as ˆ     and 
ˆ    . Then using (24)-(25) and (27)-(28), the dynamics 

of the observation errors are given by 

,og k                                   (29) 

,g                                       (30) 

Consider the following Lyapunov candidate 

2 21 1
.

2 2oW    
                             

 (31) 

The time time-derivative of oW  along (29)-(30) is 

2 2
0 oW k g g                    

      
 (32) 

Note that during the flight the coefficients and parameters in 

Lg qSC mV
   are bounded and satisfy that 0q  , 0S  , 

0LC  , 0m  , 0V  . Hence, there exist positive 

constants g  and g  such that 0g g g     . Then, we 

have  
2 2
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 (33) 

By using Young’s inequality, we have 
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where 1 20, 0    are parameters to be determined. 

Substituting the above inequalities into (33) results in 
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(34) 
From (34), it can be seen that by selecting appropriate 

design parameters, the fuzzy state observer can guarantee the 
convergence of the observer errors. Hence, in the next section, 
observer-based adaptive fuzzy output controller is designed 
to make the resulting closed-loop system stable. 

B. Altitude Controller Design 

By using the backstepping technique, the altitude 
controller is designed and the whole procedure is completed 
in four steps as follow. 

Step1. Define altitude tracking error as 

h de h h                                           

where dh  is the tracking reference trajectory of the altitude. 
Noting that   can be expressed in terms of its estimate as 

ˆ= +   , then the time-derivative of  he  is  

ˆ +h d de V h V h V         

By viewing ̂  as a virtual control input, the virtual 
feedback control law can be designed as  

1
ˆ ( )d h h dk e h

V
                          (35) 

where hk  is a positive design constant to be specified later. 

Step2. Define ˆ ˆ
de    . Differentiating e , one has 

ˆ ˆ ˆ( + ) ( ) ( )T T
o de x g k h V                       

By viewing ̂  as a virtual control input, the virtual 
feedback control law can be designed as 

2

1
ˆ ˆ ˆ= [ ( ) ( )

tanh( ) ]

T
d o d

h

k e x k h V
g

Ve
e

V

    


  

    

  

    

 



    (36)

 

where 0k  , 0   are the design parameters. The adaptive 

law of    is designed as 

 
( ) ( )e x              

                 
(37)  

where 0  , 0   and    are the design parameters. 

Step3. Define ˆ ˆ
de    . Differentiating e , we obtain 

ˆ ˆ( ) ( )T T
de x x g g q                          

By viewing q  as a virtual control input, the virtual 
feedback control law can be designed as  

1
ˆ ˆ( ( ) g

tanh( ) )

T
d dq k e x

g

e g e

     


    

   

  

    

 



        
 (38) 

where 0k  , 0   are the design parameters. The 

adaptive law of    is designed as 

( ) ( )e x               
                (39) 

where 0  , 0  and    are the design parameters. 

Step4. Define q de q q  . Differentiating qe , we have  

( ) ( )T T
q q q q q q q q q e de x x g q             



  

Finally, the feedback control law e  can be designed as 

1
( ( ) tanh( ) )T

e q q q q q d q q q
q

k e x q e g e
g                (40) 

where 0qk  , 0   are the design parameters. The adaptive 

law of q  is designed as 

( ) ( )q q q q q q q qe x       
              

 (41) 

where 0q  , 0q   and q   are the design parameters. 

C. Velocity Controller Design 

The velocity controller is developed. Define velocity 
tracking error as 

V de V V    

The time-derivative of  Ve  is 

( ) ( ) ( )T T
V V V V V V V V V de x x g V              

Then the velocity controller is designed as 
1

( ( ) tanh( ))
ˆ( )

T
V V V V V d V V V

V

k e x V e
g

     


      (42) 

where 0Vk  , 0   are the design parameters. The adaptive 

law of V  is designed as 

( ) ( )V V V V V V V Ve x        
             (43) 

where 0V  , 0V   and V   are the design parameters.  

VI. STABILITY ANALYSIS 

Theorem 1: Consider the closed-loop system consisting of  
the  model (12)-(16) with control laws (35), (36) , (38) , (40), 
(42) and adaptive laws (37), (39), (41), (43). Then all the 
signals involved are bounded and the output tracking error 
converges to a small neighborhood of the origin. 
Proof: Consider the following Lyapunov function: 

o h q VW W W W W W W                    (44) 

where 

2 21 1

2 2oW      ,
2

22
h

h

e
W

V
 , 21 1

2 2
TW e   



 


    ,

21 1

2 2
TW e   



 


    , 21 1

2 2
T

q q q q
q

W e  


    ,

21 1

2 2
T

V V V V
V

W e  


    . 

Differentiating ( , , , , )iW i h q V   and combining 
(35)-(43), we obtain  

2
2

1
( )h h h h hW k e Ve Ve e

V     
            

 (45) 

2

2

tanh( )

( )h T

W k e e e e e

Ve e
g e e

V

          

 
     



    


  



    

   




   (46) 

2 tanh( )

( )T
q

W k e e e e e

g e e g e e

          


       



    


  


    

   



   (47) 

2 tanh( )

( )

q q q q q q q q q

q T
q q q q

q

W k e e e e

g e e 

   


  



   

  




         (48) 

2 tanh( )

( )

V V V V V V V V V

TV
V V V

V

W k e e e e

A

   


   


   

  



 
      (49) 

where 
3 22 2ˆ ˆ ˆ[ ( ) ( ) ]T T T

qS
A C C C

m
             . 

Here, assume A is bounded during the flight, i.e. A A . 

Note the following inequality holds: 
2*( ) , , , ,

2 2
T Tk k k
k k k k k k k

k k k

k V q
  

        
  

          

tanh( ) 0.2785 , , , ,k k k k k ke e e k V q            
2 2
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k k

k k

e
e k


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22
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32 2

A
A

 



 


 ，

 
where 3 0  is a design parameter. 

Substituting the above inequalities into (45)-(49) and 
considering (34), one has  
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 Choose the appropriate design parameters ok , 1 , 2 , 3 , 

( , , , , )ik i h q V  , ( , , , )k k q V   , ( , , , )k k q V    

such that 
1

( 1) 0
2o

g
k 


    , 1 2 3( ) 0

2 2

g
g 


  
    , 

0 ( , ),ik i q V   1 2 ( , , )ik i h    , 

0 ( , , , )k k q V     and 0 ( , , , )k k q V    . Then (50) 
becomes 

W cW                                 (51) 
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(53) 

By assumption 3,  and   are bounded which imply   

in (53) is bounded. Hence, from (51), all the signals involved 



  

in the closed-loop system are bounded and the output tracking 
error converges to a small neighborhood of the origin. 

VII. SIMULATION 

In this simulation study, the adaptive type-2 fuzzy output 
feedback control schemes are applied to the tracking control 
of the FAHVs.  

Simulations are conducted on the model of the FAHVs 
with flexible states described as (1)-(6). The initial flying 
states are chosen as 
[ , , , , ] [7846.4 , 85000 , 0 ,TV h Q ft s ft rad    
0.0219 , 0 ]Trad rad s ,  [0.594,0, 0.0976,0, 0.0335,     

0]T  and the initial control inputs are chosen as 

[ , ] [0.12,0.12 ]T T
e rad    . 

The control objective is to control the states ,V h  to track 
their reference trajectories. The reference trajectory is 
generated by filtering the given 1000 ft/s step in velocity 
channel and a 10000 ft change in altitude channel through 
second-order prefilters. 

The premise variables of IT2-FLS are selected as 
ˆ[ , ]T

Vx V a , ˆ[ ]Tx V,a  , ˆ[ ]Tx V,a  , ˆˆ[ , ]Tx V,a  . The 

consequent IT2-FSs are chosen to be T1-FSs, their values are 
initially set as random numbers between -1 and 1. Specifying 
the design parameters 1 ( , , , )k k V q    , 

0.1 ( , , )k k q     and 0 .01V  , hence the adaptive 
laws in (37), (39), (41) and (43) are constructed. 

The rest parameters of the proposed controllers are chosen 
as 10ok  , ( , , , , )ik i h q V  , 2Vk  , 2.5hk  , 4k  , 

1k  , 40qk 
 
and 1  . In usual backstepping control 

design, the analytic computation of the virtual control signal 
derivatives is tedious. Here in simulation, we use command 
filters to obtain the derivatives of the virtual control signals as 
well as reference command signals. 

To illustrate the performance of the proposed output 
feedback control system, the control laws are conducted on 
FAHVs model with 0% and 30% uncertainties added in all 
aerodynamic coefficients in (7)-(10). The trajectories of the 
velocity and altitude and the corresponding tracking errors 
are showed in Fig.3. It can be seen that the velocity V  and 
altitude h  can track their desired trajectories. Other flight 
states remain bounded as shown in Fig.4. Hence, the 
proposed adaptive type-2 fuzzy output feedback controller 
does provide good tracking performance, despite the 
presence of incomplete state measurement and the model 
uncertainties.  

0 50 100 150 200 250 300 350
7000

8000

9000

V
(f

t/s
)

t/s

 

 

0 50 100 150 200 250 300 350
-10

0

10

t/s

e
V
(f

t/s
)

 

 

0 50 100 150 200 250 300 350
8

8.5

9

9.5

x 10
4

h
(f

t)

t/s

 

 

0 50 100 150 200 250 300 350
-4

-2

0

2

t/s

e
h(f

t)

 

 

30%

0%
Vref

30%

0%

href

30%

0%

30%

0%

 
Figure 3. Tracking performance of altitude and velocity. 
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Figure 4. Tracking performance of other flight states. 

 

VIII. CONCLUSION 

In this paper we propose a new adaptive fuzzy output 
feedback control scheme for the tracking control of the 
flexible air-breathing vehicles. This control scheme involves 
IT2-FLS, which contributes to approximating the unknown 
dynamics of FAHVs. Based on these results, the approach of 
designing reduced-order fuzzy states observer is presented, 
which gives the estimates of the unmeasured states. Under the 
framework of the backstepping control method, an 
observer-based adaptive type-2 fuzzy controller is constructed 
to deal with the tracking problem for FAHVs. Furthermore, it 
is proven that the proposed controller guarantees that all 
signals in the closed-loop systems are bounded and the 
tracking error converges to a small neighborhood of the origin. 
Simulation results of the tracking control have been shown to 
demonstrate the effectiveness of the proposed results.  
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